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Abstract 
 

 

In this dissertation, we introduce a new approach of predicting effective elastic 

properties upon solid substitution using strain energy and reciprocity theory. We 

confirm that the exact solution for fluid and solid substitution requires parameters that 

depend on pore geometry; therefore, substitution is non-unique if only pore-fill 

volume fraction is known. Using the new equations, which require less computational 

simulation as compare to a previous study (Saxena and Mavko, 2013) we find that the 

difference between pore geometry parameters stays unchanged in the same pore 

compliance. Hence, using this assumption we can predict effective elastic properties 

upon fluid and solid substitution. After introducing our approach, we discuss methods 

for obtaining the parameters of stress heterogeneity in the pore space. Finally, we 

demonstrate the new approach using an actual data set and accompanying 3D CT-scan 

image.  

Since information about pore geometry is often unavailable, we present bounds to 

approximate pore geometry parameters for our new approach.  Our new approach 

suggests a range of possible solutions with a final pore filling material. The range of 
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soft to stiff pore filling material substitution can be interpreted as maximum when 

there is large strain heterogeneity in the pore space and minimum when there is strain 

homogeneity in the pore space. When there is a stiff to soft pore filling material 

substitution, then, the range of possible solutions can be explained as the maximum 

change corresponds to strain homogeneity in the pore space and minimum change 

corresponds to strain heterogeneity in the pore space. 

We also extend our exact substitution relations to substitute porosity in isotropic 

rocks. These new solutions are also equivalent to relaxing the assumption of 

unchanging rock microstructure upon substitution – a core assumption in the current 

models. Both the pore-filling phase and rock microstructure can change due to 

diagenesis, dissolution, precipitation, partial freezing or melting, etc., and these 

situations can be modeled using the new approach. We show that for two different 

pore compliances of any arbitrary pore shape, the difference in volume averaged stress 

heterogeneity in the pore spaces remains the same. This assumption is consistent with 

numerical simulations conducted on digital samples of the Fontainebleau and Berea 

sandstones.  

We, also, study four different effective medium theory (EMT) models: Self-

Consistent (SC), Differential Effective Medium (DEM), Mori-Tanaka (MT), and 

Kuster-Toksoz (KT). We plot a wide range of different aspect ratios (AR) for each 

model between Hashin-Shtrikman bounds (HS) to analyze certain gaps. We also 

perform fluid and solid substitution for each model. We, then, compare results to 

understand the change in effective bulk and shear moduli. Using recently derived 
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exact solid substitution equations by Saxena and Mavko (2013) we can analyze which 

model captures more heterogeneity in the pore space. 

Finally, we find Comsol Multiphysics as a convenient tool for our numerical 

simulations. In this dissertation, we also show how problem of meshing complex 

geometry, such as we see in real rock, can be solved using Simpleware. The 

computations illustrate the challenges of estimating effective elastic properties on 

small samples.  We observe that displacement boundary conditions tend to give 

moduli that are too stiff, and stress boundary conditions tend to give moduli that are 

too soft.  We explored an embedding strategy by using a numerical “jacket” around 

the sample.  A liquid jack transmits pressure boundary conditions to the inner rock 

sample, even though displacement boundary conditions are applied to the jacket.   
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Chapter 1  

Introduction 
 

 

  

1.1 Motivation 

Discovering oil is the ultimate prize in oil exploration; however, drilling a well can 

cost up to 500 million dollars, often causing significant environmental damage. Hence, it 

is of extreme importance to accurately predict the location of the oil reservoir before 

starting to drill. Using seismic waves (sonar waves) to scan the subsurface provides an 

economical method to get a general image of the whole exploration area structure. 

Looking at the images provided by the seismic waves, the best assumption is made to 

drill the first well (exploration well); however, in most cases, the prospect turns out to be 

a water filled reservoir. Rock physics models use the exploration well data to predict how 
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the seismic images would look like if this reservoir were filled with oil instead. One of 

the challenging problems in rock physics is to predict whether a reservoir is filled with a 

solid material such as heavy oil or bitumen. Most existing models are not applicable for 

this problem because of the underlying assumptions, which are insufficient to account for 

entirely different physical properties of solids as compared to fluids (water, oil, light-oil). 

Hence, the objective of this thesis is to study how heterogeneous porous medium filled 

with different materials physically respond to seismic waves saturated with a viscous 

material.  

Gassmann’s (1951) equations are often used for fluid substitution, the exercise of 

predicting the change in low-frequency seismic velocities upon substitution (or 

replacement) of ideal fluids (gas, water, light-oil, etc.) that fully saturate interconnected 

rock pores. If the medium is isotropic and the wave-induced stress is homogeneous, then 

Gassmann’s equations are exact. However, in naturally occurring rock that have viscous 

or solid pore filling material such as bitumen, heavy oil, magma, or glycerol, these 

equations are no longer applicable, because these materials do not behave in a near-ideal 

manner: i.e., they do not instantly flow and they can support shear tractions at the pore 

boundaries when loaded at finite rates. Ciz and Shapiro (2007) modified Gassmann’s 

equations for solid-saturated rocks by dropping the parameters that describe pore 

geometry, which were generally unknown. Ciz and Shapiro suggested an approximate 

equation that replaced the pore geometry parameter with the elastic properties of the 

pore-filling material. Recent findings by Makarynska et al. (2010) suggest that the 

accuracy of this approximation is very limited. Makarynska et al. (2010) also report that 
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although using the self-consistent approach (Berryman, 1992) improves the predictions, 

the results are not satisfactory. More recently, a new set of equations were derived by 

Saxena and Mavko (2013) which are different from the approximations suggested by Ciz 

and Shapiro. These exact equations make use of pore geometry parameters, that are 

presented in a computationally convenient form. However, this approach requires 

computational estimation of four unknown parameters. The main goal of this thesis is to 

introduce an alternative method for quantifying stress heterogeneity in the pore space and 

hence, reduce the number of unknown parameters. The new parameters will also provide 

a smaller range of solutions.  

The theories of Gassmann, Brown and Korringa, and Ciz and Shapiro are 

fundamentally limited to substitution scenarios in which pore geometry does not change. 

This assumption limits the applicability of the theories to problems such as modeling 

digenesis (Avseth et al., 2005), estimating the effects of dissolution/precipitation 

(Hoefiner and Le Guen et al., 2007; Vanorio et al., 2011; Vialle and Vanorio, 2011), and 

modeling the effect of steam injection on heavy oil reservoirs (Schmitt, 1999; Bianco et 

al., 2008; Chopra et al., 2010).  

In this thesis, we also target to predict the changes in effective bulk and shear moduli 

upon substitution of any pore filling material and the change in porosity for any arbitrary 

pore shape.  
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1.2 Chapter organization 

In chapter 2, we explain how to estimate the effective elastic properties of a porous 

medium using numerical simulations. We discuss results found using Comsol 

MultiphysicsTM for effective bulk and shear modulus estimation. We find that 

appropriately meshing the complex geometry, which is a necessary step in numerical 

simulations, is not always possible in Comsol Multiphysics. We find that another 

commercial software package – SimplewareTM -- is more useful for meshing the complex 

geometries that we see in real rocks. The known issue of overestimating estimated 

effective elastic properties using numerical simulations is also discussed in this chapter. 

In chapter 3, we derive a new approach to modeling fluid-to-solid substitution for an 

elastic isotropic composite using strain energy and reciprocity theory. We also 

demonstrate that the volume averaged induced stress heterogeneity within the pore space 

remains relatively constant for any arbitrary pore shape if we stay within the same rock 

domain. Finally, we test the new approach using an actual data set and accompanying 3D 

CT-scan images.  

In chapter 4, we extend our solid/fluid substitution equations (discussed in chapter 3) 

to solid/fluid substitution along with a change in porosity. We use our newly derived 

approach to describe solid/fluid substitution in isotropic elastic composites with arbitrary 

pore geometries.  

In chapter 5, we introduce the bounds for obtaining pore geometry parameters in the 

case when a 3D CT-scan image is not available. The bounds are obtained using the 

Hashin-Shtrikman bounds. The only geometric input required for this rigorous method is 
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the pore volume fraction. The bounds method seems to accurately constrain the possible 

change in rock stiffness upon fluid or solid substitution in two phase isotropic rocks.  

Chapter 6, we focus on four different Effective Medium Theory models: Self-

Consistent (SC), Differential Effective Medium (DEM), Mori-Tanaka (MT), and Kuster-

Toksöz (KT). We explore the limits of each model by comparing their predictions with 

the Hashin-Shtrikman bounds. We also compare results of how each model performs 

using fluid and solid substitution. Using the recently derived exact solid substitution 

equations by Saxena and Mavko (2013) we can analyze which model captures more 

accurately the heterogeneity in the pore space.  
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Chapter 2  

Numerical Simulations 
 

 

  

2.1. Abstract 

Most of my thesis work is based on numerical simulations, hence, this chapter is 

dedicated to explanation on how numerical simulations are performed in order to estimate 

the effective elastic properties of a porous media. In particular, we find that it is 

convenient to use Comsol Multiphysics for effective bulk and shear modulus estimation. 

We argue how problem of complex geometry, such as we see in real rock, can be solved 

using Simpleware. Known issue of stiffer computationally estimated effective elastic 

properties is also discussed in this chapter.  
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2.2. Introduction 

Computation of physical properties on 3-D CT-scanned digital rocks is used in 

geosciences applications, and a number of different workflows and algorithms have 

become available. We discuss a study on elasticity in different rock types (Figure 2.1) 

using Simpleware, and Comsol Multiphysics code. The 3D CT-scan images of different 

rock types are Berea Sandstone and Fontainebleau Sandstone (Figure 2.1). The materials 

for the grains and pore-fill assumed for the study are water and quartz with the following 

elastic properties and conductivities: 

Table 2.1. Elastic properties, conductivity and viscosity 
Material Young’s Modulus  

(GPa) 
Poisson Ratio 

Water 3e-9 0.49 
Quartz 94.5 0.08 

 

 

Figure. 2.1. 3D CT scan volumes of size 100x100x100. Black color here is a solid 
matrix and white color is pore space. 
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2.3. Assembly of real rocks 

Comsol MultiphysicsTM software is widely used to analyze potential rock physics 

properties at the macro scale. However, running Comsol simulations on a real rock 

sample is a challenging due to lack of a good FEM meshing option in this particular 

software. However, using SimplewareTM software we are able to first generate a mesh 

representing a wide range of rock geometries and then import those meshes in Comsol for 

physical property simulation. In this chapter I discuss a recipe for using this process.   

We start by importing the 3D scanned image volumes of each sample into 

Simpleware ScanIP (Synopsys, Mountain View, USA) for image processing and 

segmentation. Since all of the 3D scan volumes used in this discussion are 100x100x100, 

each cube consists of 100 2D images of 100x100 size. We perform meshing using the 

Simpleware +FE-Free meshing algorithm with tetrahedral elements. Since the rock model 

is based on a pre-segmented image (a binary image without any greyscale information 

reflecting the sub-voxel geometry of the sample), it is best to select the “Binarise before 

smoothing” option. In this way the meshing algorithm in Simpleware does not try to use 

any spurious greyscale information that might have been introduced into masks by 

thresholding, and the generated mesh has porosity closer to that of the original image. 
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Figure. 2.2. Typical 3D CT scan volumes of size 100x100x100. 
 

We perform meshing using the Finite Element mesh algorithm with the tetrahedral 

element type and threshold of coarseness of -45, which limits edge length between 3.65 

and 9.1 of corresponding unit length. Figure 2.2 shows an example of meshing Berea 

sandstone. An example of a finer mesh of the same pore structure is shown in Figure 2.3.  

 

 
  

Figure. 2.3. 3D mesh of pore structure of Fontainebleau sample: a) has a mesh size 
parameter of -25 (coarser than voxel size) resulting in 165,933 tetrahedral 
elements. b) has a mesh size parameter of 0 (same as the voxel size) resulting in 
621,918 tetrahedral elements. 
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2.4. Numerical computations of effective elastic properties 

We import the Simpleware mesh of each of the sample, into Comsol, which solves 

the relevant partial differential equations to estimates the desired physical properties.  

The relevant partial differential equations (elastostatic, electrical conduction, and 

Stoke’s flow) are solved in Comsol using the finite element method. To compute 

effective elastic properties in Comsol, we use the Solid Mechanics package and assign 

Linear Elastic Material for each domain. In this research, we use only two domains: the 

first domain is mineral matrix and the second domain is pore space. For material 

properties of each phase, we work with bulk and shear modulus. It is necessary to 

mention that if air/gas is used as one of the domain materials, then bulk and shear moduli 

have to be very small positive values and not zero. We usually use 1Pa for both bulk and 

shear modulus for air/gas.  

2.5. Boundary Conditions for Effective Bulk Modulus 

We apply normal prescribed displacements in the Boundary System to estimate the 

effective bulk modulus. Usually the displacement has to be a very small value compared 

with the sample size, since we want to simulate far field infinitesimal strain boundary 

conditions; hence, we use displacements -1e-6 units of pixel size. The negative sign 

means that we compress 3D cube. The general idea of this process is illustrated on Figure 

2.4. The effective bulk modulus is then computed by taking the ratio of volume 

integration over the mean normal stress and volumetric strain. 
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Figure 2.4: Normal displacement is applied on the boundaries of a 3D cube.  

 

2.6. Boundary Conditions for Effective Shear Modulus 

To estimate effective shear modulus, we apply a series of sliding displacements in the 

Global Coordinate System.  As in the effective bulk modulus problem, we use tangential 

displacement magnitude of -1e-6 units of pixel size. In order to estimate the effective 

shear modulus in Comsol we use simple shear boundary conditions. Unlike in normal 

boundary condition, there is no direct method to apply simple shear boundary conditions 

in Comsol. Hence, we use four separate Prescribed Displacements in Solid Mechanics 

Study.  On Figure 2.5 we show the general idea of simple shear boundary conditions. 

There are three visible surfaces of the cube: A, B and C and three opposite surfaces: A’, 

B’ and C’. The coordinate system is shown in right low corner of Figure 2.5. Essentially, 

∆  

∆  

∆  

∆  

∆  
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we want to tangentially pull the sides of the cube (highlighted in red color); hence, 

surface B has to move in direction –Y and surface A’ – in direction X. Surface A slides in 

direction –X and surface B’ – in direction Y.  In a perfectly isotropic medium, surfaces C 

and C’ will have zero normal displacements; therefore, we apply a Rolling constraint on 

these surfaces, which allows for tangential displacement but no normal displacement.  

Since we pull sides of the cube in X-Y directions, the effective shear modulus is 

computed by taking the ratios of volume integration over the shear stresses and shear 

strains in the X-Y planes. 

 

 
Figure 2.5: Simple shear displacement is applied on the boundaries of a 3D cube.  

 

The CT scan volumes are shown in Figures 2.1 and 2.7, where the white color is the 

pore space and the black color is the mineral matrix. We computationally assign pore 

space to be water and mineral matrix to be quartz (sandstone scans). The properties for 

B 

C

A’ 

B’ 

C’ 
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each constituent material are used from Table 2.1 The corresponding effective elastic 

moduli estimated using Comsol are shown in Table 2.2. 

Table 2.2: Effective elastic properties using Comsol. 

Effective 
Elastic moduli 

Berea 
Sandstone 

Fontainebleau 
Sandstone 

Young’s 
Modulus (GPa) 

50.63 62.7 

Poisson Ratio 0.12 0.12 
 

2.7. Comparison of numerical simulations with laboratory 

measurements 

A general problem that we find with either of these tools is that the sample size is 

often smaller than the representative element volume (REV); in sub-REV simulations 

with displacement boundary conditions, the estimated stiffness is often too large -- 

approximately an upper bound on the desired effective moduli (Huet, 1990).  An example 

is shown on Figure 2.6. The black color squares are the laboratory measurements of 

Berea sandstone (Han, 1986) and the red color circle is the COMSOL computational 

simulation on the 3D CT scan image the size of 1003 the pore space of which is saturated 

with air (bulk modulus: 1 Pa, shear modulus: 1 Pa).  
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Figure 2.6: The end red color point is the Berea sandstone. The black empty square 

symbols are actual lab measurements (Han, 1986).    
 

In order to overcome the general problem of stiffer computed effective elastic 

properties when using displacement boundary conditions, we use a “jacket” to soften 

computationally estimated effective elastic properties.  This is sometimes called an 

“embedded” strategy (Böhm, 2008).  In this study, the jacket is constructed by adding a 

layer of 5 extra pixels thick to each face of the 3D CT scan image. An example of this 

idea is shown on Figure 2.7. A slice is taken from Berea sandstone, where the pore space 

is shown in white, the solid matrix is in black, and the “jacket” is the red color around the 

rock.  

Varying the jacket elastic properties weakens the effect of the displacement boundary 

condition.  For example, a liquid jacket can only transmit hydrostatic stress to the 

surfaces of the inner rock sample. Therefore, even though we apply displacement 

boundary conditions to the jacket, the inner rock sample deforms as though there is a 

pressure boundary condition; In a sub-REV sample, this would yield a softer effective 

stiffness – approximately a lower bound on the effective modulus. Direct stress boundary 



CHAPTER 2: NUMERICAL SIMULATIONS 

 
 

17

conditions in a finite element program can be unstable and requires constraining a point 

in the center of the cube to have zero displacement and zero rotation (which comes with a 

lot of challenges). The jacket strategy allows us to stay with the displacement boundary 

conditions.   

 
Figure 2.7: Example of a slice of 3D cube of jacketed (red color) CT scan rock 

image. 
 

Figure 2.8 shows an example of computed stresses in a rock.  On the right, the sample 

is unjacketed with normal displacement boundary conditions; on the left, normal 

displacement boundary conditions are applied using a liquid jacket.  The pore space is 

saturated with air (Bulk modulus: 1 Pa, Shear modulus: 1 Pa); the solid matrix is quartz 

(Bulk modulus: 36 GPa, Shear modulus: 44 GPa); and the “jacket” material is liquid 

(Poisson’s ratio: 0.49, Young’s modulus: 0.5 GPa). 
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Figure 2.8: Figure on the left is an example of stresses in a rock with direct stress 

boundary conditions. Figure on the right is an example of stresses in a rock with 
displacement boundary conditions applied to a liquid jacket surrounding the 
sample.   

 

To study what material properties of the “jacket” are suited for our work, we run a 

range of different material properties from liquid to solid. We vary Young’s modulus 

from 0.5 GPa to 50 GPa and Poisson’s ratio from 0.49 to 0.19. All of the material 

properties are shown on Table 2.3. We use 3 different sandstone 3D CT scan images: 

Berea sandstone, Fontainebleau sandstone and Cenovus oil sand. We compare our 

computational simulations with laboratory measures for Berea sandstone and 

Fontainebleau sandstone and well log data for Cenovus oil sand. For all of our 3D CT 

scan images we use quartz for the solid matrix (Bulk modulus: 36 GPa, Shear modulus: 

44 GPa). For Berea sandstone and Fontainebleau sandstone the pore space is specified 

with air (Bulk modulus: 1 Pa, Shear modulus: 1 Pa), and for Cenovus we use cold heavy 

oil (Bulk modulus:  3.2 GPa, Shear modulus: 0.5 GPa).  As a result, we show (Figure 4 

and 5) 15 computational simulations of effective bulk and shear modulus using different 

material properties of jacket in black-colored stars, effective elastic moduli using direct 
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displacement boundary conditions without a jacket in red-colored point, and laboratory 

measurements (Han, 1986) or well log data with black empty square symbol. The x-axis 

on the figures is just the simulation sample number. With the increase in sample number 

on the x-axis, the material moduli of the “jacket” increases according to the Table 2.3. 

 

Table 2.3: A range of material properties of “jacket”. 

 Young’s Modulus GPa Poisson Ratio 

1 0.50 0.49 

2 4.04 0.47 

3 7.57 0.45 

4 11.11 0.42 

5 14.64 0.40 

6 18.18 0.38 

7 21.71 0.36 

8 25.25 0.34 

9 28.79 0.32 

10 32.32 0.29 

11 35.86 0.28 

12 39.39 0.25 

13 42.93 0.23 

14 46.46 0.21 

15 50.00 0.19 

 
On Figures 2.9 and 2.10 we show computationally estimated effective bulk and shear 

modulus of Berea and Fontainebleau sandstone, respectively. We notice that 

computationally estimated effective elastic properties with much softer “jacket” match 

the laboratory measures of Berea sandstone (Han, 1986). (The “measured” moduli are 
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extracted from measured ultrasonic P- and S-wave velocities. The red points are the 

computationally estimated effective bulk and shear moduli computed without a “jacket”. 

Note that the unjacketed and jacketed moduli agree when the jacket material is stiff. 

 
Figure 2.9: 15 simulations of different material properties of “jacket” used with 

Berea sandstone and shown in black color stars. The end red color point is the 
Berea sandstone with direct stain boundary conditions. The black empty square 
symbols are actual lab measurements (Han, 1986).    

 

 
Figure 2.10: 15 simulations of different material properties of “jacket” used with 

Fontainebleau sandstone and shown in black color stars. The end red color point 
is the Fontainebleau sandstone with direct stain boundary conditions. The black 
empty square symbols are laboratory measurements (Han, 1986).    
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On Figure 2.11 we show computationally estimated effective bulk and shear modulus 

of Cenovus oil sand. We notice that the data point from a well log data, which is 

saturated with cold heavy oil, falls below computationally estimated effective elastic 

properties with much softer “jacket”; however it falls on the same trend.  The red points 

are the computationally estimated effective bulk and shear modulus without “jacket”, 

which gives stiffer results, matching the effective elastic properties with “jacket”, when 

the jacket is stiffest.  

 

 
Figure 2.11: 15 simulations of different material properties of “jacket” used with 

Cenovus oil sand and shown in black color starts. The end red color point is the 
Berea sandstone with direct stain boundary conditions. The black empty square 
symbol is taken from well log data.    

 
As a conclusion from this small study we decided to use 5 GPa of Young’s modulus 

and 0.47 of Poisson Ratio as material properties of “jacket” for our future computational 

simulations.  
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2.8. Chapter Summary 

Simpleware is widely used in meshing complex rock geometries. Comsol is a reliable 

FEM solver -- it provides more outputs than just effective properties, such as the internal 

distributions of field variables (e.g. stress, strains, electrical fields, flow vectors etc.). It 

allows more control over the conditions of the problem but in general the computations 

can be slow. Sometimes with a very fine mesh, Comsol runs out of the memory (on the 

particular hardware used) and does not converge. 

The computations illustrate the challenges of estimating effective elastic properties on 

small samples.  In sub-REV samples, displacement boundary conditions tend to give 

moduli that are too stiff, and stress boundary conditions tend to give moduli that are too 

soft.  We explored an embedding strategy by using a numerical “jacket” around the 

sample.  A liquid jack transmits pressure boundary conditions to the inner rock sample, 

even though displacement boundary conditions are applied to the jacket.  Our computed 

moduli are closer to the laboratory values when the jacket is soft; precise choice of the 

best jacket properties requires calibration. 
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Chapter 3  

Equations for fluid and solid substitution 
 

 

  

3.1. Abstract 

In this chapter we use strain energy and reciprocity theory to introduce a new approach to 

modeling fluid-to-solid substitution for an elastic isotropic composite. In addition, we show that 

for a constant pore compliance, volume averaged stress heterogeneity in the pore space remains 

the same for any arbitrary pore shape. Our approach can be used for any pore filling material as 

long as we account for stress heterogeneity in the pore space. After introducing our approach, we 

discuss methods for obtaining the parameters of stress heterogeneity in the pore space. Finally, 

we demonstrate the new approach using an actual data set and accompanying 3D CT-scan image.  
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3.2. Introduction 

Fluid substitution is most often described using Gassmann’s (1951) equations, which relate 

the fluid-saturated composite bulk and shear moduli of a porous material with the dry composite 

moduli. For isotropic homogeneous rocks, Gassmann’s equations depend only on the bulk 

modulus of the elastic mineral and the initial effective bulk modulus, porosity, and bulk modulus 

of the pore fluid. For fluid-saturated rocks, Gassmann’s equations are exact as long as the 

induced volumetric stress in the pore space is homogeneous. 

Ciz and Shapiro (2007) modified Gassmann’s equations for solid-saturated rocks by 

dropping the pore geometry parameters, which were generally unknown. They proposed the 

approximate solid substitution equations  
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In Eqns. 3.1 and 3.2,   is the porosity, 
1pK

 and 
1pG  are the bulk and shear moduli of the 

initial pore-filling solid, 
2pK

 and 
2pG  are the bulk and shear moduli of the final pore-filling 

solid, mK  and mG  are the bulk and shear moduli of the mineral in the rock frame, 1satK  and 

1satG  are the effective bulk and shear moduli of the initial-filled composite, and 2satK  and 
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2satG  are the effective bulk and shear moduli of the final-filled composite. In cases where 

0pG  , Eqns. 3.1 and 3.2 reduce to Gassmann’s equations.  More recently, Saxena and 

Mavko (2013) derived exact solid substitution equations that differ from the approximations 

suggested by Ciz and Shapiro. These exact equations make use of pore geometry parameters, 

which are presented in a computationally convenient form. For fluid-to-solid substitution of the 

bulk modulus,  
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where 2   depends on 2 .  

For effective shear modulus 
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In the Eqns. 3.3 and 3.4, 2,1pP  is the volumetric induced stress in the initial and final pore 

filling materials, respectively, and 2,1p
ij  is the shear-induced stress in the initial and final pore 

filling materials, respectively (  denotes the pore volume average of parameter  ).  It is 

guaranteed that 1 , 1  1  and 2 , 2 0 .  

We derive a new approach for describing solid substitution in isotropic elastic composites 

with arbitrary pore geometries. Our ultimate goal is to reduce the computational expense and 

introduce an alternative method for quantifying stress heterogeneity in the pore space. This will 

provide a smaller range of solutions for pore geometry parameters.  
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3.3. Substitution Equations 

In this section, we derive substitution equation for effective bulk and shear moduli. We, then, 

show a comparison between new derivations and numerically estimated effective bulk and shear 

moduli of Berea and Fontainebleau sandstone samples.  

3.3.1. Bulk Modulus Derivation 

 
 

 
Figure 3.1: Compressional tractions on an arbitrary pore shape composite.  
 

Let an isotropic and homogenous elastic body on Figure 3.1 be subjected to volumetric 

surface traction as 

jiji n 
 , (3.5) 

where i  are surface traction components, ij  is a constant stress tensor with equal principal 

values, and jn  are normal vectors to the outer surface. Then the strain energy U  stored in the 

elastic body is given as  
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where iu  is the displacement acting on the surface of the body, and stress ij  and strain ij  are 

connected by Hooke’s law:      

)
3

1
(2 ijkkijijkkij GK  

 
. (3.6) 

These stresses and strains can be also described as  

ijijij TP  
 , (3.7) 

 

and 

ijijkkij  
 , (3.8) 

where P  is normal stress or pressure (negative of mean stress, 3/kk ), ijT  are deviatoric 

stresses, kk  is volume strain, and ij  is deviatoric strain. 

A number of inclusions of arbitrary shapes and elastic moduli pK  and pG are added into 

the homogenous body. The strain energy stored in the inclusions is given by 





N

n
pp n

UU
1  

. (3.9) 

If the same surface tractions are applied to the new isotropic elastic composite, it has been shown 

by Eshelby (1951, 1956) that the difference in elastic energy stored in the two cases is given by 
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where U is the strain energy stored in the elastic composite and mU  is the strain energy stored 

in the elastic body without inclusions. S  is the surface of the inclusion, and p
i  and p

iu  are the 

traction and displacement vectors on the surface of the inclusion.  

Subscript ‘p’ refers to inclusions in the composite, and ‘m’ refers to the body loaded by the 

same tractions without inclusions; values with no subscript refer to the effective properties of the 

composite loaded by the same traction. 

The strain energy stored in the pore space is expressed as 
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where pP  is the volumetric induced stress in the pore space (inclusions) and mP  is the volumetric 

induced stress in the same elastic body with no pore space (inclusions). 

On the other hand, strain energy stored in the pore space can be written as  
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Since the composite of mK is homogeneous, it guarantees that PPm  : 
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Hence Eqn. 3.13 reduces to 
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, (3.14)

where K  is the effective bulk modulus of the rock,   is the porosity, pK  is the modulus of 

the pore-filling material, and Km  is the solid frame modulus.  

From Hooke’s law, 

kkKP 
 , (3.15)

and  

kk
p

pp KP 
 , (3.16)

where kk
p  is volumetric strain in the pore space, which can be expressed using Eshelby’s 

theory as  

kkvkk
p  

 
. (3.17)

After rearranging the terms in Eqn. 3.14 we get 

  v
pm

m

KK

KK 






 
. (3.18)

Parameter v  is the volumetric strain concentration in the pore space, defined as the average 

strain in the pore space divided by the average strain in the rock. Certain properties of v are 
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known: for any arbitrary pore shape a general argument can be made for 1>/1 v  . Parameter 

v  depends on the pore space geometry and the properties of the pore-filling material. 

3.3.2. Shear Modulus Derivation 

 

 
Figure 3.2: Shear tractions on an arbitrary pore shape composite.  
 

Now let the same isotropic and homogenous elastic body on Figure 3.2 be subjected to shear 

surface tractions as 
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. (3.19) 

We drop the ij notation in deviatoric stress, assuming that T12  T21  T . In a composite loaded 

by the these tractions, the strain energy stored in the pore space is expressed as 
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Rearranging terms and using the volume averaging notation we get 
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, (3.21) 

Where G  is the effective shear modulus of the rock, pG  is the pore-filling shear modulus, 

and mG  is the shear modulus of the solid frame material. 

Using Hooke’s law,  

ijij GT 2  , (3.22)

and Eshelby’s theory for shear strain ij
*  in the pore space,  

ijppij GT *
)( 2   , (3.23)

we rearrange Eqn. 3.21: 

  d
pm
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GG

GG 






 . (3.24)

Eqn. 3.21 provides the exact effective shear modulus for any arbitrary pore shape. Parameter 

d , introduced in Eqn. 3.24, captures the concentration strain of induced shear stress in the pore 

space. It is generally true that 1>/1 d  . d  also depends on pore shape and pore filling 

material.  
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Consider an initial composite 1satK , 1satG , where frame mK , mG  with pore space   is 

fully saturated with initial pore material 
1pK , 

1pG . We can write Eqn. 3.18 and 3.24 as 
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Next, we consider same composite saturated with a new pore filling material 
2pK ,

2pG  and 

estimate the new effective bulk and shear moduli:  
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Subtracting the equations for the final material, (3.27) and (3.28), from those for the initial 

material, (3.25) and (3.26), we obtain  
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and                                   
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As porosity changes, the effective bulk and shear moduli may also change; however, if 

porosity changes within the same pore compliance, then 21 p
v

p
v    and 21 p

d
p

d    are 

approximately constant.  
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  . (3.32) 

If 
21 pp KK   and 

21 pp GG  , then 
21 satsat KK  , 

21 satsat GG   and 12 p
v

p
v   , 

12 p
d

p
d   ; hence, vC  and dC  must have non-negative values. Subscripts “v” and “d” denote 

boundary conditions of volumetric and deviatoric strain, respectively. 

3.3.3. Comparison 

To show that vC  and dC  are approximately constant within the same pore compliance we 

refer to Fontainebleau and Berea sandstone digital samples. Each sample is divided into 5 sub-

samples. All of the sub-samples are relatively isotropic. Although the porosity of each sub-

sample differs, the pore compliance stays the same for each original sample. From numerical 
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simulations, we obtain v and d  for sub-samples saturated with water (bulk: 2.2 GPa, shear: 1 

Pa) and heavy oil (bulk: 2.5 GPa, shear: 0.4 GPa), assuming that the mineral matrix is pure 

quartz (bulk: 37 GPa, shear: 44 GPa). We then estimate heavyoil
v

water
v    and heavyoil

d
water
d   . 

vC  and dC  have approximately constant values for all 5 sub-samples of each sandstone digital 

sample. The results are shown on Table 3.1 and 3.2 for the Fontainebleau and Berea sandstones, 

respectively. 

Table 3.1: A list of pore compliance parameters for the Fontainebleau sandstone. 

Porosity v water v  heavy oil vC  d water d heavy oil dC  

0.129 2.13 2.07 0.06 2.82 2.69 0.13 
0.136 2.21 2.13 0.07 2.80 2.67 0.13 
0.142 2.14 2.08 0.07 2.81 2.67 0.13 
0.152 2.13 2.06 0.07 2.81 2.67 0.14 
0.153 2.13 2.06 0.07 2.82 2.66 0.16 

 
Table 3.2: A list of pore compliance parameters for the Berea sandstone. 

Porosity v water v  heavy oil vC  d water d heavy oil dC  

0.226 1.87 1.82 0.04 2.42 2.32 0.10 
0.227 1.89 1.84 0.05 2.36 2.27 0.09 
0.231 1.90 1.86 0.05 2.57 2.45 0.11 
0.243 1.89 1.85 0.05 2.37 2.27 0.09 
0.262 1.89 1.83 0.05 2.34 2.25 0.10 

 

Figure 3.1 shows numerically computed effective bulk (
water
satK 1 ) and shear (

water
satG 1 ) moduli 

for the Fontainebleau and Berea sandstones saturated with water (blue curves). The green curves 

on Figure 3.1 show that using the constant values mentioned for Eqns. 3.31 and 3.32 provides 

better predictions for water and heavy oil pore filling materials than do the Ciz and Shapiro 

approximations (red curves). 
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We would like to predict the numerically estimated effective elastic properties of sandstones 

saturated with heavy oil 
heavyoil
satK 2  and 

heavyoil
satG 2  (black curves). To this end, Eqns. 3.31 and 

3.32 can be written as follows: 

Fontainebleau sandstone  

    07.021 







heavyoilquartz

heavyoil
satquartz

waterquartz

water
satquartz

KK

KK

KK

KK


 

 

    13.021 







heavyoilquartz

heavyoil
satquartz

waterquartz

water
satquartz

GG

GG

GG

GG


  

Berea sandstone 

    05.021 









heavyoilquartz

heavyoil
satquartz

waterquartz

water
satquartz

KK

KK

KK

KK


  

    10.021 







heavyoilquartz

heavyoil
satquartz

waterquartz

water
satquartz

GG

GG

GG

GG


 

 

 

 

 

 

 

 



CHAPTER 3: FLUID AND SOLID SUBSTITUTION 38

 

 
Figure 3.3: Top row: Fontainebleau sandstone: a) Effective bulk modulus, b) Effective shear 

modulus. Bottom row: Berea sandstone: c) Effective bulk modulus, d) Effective shear 
modulus. Blue color curves are numerically estimated effective elastic properties of 
sandstone sub-samples saturated with water. Black color curves are numerically 
estimated effective elastic properties of sandstone sub-samples saturated with heavy oil. 
Red color curves are substituted water with heavy oil pore filling material using the Ciz 
and Shapiro approximation.  Green color curves are substituted water with heavy oil pore 
filling material using Eqns. 3.31 and 3.32.     

 

Parameters v  and d  can be estimated computationally using a 3D CT-scan image or 

experimentally using laboratory measurements for Vp and Vs in a core sample. v  and d depend 

on pore geometry and pore filling material. For computational and laboratory experiments it is 

necessary to estimate these parameters for a composite saturated with the final pore filling 

material. In computational simulations, parameters v  and d  can be obtained directly or by 
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using Eqns. 3.28 and 3.29 from 2satK  and 2satG . In cases where neither a CT-scan image nor a 

core sample is available, these parameters can be approximated using v  and d  bounds.  

3.4. Application 

To study the application of Eqns. 3.31 and 3.32 to real data, we use well log data and a 3D CT-

scan image (Figure 3.4) from a reservoir saturated with heavy oil. We assume that pore 

compliance does not change in the interval of interest (an assumption required by our model). 

 

 
Figure 3.4: 3D CT-scan image of a sample containing quartz grains (black, bulk modulus: 37 

GPa, shear modulus: 44 GPa) and heavy oil (white, bulk modulus: 3.2 GPa, shear 
modulus: 0.1 GPa) 
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Figure 3.5: Model results vs well log data: Black curves show original well log data for an 

interval saturated with heavy oil. Blue curves are bulk and shear moduli numerically 
computed from a CT-scan image fully virtually saturated with water. Red curves are 
predicted bulk and shear moduli (bulk: 2.2 GPa and shear: 1Pa) for rocks fully saturated 
with heavy oil obtained using the Ciz and Shapiro approximation. Green curves are 
predicted bulk and shear moduli of rocks fully saturated with heavy oil obtained using 
Eqns. 3.22 and 3.23.  

 

Imagine that we have water-saturated well log data and would like to predict the effective bulk 

and shear curves for heavy oil-saturated zones in the same rock (this will allow us to compare 

model results with actual well log data). First, we assume a pure quartz frame and use the 

available 3D CT-scan image to model the pore structure. After virtually saturating the model 

with water, we numerically apply volumetric strain and simple shear strain to estimate the 

effective bulk and shear moduli. Using Eqns. 3.25 and 3.26, we find 1p
v  and 1p

d . Next, we 

repeat the computational experiment for a sample saturated with heavy oil, using Eqns. 3.27 and 

3.28 to find 2p
v  and 2p

d . Since we don’t know how the water saturation log varies along the 

porosity curve, we keep a constant value for the entire depth range under consideration (Figure 

3.5, blue curves). Once we calculate vC  and dC , we can estimate effective 2satK , 2satG  for the 
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entire interval of interest using Eqns. 3.31 and 3.32. Comparison of results derived from our 

model (Figure 3.5, green curves) with those obtained using the model developed by Ciz and 

Shapiro (Figure 3.5, red curves) shows that, in this situation, our model provides a better 

prediction of the effective bulk and shear moduli. 

3.5. Chapter Summary 

Using strain energy and reciprocity theory, we have derived a new approach to modeling the 

effective bulk and shear moduli after substitution in an isotropic composite with arbitrary pore 

geometry.  The important points are: 

Parameters v  and d  describe strain concentration in the pore space. They are also 

dependent on pore shape geometry and the nature of the pore-filling material.  They can be 

calculated computationally or in the laboratory.   

If 
21 pp KK   and 

21 pp GG  , then 21 satsat KK  , 21 satsat GG   and 12 p
v

p
v   , 

12 p
d

p
d      hence vC  and  dC  must have non-negative values.  

For any arbitrary pore shape and any pore-filling material, it is generally true that 

1>/1 v   and 1>/1 d  . 

If volumetric and shear induced stresses are homogeneous in the pore space, then parameters 

v and d can be obtained using Hashin-Shtrikman bounds.   
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Chapter 4  

Equations for fluid, solid, and porosity 

substitution 
 

 

4.1.  Abstract 

One primary assumption of previous attempts by Gassmann (1951), Brown and 

Korringa (1975) and Ciz and Shapiro (2007) to develop accurate mathematical 

descriptions of fluid substitution is that pore geometry does not change upon substitution. 

In this chapter, we remove this assumption by presenting an exact substitution relation 

that takes into account both changes in fluid properties and changes in pore geometry. 

Our newly derived approach (Chapter 3) is applicable for modeling these scenarios. We 

show that for two different pore compliances of any arbitrary pore shape, the difference 

in volume averaged stress heterogeneity in the pore spaces remains the same. This 
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assumption is consistent with numerical simulations conducted on digital samples of the 

Fontainebleau and Berea sandstones. After presenting our results, we demonstrate the 

new approach using an actual data set and accompanying 3D CT-scan image. 

4.2. Introduction 

The theories of Gassmann, Brown and Korringa, and Ciz and Shapiro are 

fundamentally limited to substitution scenarios in which pore geometry does not change. 

This assumption limits the applicability of the theories to problems such as modeling 

digenesis (Avseth et al., 2005), estimating the effects of dissolution/precipitation 

(Hoefiner and Le Guen et al., 2007; Vanorio et al., 2011; Vialle and Vanorio, 2011), and 

modeling the effect of steam injection on heavy oil reservoirs (Schmitt, 1999; Bianco et 

al., 2008; Chopra et al., 2010).  

In this chapter we use our newly derived approach to describe solid/fluid substitution 

in isotropic elastic composites with arbitrary pore geometries. Our ultimate goal is to 

predict the changes in effective bulk and shear moduli upon substitution of any pore 

filling material and the change in pore compliance for any arbitrary pore shape.  

4.3. Substitution equations  

Consider an initial composite 
1satK , 

1satG , where frame mK , mG  with pore space 

1  is fully saturated with initial pore material 
1pK , 

1pG . We can rewrite the equations 

derived in Chapter 3 for effective bulk and shear moduli as 
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Next, we consider the same composite saturated with a new pore filling material 
2pK ,

2pG  and exhibiting a different pore space, 2  . We estimate new effective bulk and shear 

moduli as 
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Subtracting the equations for the final material (Eqns. 4.1 and 4.2), from those for the 

initial material, (Eqns. 4.3 and 4.4), we obtain  
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For different pore compliances, such as 
1  and 

2 , the effective bulk and shear 

moduli of rocks saturated with different pore filling materials, respectively, vary. 
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However, if the change in pore compliance remains the same between the composites, 

then 2211 ,, p
v

p
v

    and 2211 ,, p
d

p
d

    are approximately constant. The assumption is 

supported by numerical experiments implemented on Fontainebleau and Berea sandstone 

digital samples. 
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If 
21 pp KK  , 

21 pp GG   and 21   , then 
21 satsat KK  , 

21 satsat GG   and 

1122 ,, p
v

p
v

   , 1,12,2 p
d

p
d

   ; hence, vC  and dC  must have non-negative values. 

Subscripts “v” and “d” denote boundary conditions such as volumetric and deviatoric 

strain, respectively. 

4.4. Application 

To account for differences in volume averaged stress heterogeneity in the two pore 

spaces, we need information about pore geometry such as porosity, volume fraction, or a 

CT scan image. Parameters v  and d  can be estimated computationally using a 3D CT-

scan image or experimentally using laboratory measurements for Vp and Vs in a core 

sample. v  and d  depend on the pore geometry and pore filling material. As a result, for 

computational and laboratory experiments it is necessary to estimate these parameters for 

a composite saturated with the final pore filling material and corresponding geometry. In 
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computational simulations, parameters v  and d  can be obtained directly or by using 

Eqns. 4.3 and 4.4 from 2satK  and 2satG . These parameters can be also approximated 

using v  and d  bounds.  

To test the application of our results, we refer to well log data and a corresponding 

3D CT-scan image (Figure 4.1a) from a reservoir saturated with heavy oil. The CT-scan 

image (Figure 4.1a) shows that, for this particular reservoir, the quartz grains (blue color) 

are somewhat suspended in heavy oil (white color). If we were to replace the heavy oil 

(bulk modulus: 3.2 GPa, shear modulus: 0.4 GPa) with a fluid such as water (bulk 

modulus: 2.2 GPa, shear modulus: 1 Pa), the suspended grains would no longer have the 

support of a solid pore filling material; this causes compaction and an increase in the 

number of contacts per grain. As a result, pore compliance changes as well as the volume 

fraction of the pore space. 

In order to evaluate our main assumption, we modify the original 3D CT-scan image 

(Figure 4.1a) by numerically adding a few voxels around each grain, thereby increasing 

the number of contacts per grain and reducing the volume fraction of pore space (Figure 

4.1b).  
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a)  b)  
Figure 4.1: 3D CT-scan image of a sample containing quartz grains (blue, bulk 

modulus: 37 GPa, shear modulus: 44 GPa). a) Original image filled with heavy 
oil (white, bulk modulus: 3.2 GPa, shear modulus: 0.4 GPa) and b) numerically 
altered image filled with water (white, bulk modulus: 2.2 GPa, shear modulus: 1 
Pa)  

 
Next, we numerically estimate the porosity ( 27.02  ) of the altered sample and fill 

the pore space with water, assuming that grains are pure quartz. After applying 

volumetric and deviatoric boundary conditions, we calculate the effective bulk ( 2satK ) 

and shear (Gsat2 ) moduli.  Using Eqns. 4.3 and 4.4, we estimate exact values for strain 

concentration in the pore space, water
v

2  and water
d

2 . We repeat the same numerical 

experiment with the original 3D image of porosity (with 36.01   and a pore space filled 

with heavy oil), finding 
1satK , 

1satG  and heavyoil
v

1 , heavyoil
d

1 . To determine how 2satK  

and 2satG  vary throughout the entire range of porosity, we subtract the difference 

between 1  and 2  of numerically estimated 3D images and from the original porosity 

measured in the well log (Figure 4.3, black curve on porosity). In Figure 4.3, the result 

for new porosity is displayed as a blue curve. Using this curve, we estimate effective bulk 

2satK  and shear 2satG  moduli for a rock fully saturated with water, assuming that 
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water
v

2  and water
d

2  do not change with the porosity (Eqns. 4.3 and 4.4). 2satK  and 2satG  

are displayed in Figure 4.3 as blue curves. In Figure 4.2, the effective bulk and shear 

moduli of water saturated and original well log data are also plotted along with Hashin-

Shtrikman bounds.  The variation in effective bulk and shear moduli in rocks fully 

saturated with water is very large.  

Assume now that we do not have the water saturated effective bulk and shear moduli. 

We will predict the effective elastic properties of a fully water saturated compacted frame 

using the new porosity (blue porosity curve on Figure 4.3).  We find heavyoil
v

water
v    and 

heavyoil
d

water
d   , assuming that vC  and dC  are approximately constant values. Now, 

using approximate values of vC  and dC  in Eqns. 4.7 and 4.8, we can solve for effective 

bulk 
water
satK 2  and shear 

water
satG 2 moduli with corresponding porosity 2 . The calculated 

effective elastic properties are plotted in red (Figures 4.2 and 4.3). These curves fall in 

the range of the numerically comptuted effective bulk and shear moduli (blues color 

curves), but display less variation with depth. 
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Figure 4.2: Top row: Effective bulk and shear moduli. Bottom row: The same plot 

focused on the area of interest. The black circles represent well log data for a 
pure sandstone saturated with heavy oil. Blue circles represent numerically 
estimated effective elastic properties from an altered 3D CT scan image of a 
sandstone sample fully saturated with water. Red circles represent samples 
where heavy oil was replaced with water using Eqns. 4.7 and 4.8.      

 
 

HS+ 

HS-

HS+

HS- 

HS- 

HS- 
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Figure 4.3: Model results vs well log data: Black curves show original well log data 

for an interval saturated with heavy oil (bulk: 3.2 GPa and shear: 0.1 GPa). Blue 
curves show the altered porosity, effective bulk and shear moduli numerically 
computed from a CT-scan image fully virtually saturated with water (bulk: 2.2 
GPa and shear: 1Pa). Red curves show the predicted bulk and shear moduli of 
rock fully saturated with water using Eqns. 4.7 and 4.8.  

 

4.5. Chapter summary 

Our exact equations can be approximated for predicting the change in effective bulk 

and shear modulus upon substitution of any pore filling material and change in pore 

compliance for any arbitrary pore shape. Eqns. 4.7 and 4.8 are the primary results of this 

chapter. They allow for the modeling of substitution accompanied by changes in pore 

geometry. However, they do require knowledge of the final pore geometry.  From 

Chapter 3 we already know these important points: 

Parameters v  and d  describe strain concentration in the pore space. They are also 

dependent on pore shape geometry and the nature of the pore-filling material.  They can 

be calculated computationally or in the laboratory.   
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If 
21 pp KK  , 

21 pp GG   and 21   , then 
21 satsat KK  , 

21 satsat GG   and 

1122 ,, p
v

p
v

    , 1,12,2 p
d

p
d

   ; hence, vC  and dC  must have non-negative values.  

For any arbitrary pore shape and any pore-filling material, it is generally true that 

1>/1 v   and 1>/1 d  . 

If volumetric and shear induced stresses are homogeneous in the pore space, then 

parameters v and d  can be obtained using Hashin-Shtrikman bounds.   
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Chapter 5 

Approximation for strain concentration 

tensors for fluid and solid substitution 
 

 

  

5.1. Abstract 

In this chapter we continue to develop a method for modeling solid substitution in an 

elastic isotropic composite using strain concentration tensors. In our previous study, we 

showed that the new approach is exact if we have information about pore geometry such 

as 3D CT-scan image, laboratory measurements or well log data. In the paper we 

introduce an approximation for use in cases where such information is unavailable. After 

discussing new insights into strain concentration tensors, we show how our new 

approximation can narrow a range of possible solution upon substitution.   
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5.2. Introduction 

In previous papers we discussed a new approach to modeling fluid-to-solid 

substitution for an elastic isotropic composite for any pore-filling material. Our ultimate 

goal was to reduce the amount of computational estimation required and develop an 

alternative method for quantifying stress heterogeneity in the pore space. The previously 

published method provided a smaller range of solutions for pore compliance parameters:  

Km K

 Km Kp 
v

 ; (5.1)

Gm G

 Gm Gp 
d

 . (5.2)

Parameter v  is the volumetric strain concentration in the pore space, defined as the 

average strain in the pore space divided by the average strain in the rock. Parameter v is 

the ratio of volume strain of the pore space to volume strain of the entire rock. Parameter 

d , introduced in Eqn. 5.2, captures the concentration strain of induced shear stress in the 

pore space. For any arbitrary pore shape, a general argument can be made that 1 / v >1 

and1/ d >1. Parameters v and d  depend on the pore space geometry and the 

properties of the pore-filling material. In Eqns. 5.1 and 5.2,   is the porosity, pK  and pG  

are the bulk and shear moduli of the pore-filling material, mK  and mG  are the bulk and 

shear moduli of the mineral in the rock frame, and K and G are the effective bulk and 
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shear moduli of the composite. In this paper, subscripts “v” and “d” denote the boundary 

conditions of volumetric and deviatoric strain, respectively. 

Consider an initial composite 
1satK , 

1satG , where frame mK , mG  with pore space   is 

fully saturated with initial pore material 
1pK , 

1pG . We can write Eqn. 5.1 and 5.2 as 

Km Ksat1

 Km Kp1 
v

p1  , (5.3)

and  

Gm Gsat1

 Gm Gp1 
d

p1  . (5.4)

Next, we consider same composite saturated with a new pore filling material 
2pK ,

2pG  and estimate the new effective bulk and shear moduli:  

Km Ksat 2

 Km Kp2 
v

p2  , (5.5)

and  

Gm Gsat 2

 Gm Gp2 
d

p2  . (5.6)

Subtracting the equations for the final material, (5.5) and (5.6), from those for the 

initial material, (5.3) and (5.4), we obtain  



CHAPTER 5: APPROXIMATION 58

Km Ksat1

 Km K p1 
 Km Ksat2

 Km Kp2 
v

p1 v
p2  , (5.7)

and                                   

Gm Gsat1

 Gm Gp1 
 Gm Gsat 2

 Gm Gp2 
d

p1 d
p2  . (5.8)

We will consider 21 p
v

p
v    and 21 p

d
p

d   as measures of pore compliance. If porosity 

changes, the effective bulk and shear moduli may also change; however, if porosity 

changes within the same pore compliance, then 21 p
v

p
v    and 21 p

d
p

d    are 

approximately constant:  

Km Ksat1

 Km Kp1 
 Km Ksat2

 Km Kp2 
 Cv

 , (5.9)

Gm Gsat1

 Gm Gp1 
 Gm Gsat 2

 Gm Gp2 
Cd

 . (5.10)

If 21 pp KK 
 and 21 pp GG 

, then 21 satsat KK 
, 21 satsat GG 

 and 12 p
v

p
v   , 

12 p
d

p
d   ; hence, vC  and dC  must have non-negative values. In this paper, subscripts 

“v” and “d” denote boundary conditions of volumetric and deviatoric strain, 

respectively. 
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5.3. Bounds for strain concentration tensor 

5.3.1. Volumetric strain concentration tensor 

 
Using Eshelby’s theory, the volumetric strain concentration in the pore space can be 

expressed using the averaged volumetric strain in the pore space kk
p  and the averaged 

effective volumetric strain of the entire sample kk : 

kk

kk
p

v 
 

 
, (5.11)

where kk  is the exact relation of the change in the volume V  of the effective 

composite to the initial volume V of the effective composite:  

V

V
kk




 
. (5.12)

This relation can be rewritten for the volumetric strain in the pore space kk
p  as the 

ratio of the change in the pore volume pV  of the effective composite to the total pore 

volume pV  of the effective composite, where the total pore volume is V p V : 

 p
kk 

V p

V p
 V p

V  
. (5.13)

Substituting the terms from Eqns. 5.12 and 5.13 in Eqn. 5.11, we get  

v 
1


V p

V  
. (5.14)
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The volumetric strain concentration tensor can now be described as the ratio between 

volume changes in the pore space to the volume change of the total composite: 

v 
v

  
. (5.15)

We can rewrite Eqns. 5.11 as 

v
pm

m

KK

KK





 
. (16) 

5.3.2. Deviatoric strain concentration tensor 

Using Eshelby’s theory, strain concentration in the pore space can be expressed using 

the averaged deviatoric strain in the pore space  p
d  and the averaged deviatoric strain of 

the entire sample d : 

d 
 p

d

d  
, (5.17)

where xy  is the exact relation of the change in the pore space in the direction of 

applied simple share D  of the effective composite to the initial volume V of the 

effective composite for the simple shear boundary conditions: 

d 
D

V  
. (5.18)
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This relation can be rewritten for the deviatoric strain in the pore space  p
d
 as the ratio 

of the change in the pore space Dp
 of the effective composite to the total pore volume 

pV  of the effective composite, where the total pore volume is V p V : 

 p
d 

Dp

V p
 Dp

V  
. (5.19)

Substituting the terms from Eqns. 5.18 and 5.19 in Eqn. 5.17, we get  

d 
1


D p

D . (5.20)

The deviatoric strain concentration tensor can now be described as the ratio of 

deviatoric changes in the pore space to the volume change of total composite: 

d 
d

  
. (5.21)

We can rewrite Eqns. 5.21 as 

d
pm

m

GG

GG





 
. (5.22)
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Figure 5.1: 2D illustration of HS bounds representation (left) and a slice view of the 

Berea sandstone (right).  
 

5.3.3. Strain concentration tensor bounds 

Eqns. 5.16 and 5.22 contain two sets of unknown values: the effective bulk and shear 

moduli and the change in the pore space with volumetric and deviatoric boundary 

conditions.  Computational simulations must be used to exactly estimate parameters v  

and d . However, we have found that, using Hashin-Shtrikman (HS) bounds, it is 

possible to narrow down the range of possible solutions for effective bulk and shear 

modulus upon solid substitution. Hashin-Shtrikman (HS) bounds allow us to adjust 

porosity according to the effective bulk and shear moduli. This means that we can always 

find exact values for effective elastic properties that match with lower and upper HS 

bounds by adjusting porosity values.  
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Consider an initial composite where frame mK , mG  with pore space   is fully 

saturated with initial pore material 
)1(

pK , 
)1(

pG . Using HS bounds, we can calculate 

effective bulk 
)(

)1(
K and shear moduli 

)(
)1(
G . From Eqns. 5.1 and 5.2 we can calculate 

volumetric 
)1(v  and deviatoric strain concentration tensors 

)1(d as: 

Km K(1)


 Km Kp
(1) 

v(1)


 
, (5.23)

and 

 








)1()1(

)1(
d

pm

m

GG

GG


  
, (5.24)

 

Since the actual effective elastic properties of the initial composite are known, we can 

estimate actual v  and d  using Eqns. 5.16 and 5.22. We can now adjust the fitting 

volumetric 
v and deviatoric porosity 

d  using Eqns. 5.15 and 5.21 and volumetric 
)1(v  

and deviatoric strain concentration tensors 
)1(d :  



 


)1(v

v
v






 
, (5.25)

and  

 



 


)1(d

d
d






 
. (5.26)
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Replacing initial pore material 
)1(

pK , 
)1(

pG  with final pore material Kp
(2)

, Gp
(2)

 and HS 

effective bulk K(2)
()

and shear moduli G(2)
()

 in Eqns. 5.1 and 5.2, we estimate volumetric 

v(2)
  and deviatoric d (2)

 strain concentration tensors. Next, using Eqns. 5.15 and 5.21, 

we can estimate the volumetric and deviatoric change in the pore space filled with the 

final pore filling material:  

 v
  v

v(2)


 , (5.26)
 

and 

  )2(ddd   . (5.27)

Even if no additional information about pore shape is available, we can always refer 

to the HS bounds. Eqns. 5.23 and 5.24 describe how fitting porosity values  v  and  d  

can be estimated using HS bounds:  

Km K(2)


Km K(1)


Km K p
(1)

Km K p
(2)

  v


v  
, (5.28)

and 

Gm G(2)


Gm G(1)


Gm Gp
(1)

Gm Gp
(2)

 d


d  
, (5.29)

where )1(
pK  and )2(

pK  are bulk moduli of the initial and final pore filling material, 

)1(
pG  and )2(

pG  are the shear moduli of the initial and final pore filling material,  and v  

and d  are the volumetric and deviatoric pore space changes of the initial pore filling 
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material. 
)1(K  and 

)2(K  are the effective HS bulk moduli of the initial and final pore 

filling material, and 
)1(G  and 

)2(G  are the effective HS shear moduli of the initial and 

final pore filling materials.  

We can now rewrite Eqns. 5.16 and 5.22 using  v  and  d  for the final pore filling 

material and estimate the range of possible effective elastic properties: 





v

pm

m

KK

KK


)2(

)2(

 
, (5.30)

and 





d

pm

m

GG

GG


)2(

)2(

 
. (5.31)

 

5.3.4. Discussion 

An example of this approach is shown in Figure 5.2 and 5.3. The HS bounds (red 

color curves) denote a much wider range than the range determined using the new 

approach (black color curves). In both cases, the actual numerical values fall between the 

new bounds (blue color curves). The numerical values are from a sample saturated with 

the solid pore filling material. Our new approach can successfully be used to predict 

effective bulk and shear moduli for a rock frame upon substitution of a solid pore-filling 

material for a fluid pore-filling material.  
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Figure 5.2: Results calculated using Eqns. 5.9 and 5.10 are shown as black curves. 

HS bounds are shown as red curves. The blue curve shows actual numerical 
values computed using 5 Berea subsamples filled with solid material.  

 
Figure 5.3: Results calculated using Eqns. 5.9 and 5.10 are shown as black curves. 

HS bounds are shown as red curves. The blue curve shows actual numerical 
values computed using 5 Fontainebleau subsamples filled with solid material.  

 

 

 

 

 

 



CHAPTER 5: APPROXIMATION 67

5.4. Application 

5.4.1. Digital samples 

 

 

 

 

 

Figure 5.4: Digital samples of rocks used in computational simulations  
 

To study an application of our new method we refer to three sandstone samples: S2, 

Berea, and Fontainebleau sandstone, and one carbonate sample: C2 (Figure 5.4). The size 

of each of these 3D CT scan images is approximately 300
3
, which is too large to run 

computational simulations on. Hence, we divide each 3D CT scan cube into 100
3
 sub-

cubes and randomly choose 5 sub-samples. The material properties used in our 

calculations are shown in Table 5.1. 
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Table 5.1: Phase properties taken from Mavko et al. (2009).  
Mineral Bulk modulus 

(GPa) 
Shear modulus 

(GPa) 
Density 
(g/cc) 

Quartz 37 44 2.65 

Calcite 77 32 2.71 

Water 2.2 0 1 

Cold heavy oil (Behura et al., 2007) 3.2 0.5 - 

Kerogen (Vernik and Liu, 1997) 5.5 3.2 - 

Gas 0 0 0.1 

5.4.2. Sandstones 

On the Figure 5.5 we show 5 sub-samples of Berea sandstone saturated with cold 

heavy oil in black color points and saturated with air in blue color points. The black color 

solid curves show the result of solid substitution of air saturated sub-samples with cold 

heavy oil. We observe that the actual computational simulations of the sub-samples of 

Berea sandstone with pore filling material as cold heavy oil are bounded between the 

range of possible solutions. The upper range suggests the maximum change in effective 

moduli, which implies the large strain heterogeneity in the pore space; whereas the lower 

range is the minimum change in effective moduli, which implies the strain homogeneity 

in the pore space. 
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Figure 5.5: Berea sandstone: Black dashed curves are HS bounds saturated with 

heavy oil. Black solid curves show the lower limits of the effective bulk and 
shear moduli as estimated using Eqns. 5.3 and 5.4. Blue color points are Berea 
sandstone saturated with air. Black color points are Berea sandstone saturated 
with cold heavy oil.  

 
We repeat the same experiment with Fontainebleau and S2 sandstones and show the 

results on Figure 5.6 and 5.7, respectively. We substitute air pore filling material in 5 

sub-samples of sandstone (blue color points) with cold heavy oil pore filling material 

(black color points). We observe that the actual computational simulations of the 5 sub-

samples of Fontainebleau and S2 sandstones are bounded between the ranges of possible 

solutions, which are shown in solid black curves. The upper range suggests the maximum 

change in pore material and also implies the strain heterogeneity in the pore space, 

whereas the lower range is the minimum change in pore material and implies the stain 

homogeneity in the pore space. 
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Figure 5.6: Fontainebleau sandstone: Black dashed curves are HS bounds saturated 

with heavy oil. Black solid curves show the lower limits of the effective bulk 
and shear moduli as estimated using Eqns. 5.3 and 5.4. Blue color points are 
Fontainebleau sandstone saturated with air. Black color points are Fontainebleau 
sandstone saturated with cold heavy oil. 

 
 

 
 

Figure 5.7: S2 sandstone: Black dashed curves are HS bounds saturated with heavy 
oil. Black solid curves show the lower limits of the effective bulk and shear 
moduli as estimated using Eqns. 5.3 and 5.4. Blue color points are S2 sandstone 
saturated with air. Black color points are S2 sandstone saturated with cold heavy 
oil. 
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5.4.3. Carbonates 

On the Figure 5.8 we show 5 sub-samples of C2 carbonate saturated with kerogen in 

black color points and air in blue color points. The blue color solid curves show the result 

of substitution of kerogen saturated 5 sub-samples with air. We observe that the actual 

computational simulations of 5 sub-samples of C2 carbonate with pore filling material as 

air are bounded between the range of possible solutions. Then, the upper range suggests 

the minimum change in pore material and also implies the strain heterogeneity in the pore 

space, whereas the lower range is the maximum change in pore material and implies the 

strain homogeneity in the pore space. 

 

 
Figure 5.8: C2 carbonate: Blue dashed curves are HS bounds saturated with air. Blue 

solid curves show the lower limits of the effective bulk and shear moduli 
saturated with air and estimated using Eqns. 5.3 and 5.4. Blue color points are 
C2 carbonate saturated with air. Black color points are C2 carbonate saturated 
with kerogen. 

 

5.4.4. Well log data 

Our new method can be also applied to well log data. On Figure 5.9 we show well log 

data, the pore space of which is saturated with heavy oil (Bulk modulus: 3.0 GPa, Shear 
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modulus: 0.1 GPa), in black color points. The blue color points show the result of 

substitution of heavy oil saturated well log with water. We cannot conclude whether our 

range is a good approximation due to lack of actual well log data saturated with water. 

However, we can guess that the data might fall somewhere close to the maximum change 

in pore filling material, which is the lower range of possible solutions. As a result of our 

new method we also show a range of possible solutions saturated with water in blue color 

curves on Figure 5.11.  

 
Figure 5.9: Cenovus well log data: Blue curves are HS bounds saturated with water. 

Blue points show the lower limits of the effective bulk and shear moduli 
saturated with water and estimated using Eqns. 5.3 and 5.4. Black color points 
are the actual well log data saturated with oil sand (Bulk modulus: 3.0 GPa, 
Shear modulus: 0.1 GPa) 
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Figure 5.10: Figure 5.9 is zoomed on the area of interest: Blue points show the lower 

limits of the effective bulk and shear moduli saturated with water and estimated 
using Eqns. 5.3 and 5.4. Black color points are the actual well log data saturated 
with oil sand (Bulk modulus: 3.0 GPa, Shear modulus: 0.1 GPa) 

 

 
Figure 5.11: Model results vs well log data: Black curves show original well log data 

for an interval saturated with heavy oil. Blue curves show the lower limits of the 
effective bulk and shear moduli as estimated using Eqns. 5.3 and 5.4.  

 

5.5. Chapter summary 

If there is no information available on the pore space geometry of an isotropic 

composite with arbitrary pore geometry, our method is more effective at narrowing the 

range of possible solutions for effective bulk and shear moduli upon substitution than the 
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use of Hashin-Shtrikman bounds. Our new approach suggests a range of possible 

solutions with a final pore filling material. The range of soft to stiff pore filling material 

substitution can be interpreted as maximum when there is large strain heterogeneity in the 

pore space and minimum when there is strain homogeneity in the pore space. When there 

is a stiff to soft pore filling material substitution, then, the range of possible solutions can 

be explained as the maximum change corresponds to strain homogeneity in the pore 

space and minimum change corresponds to strain heterogeneity in the pore space. 
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Chapter 6 

Analysis of Rock Physics Inclusion 

Models 
 

 

  

6.1. Abstract 

In this chapter, we study four different effective medium theory (EMT) models: Self-

Consistent (SC), Differential Effective Medium (DEM), Mori-Tanaka (MT), and Kuster-

Toksoz (KT). We plot a wide range of different aspect ratios (AR) for each model 

between Hashin-Shtrikman bounds (HS) to analyze certain gaps. We also perform fluid 

and solid substitution to observe how each model performs. In addition, we show what 

model captures more heterogeneity in the pore space, which we assume to be inclusions 

in EMT models.    



CHAPTER 6: ANALYSIS OF INCLUSION MODELS 77

6.2. Introduction 

Inclusion models approximate rock as a continuous elastic solid containing solid or 

fluid inclusions. The solid inclusions may represent solid grains, and the fluid inclusions 

represent the rock pore space. Mineral inclusions stiffer than the rock matrix stiffen the 

rock, while softer inclusions, such as fluid and soft minerals, soften the rock. Most of the 

inclusion models treat the pores as ellipsoids (Eshelby, 1957; Walsh, 1965; Eimer, 1967, 

1968; Kuster and Toksoz, 1974; O’Connell and Budiansky, 1974, 1977; Cheng, 1978, 

1993; Berryman, 1980; Norris, 1985a; Hudson, 1980, 1981, 1990; Hudson and Liu, 1999; 

Crampin, 1984; Johansen et al., 2002; Jakobsen et al. 2003). Berryman (1980) 

generalized the self-consistent formulation so that both the pores and the grains are 

considered ellipsoidal inclusions in the composite material.  

The differential effective medium (DEM) theory models two-phase composites by 

incrementally adding inclusions of one phase to the matrix phase (Cleary et al., 1980; 

Norris, 1985; Zimmerman, 1991). Schoenberg (1983) and Pyrak-Nolte et al. (1990a, b) 

have considered inclusions in the form of infinite planes of slip or compliance, to model 

fractures.  

The key assumption in the Mori-Tanaka (MT) model (1973) is that the average strain 

in the inclusion is related to the average strain in the matrix by a fourth order tensor. This 

fourth order tensor gives the relation between the uniform strain in the inclusion 

embedded in an all matrix material. Further, this material is subjected to uniform strain at 

infinity. 
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The Kuster-Toksöz theory (Kuster and Toksöz, 1974) is based on the long 

wavelength, first-order scattering phenomena of elastic waves in a two-phase medium. 

The medium is assumed to consist of solid matrix and inclusions. KT assumes that the 

pores are isolated and do not interact, and hence this model is limited to a dilute 

concentration of pores, which means the porosity cannot be too high.  

Some studies have shown that the SC model always falls between HS bounds. The 

two-phase DEM model might not always fall between HS bounds for some inclusion 

types. MT can violate HS bounds when there are three or more phases. KT can also 

violate HS bounds when inclusions are either disks at any finite concentration or needles 

at volume fraction greater than 60%.  

In this paper, we focus on four EMT models composed of two phases: solid matrix 

and inclusions (pores). We explore the limits of each model by looking at the areas that 

are not covered within HS bounds. We also perform fluid and solid substitution for each 

model. We, then, compare results to understand the change in effective bulk and shear 

moduli. Using recently derived exact solid substitution equations by Saxena and Mavko 

(2013) we can analyze which model captures more heterogeneity in the pore space. These 

exact equations make use of pore compliance parameters, which are presented in a 

computationally convenient form. For fluid-to-solid substitution of the bulk modulus,  
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In Eqns. 6.1 and 6.2,  is the porosity, 
1pK
 and 

1pG  are the bulk and shear moduli of 

the initial pore-filling solid, 
2pK
 and 

2pG  are the bulk and shear moduli of the final 

pore-filling solid, mK  and mG  are the bulk and shear moduli of the mineral in the rock 
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frame, 1satK  and 1satG  are the effective bulk and shear moduli of the initial-filled 

composite, and 2satK  and 2satG  are the effective bulk and shear moduli of the final-filled 

composite. 
2,1pP  is the volumetric induced stress in the initial and final pore filling 

materials, respectively, and 2,1p
ij  is the shear-induced stress in the initial and final pore 

filling materials, respectively (  denotes the pore volume average of parameter  ).  It 

is guaranteed that 1 , 1  1  and 2 , 2 0 . Furthermore, when 1 , 1  = 1 and 

2 , 2  = 0 equations suggest that induced stress in the pore space is homogenous. 

Hence, we invert results from each solid substitution into estimating 1 , 1  and 2 , 

2 .  

6.3. Analysis of inclusion models 

6.3.1. Pore space saturated with fluid 

As we mentioned before in this study we compose EMT model with two phases: a 

solid phase – matrix and a pore phase – inclusions. In this paper, we set solid phase as 

quartz with bulk modulus of 37 GPa and shear modulus of 44 GPa. We, then, vary aspect 

ratio (AR) of inclusions from oblate to prolate spheroids with the range of 0.001–2 and 

step of 0.001. The pore filling material is a fluid with bulk modulus of 2.2 GPa and shear 

modulus of 0 GPa. We plot SC, DEM, MT and KT along with Hashin-Shtrikman bounds.  

Figure 6.1 shows result of SC model plotted between HS bounds. There is one 

significant gap (highlighted in transparent blue color) between the largest AR and upper 
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HS bound for both bulk and shear moduli. Note that here we only consider varying AR of 

inclusions in SC model. However, previous studies have shown that varying AR of both 

inclusions and grains will fill up those gaps. That is only applicable in SC model.  

 

 
Figure 6.1: Fluid saturated case. Blue color lines are Self-Consistent effective bulk 

modulus on the left and effective shear modulus on the right with AR varying 
from 0.001-2. The black solid and dashed lines are HS upper and lower bound, 
respectively. Transparent blue color highlights the gaps between SC model and 
HS bounds. 

 
Figure 6.2 shows that in the case of DEM model the gap between the largest AR and 

upper HS bound seems to be less wide than in SC model.   
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Figure 6.2: Fluid saturated case. Blue color lines are DEM effective bulk modulus 

on the left and effective shear modulus on the right with AR varying from 
0.001-2. The black solid and dashed lines are HS upper and lower bound, 
respectively. Transparent blue color highlights the gaps between DEM model 
and HS bounds. 

 
The Mori-Tanaka model covers most of the area between HS bounds for both 

effective bulk and shear moduli. There is, however, insignificant gap that appears in 

effective shear modulus between lowest AR and lower HS bound (Figure 6.3). In order to 

model that small gap, we would have to lower the step for AR to 0.0001, which, also, 

implies that MT model is quite sensitive with a small change in AR.   



CHAPTER 6: ANALYSIS OF INCLUSION MODELS 83

 
Figure 6.3: Fluid saturated case. Blue color lines are Mori-Tanaka effective bulk 

modulus on the left and effective shear modulus on the right with AR varying 
from 0.001-2. The black solid and dashed lines are HS upper and lower bound, 
respectively.  

 
On Figure 6.4 we show results from Kuster-Toksoz model for both effective bulk and 

shear moduli. It shows that for pores/inclusions filled with fluid some KT lines fall 

outside of HS lower bound for effective bulk modulus. 

 
Figure 6.4: Fluid saturated case. Blue color lines are Kuster-Toksoz effective bulk 

modulus on the left and effective shear modulus on the right with AR varying 
from 0.001-2. The black solid and dashed lines are HS upper and lower bound, 
respectively.  
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6.3.2. Pore space saturated with solid 

We repeat the same experiment but with solid pore/inclusions filling material. We, 

again, compose EMT model with two phases: a solid phase – matrix and a pore phase – 

inclusions. We set the matrix phase as quartz with bulk modulus of 37 GPa and shear 

modulus of 44 GPa. We, then, vary aspect ratio of pores/inclusions from oblate to prolate 

spheroids with the range of 0.001–2 and step of 0.001 and set pore space as a solid with 

bulk modulus of 3.2 GPa and shear modulus of 1 GPa. We plot SC, DEM, MT and KT 

along with Hashin-Shtrikman bounds.  

We, now, observe two significant gaps on Figure 6.5 for SC model (highlighted in 

transparent blue color) between the smallest AR and lower HS bound, the largest AR and 

upper HS bound for both bulk and shear moduli.  

 

 
Figure 6.5: Solid saturated case. Blue color lines are Self-Consistent effective bulk 

modulus on the left and effective shear modulus on the right with AR varying 
from 0.001-2. The black solid and dashed lines are HS upper and lower bound, 
respectively. Transparent blue color highlights the gaps between SC model and 
HS bounds. 
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The DEM model, on Figure 6.6 again, has the gap between the largest AR and upper 

HS bound seems to be less wide than in SC model.  The gap also seems to be similar to 

pore/inclusions saturated with fluid.  

 
Figure 6.6: Solid saturated case. Blue color lines are DEM effective bulk modulus 

on the left and effective shear modulus on the right with AR varying from 
0.001-2. The black solid and dashed lines are HS upper and lower bound, 
respectively. Transparent blue color highlights the gaps between DEM model 
and HS bounds. 

 
Mori-Tanaka model for inclusions/pores filled with solid covers the entire of the area 

between HS bounds for both effective bulk and shear moduli (Figure 6.7). 
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Figure 6.7: Solid saturated case. Blue color lines are Mori-Tanaka effective bulk 

modulus on the left and effective shear modulus on the right with AR varying 
from 0.001-2. The black solid and dashed lines are HS upper and lower bound, 
respectively.  

 

Results from Kuster-Toksoz model for both effective bulk and shear moduli show 

that all the area between HS bounds is covered, however, a major part of the model falls 

outside of HS lower bound for effective bulk and shear modulus. 

 

 
Figure 6.8: Solid saturated case. Blue color lines are Kuster-Toksoz effective bulk 

modulus on the left and effective shear modulus on the right with AR varying 
from 0.001-2. The black solid and dashed lines are HS upper and lower bound, 
respectively.  
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6.4. Solid and fluid substitution with inclusion models 

We, now, study how each effective theory models fits with Gassmann (1951) and Ciz 

and Shapiro (2007) (C&S) models. From Han’s laboratory measurements of dry Berea 

sandstone, we select one of the points for effective bulk (14.44 GPa) and shear moduli 

(12.65 GPa) with porosity of 0.2215 and it is denoted on Figure 6.9 as a black circle. We, 

then, fit dry Berea sandstone point at porosity 0.2215 with each EMT model of SC 

(dashed red line), DEM (dashed blue line), MT (dashed black line) and KT (dashed green 

line). Corresponding ARs for each model are listed in Table 6.1 for effective bulk and 

shear moduli. We observe that for effective bulk modulus and effective shear modulus we 

have to fit EMT models with slightly different ARs. 

Table 6.1: A list of ARs for each EMT models for effective bulk and shear modulus 
of dry Berea sandstone point with porosity 0.2215 with. 

EMT models: AR for Effective Bulk 
modulus 

AR for Effective Shear 
modulus 

SC 0.18536 0.15133 
DEM 0.14885 0.10671 
MT 0.09535 0.05335 
KT 0.15403 0.10270 

  

Next, using Gassmann’s equation we substitute dry Berea sandstone point, assuming 

that the mineral matrix is pure quartz (bulk: 37 GPa, shear: 44 GPa) and the pore filling 

material is air (bulk: 0 GPa, shear: 0 GPa), with fluid pore filling material (bulk: 2.2 GPa, 

shear: 0 GPa). Result of substituted dry-to-fluid pore filling material point is shown on 

Figure 6.9 as a black asterisk. Using exactly the same ARs listed in Table 6.1 and the 

same mineral matrix as pure quartz, we only change the pore/inclusion filling material to 

fluid material (bulk: 2.2 GPa, shear: 0 GPa) in each EMT models. On Figure 6.9 we 
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display each EMT with fluid saturated pore space as following: SC is a solid red line, 

DEM is a solid blue line, MT is a solid black line, and KT is a solid green line.  

On Figure 6.10 we see a closer look of the result of our experiment. We observe that 

Gassmann effective bulk modulus saturated with fluid (black asterisk) falls exactly on 

EMT models such as MT (solid black line) and KT (solid green line), however, SC (solid 

red line) and DEM (solid blue line) overestimate the change in dry-to-fluid substitution 

by ~ 0.5 GPa. Furthermore, all four of the EMT models fail to predict no change in dry-

to-fluid substitution for effective shear modulus. The approximate overestimation is 1 

GPa for MT and KT models, 2 GPa for DEM model and 3 GPa for SC model.  

 

 
Figure 6.9: Dry-to-Fluid substitution. The black circle is original dry Berea 

sandstone point from Han’s lab measurements. The black asterisk is a result of 
Gassmann’s fluid substitution. The red color lines are SC model. The blue color 
lines are DEM model. The black color lines are MT model and the green color 
lines are KT model. The dashed lines represent the fitted EMT models for the 
original dry Berea sandstone point. The solid lines are the same EMT models 
but saturated with fluid.  
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Figure 6.10: Dry-to-Fluid substitution. Zoomed on the area of interested on Figure 

6.9. 

 
Gassmann water saturated Berea sandstone point (shown on Figure 6.11 as a black 

circle) is, now, matched with each EMT model of SC (dashed red line), DEM (dashed 

blue line), MT (dashed black line) and KT (dashed green line) at porosity 0.2215. 

Corresponding ARs for each model are listed in Table 6.2: 

Table 6.2: A list of ARs for each EMT models for effective bulk and shear modulus 
saturated with water of Berea sandstone point with porosity 0.2215  

EMT models: AR for Effective Bulk 
modulus 

AR for Effective Shear 
modulus 

SC 0.167606 0.117185 
DEM 0.142456 0.088915 
MT 0.095283 0.04540 
KT 0.153968 0.093982 

 
Now, using C&S equation we substitute fluid saturated Berea sandstone point, 

assuming the same mineral matrix as pure quartz (bulk: 37 GPa, shear: 44 GPa) and the 

pore filling material is water (bulk: 2.2 GPa, shear: 0 GPa), with heavy oil pore filling 

material (bulk: 2.5 GPa, shear: 0.4 GPa). The result of substituted fluid-to-solid pore 

filling material point is shown on Figure 6.10 as a black asterisk and referred as heavy oil 

(ho). For each EMT model, using exactly the same ARs listed in Table 6.2 and the same 
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mineral matrix as pure quartz, we only change the pore/inclusion filling material to heavy 

oil. On Figure 6.11 we display each EMT with heavy oil saturated pore space as 

following: SC is a solid red line, DEM is a solid blue line, MT is a solid black line, and 

KT is a solid green line.  

On Figure 6.12 we see a closer look of the result of our experiment. We observe that 

the C&S effective bulk and shear moduli saturated with solid (black asterisk) does not 

fall on any EMT models. The approximate underestimation of C&S solid substitution for 

effective bulk modulus is 1 GPa for MT and KT models, 1.5 GPa for DEM model and 2 

GPa for SC model; effective shear modulus is 2 GPa for MT and KT models, 3 GPa for 

DEM model and 4 GPa for SC model.  

 

 
Figure 6.11: Water-to-Heavy Oil substitution. The black circle is water Berea 

sandstone point from Gassmann substitution. The black asterisk is a result of 
C&S solid substitution. The red color lines are SC model. The blue color lines 
are DEM model. The black color lines are MT model and the green color lines 
are KT model. The dashed lines represent the fitted EMT models for the water 
Berea sandstone point. The solid lines are the same EMT models but saturated 
with heavy oil (ho).  
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     Figure 6.12: Water-to-Heavy Oil substitution. Zoomed on the area of interested 

on Figure 6.11. 
 

To understand approximately where fluid-to-solid substitution of Berea sandstone 

point with porosity of 0.2215 should fall on the plot we refer to Aliyeva and Gary 2015 

paper. In the paper, we borrow a figure (Figure 6.13) of numerical simulated effective 

bulk and shear moduli of 5 sub-samples saturated with water (blue color lines) (bulk: 2.2 

GPa, shear: 0 GPa) and heavy oil (black color lines) (bulk: 2.5 GPa, shear: 0.4 GPa), 

assuming that the mineral matrix is pure quartz (bulk: 37 GPa, shear: 44 GPa). We also 

perform C&S fluid-to-solid substitution shown in red color lines.  

From Figure 6.13 we observe that C&S approximation falls half way between initial 

pore filling material (water saturated Berea sandstone 5 points) and final pore filling 

material (heavy oil saturated Berea sandstone 5 points). Assuming that this is true for all 

Berea sandstone points we can conclude from Figure 6.12 that C&S approximation 

(black asterisk) is a half way between initial and final pore filling material. This suggests 

that effective bulk and shear modulus of Berea sandstone point of porosity 0.2215 
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saturated with heavy oil (bulk: 2.5 GPa, shear: 0.4 GPa) falls approximately at DEM 

model saturated with heavy oil.  

 
Figure 6.13: Berea sandstone: Effective bulk modulus on the left, effective shear 

modulus on the right. Blue color curves are numerically estimated effective 
elastic properties of sandstone sub-samples saturated with water. Black color 
curves are numerically estimated effective elastic properties of sandstone sub-
samples saturated with heavy oil. Red color curves are substituted water with 
heavy oil pore filling material using the Ciz and Shapiro approximation.  

 
To understand if there might be a larger change between four EMT models from 

initial pore filling material we increase bulk and shear moduli for the final pore filling 

material. Next, using the C&S approximation we substitute dry Berea sandstone point, 

assuming that the mineral matrix is pure quartz (bulk: 37 GPa, shear: 44 GPa) and the 

pore filling material is air (bulk: 0 GPa, shear: 0 GPa), with solid pore filling material 

(bulk: 5 GPa, shear: 3 GPa). Result of substituted dry-to-fluid pore filling material point 

is shown on Figure 6.14 as a black asterisk. Using exactly the same ARs listed in Table 

6.1 and the same mineral matrix as pure quartz, we only change the pore/inclusion filling 

material to solid material in each EMT models. On Figure 6.14 we display each EMT 

with solid (kerogen) saturated pore space as following: SC is a solid red line, DEM is a 

solid blue line, MT is a solid black line, and KT is a solid green line.  
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On Figure 6.15 we see a closer look of the result of our experiment. We observe that 

the C&S effective bulk and shear moduli saturated with solid (black asterisk) do not fall 

on any EMT models. The approximate underestimation of C&S solid substitution for 

effective bulk modulus is 1 GPa for MT and KT models, 1.5 GPa for DEM model and 2 

GPa for SC model; effective shear modulus is 3 GPa for MT and KT models, 4 GPa for 

DEM model and 5 GPa for SC model.  

 
Figure 6.14: Dry-to-Kerogen substitution. The black circle is dry Berea sandstone 

point from Han’s lab measurements. The black asterisk is a result of C&S solid 
substitution. The red color lines are SC model. The blue color lines are DEM 
model. The black color lines are MT model and the green color lines are KT 
model. The dashed lines represent the fitted EMT models for the dry Berea 
sandstone point. The solid lines are the same EMT models but saturated with 
kerogen.  
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Figure 6.15: Dry-to-Kerogen substitution. Zoomed on the area of interested on 

Figure 6.14. 
 

Interestingly, no matter what material we use to replace initial with a final pore filling 

material keeping the same ARs, there always seems to be a pattern between each model. 

It appears that the smallest change from substitution point is always MT and KT whereas 

DEM and SC have the largest change.  

6.5. Homogeneity in the pore space 

It is interesting to see how much heterogeneity in the pore space each model captures. 

Hence, we refer to Saxena and Mavko pore compliance parameters. In their paper, they 

state that if 1 , 1  = 1 and 2 , 2  = 0 in the Eqns 6.1 and 6.2 it suggests that induced 

stress in the pore space is homogenous and hence Eqns 6.1 and 6.2 become Ciz and 

Shapiro.  We, now, calculate pore compliance parameters. However, there are two 

unknowns in the Eqn 6.1 1  and 2 , in the Eqn 6.2 it is 1  and 2 . To overcome this 

issue, we fix shear modulus with initial (bulk: 0 GPa, shear: 0 GPa) and final (bulk: 3.2 
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GPa, shear: 0 GPa) pore filling material, then we get following modified Eqns 6.1 and 6.2 

as:  

Kp1
Kp2 1 

Km Kp2  Km Kp1 
Km Ksat1  Km Ksat 2 

Ksat1 Ksat 2   ,    (6.3) 

 

Kp1
Kp2  2 

Gm Gp2  Gm Gp1 
Gm Gsat 2  Gm Gsat1 

Gsat1 Gsat1   
, 

 
(6.4) 

Next, to estimate 2 , 1.  we fix bulk modulus with initial (bulk: 3.2 GPa, shear: 0 

GPa) and final (bulk: 3.2 GPa, shear: 1 GPa) pore filling material, then we get following 

modified Eqns 6.1 and 6.2 as: 

Gp1
Gp2  2 

Km Kp2  Km Kp1 
Km Ksat1  Km Ksat 2 

Ksat1 Ksat 2  ,    (6.5) 

Gp1
Gp2 1 

Gm Gp2  Gm Gp1 
Gm Gsat 2  Gm Gsat1 

Gsat1 Gsat1   
, 

 
(6.6)

 
Hence, we get just one unknown in each equation. Using each effective bulk and 

shear moduli from SC, DEM, MT and KT with initial and finial pore filling material we 

now can estimate 1 , 2  and then  '
2 , 1.  
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We, first, focus on estimating 1  and 2 using Eqns. 6.3 and 6.4. We fix AR for 

each EMT models as 1. The results of effective bulk and shear modulus with initial (bulk: 

0 GPa, shear: 0 GPa) and finial (bulk: 3.2 GPa, shear: 0 GPa) pore filling material for 

each model with AR 1 are shown on Figure 6.16. We focus on specific porosity of 0.2215 

and draw a black vertical line on Figure 6.16. We also assume that the solid matrix is 

pure quartz (bulk: 37 GPa, shear: 44 GPa). 

On Figure 6.17 we observe that the smallest change (~ 1GPa) in effective bulk 

modulus corresponds to MT and KT, which fall on top of each other. The largest change 

corresponds to SC, which is approximately 2 GPa.  There is also a small change in 

effective shear modulus for SC and DEM. However, models such as MT and KT show no 

change in effective shear modulus. Hence, we should expect to see some heterogeneity in  

1  and 2  in SC and DEM presented 1 > 1 and 2 > 0 

 
Figure 6.16: Effective bulk and shear modulus for estimation of 1

, 2
. The black 

vertical line is a point of interest with porosity 0.2215. The red color lines are 
SC model. The blue color lines are DEM model. The black color lines are MT 
model and the green color lines are KT model. The dashed lines represent initial 
pore filling material and the solid lines are the final pore filling material.  
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Figure 6.17: Effective bulk and shear modulus for estimation of 1

, 2
. Zoomed on 

the area of interested on Figure 6.16. 
 

Next, we estimate  '
2  and 1 using Eqns. 6.5 and 6.6. We fix AR for each EMT 

models as 1. The results of effective bulk and shear modulus with initial (bulk: 3.2 GPa, 

shear: 0 GPa) and finial (bulk: 3.2 GPa, shear: 1 GPa) pore filling material for each 

model with AR 1 are shown on Figure 6.18. We focus on specific porosity of 0.2215 and 

draw a black vertical line on Figure 6.16. We also assume that the solid matrix is pure 

quartz (bulk: 37 GPa, shear: 44 GPa). 

On Figure 6.19 we observe that the smallest change (~ 0.5 GPa) in effective shear 

modulus corresponds to MT and KT, which again fall on top of each other. The largest 

change corresponds to SC, which is approximately 1 GPa.  There is also a small change 

in effective bulk modulus for SC and DEM. MT and KT show no change in effective 

bulk modulus. Hence, we should expect to see some heterogeneity in  '
2  and 1 in SC 

and DEM presented  '
2 > 0 and 1> 1. 
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Figure 6.18: Effective bulk and shear modulus for estimation of  '

2
, 1

. The black 

vertical line is a point of interest with porosity 0.2215. The red color lines are 
SC model. The blue color lines are DEM model. The black color lines are MT 
model and the green color lines are KT model. The dashed lines represent initial 
pore filling material and the solid lines are the final pore filling material.  

 

 
Figure 6.19: Effective bulk and shear modulus for estimation of  '

2
, 1

. Zoomed on 

the area of interested on Figure 6.18. 
 

Results for each model and estimated 1 , 2  and then  '
2 , 1 are shown on Table 

6.3. Here, we observe exactly what we expected to see. For models such as SC and DEM 

1 ,1 > 1 and  '
2 , 2  > 0 which implies that even though induced stress has to be 

homogenous in pore space with AR=1, it does not apply for SC and DEM.  Whereas MT 

and KT present perfect homogeneity in the pore space with AR=1.  
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Table 6.3: Pore compliance parameters for each EMT models 

EMT     
Mori-Tanaka 1.0 0 1 0 

Kuster-Toksoz 1.0 0 1 0 
DEM 1.0 0.1 1.10 0.02 
SC 1.02 0.26 1.36 0.05 

 
 

6.6. Chapter summary 

We find that MT provides consistent results for modeling homogenous induced stress 

in the pore space. As we also observed, it falls exactly between HS bounds. However, for 

modeling solid substitution MT might not be an ideal model unless induced stress in the 

pore space is homogeneous. That is almost never a case in real scenarios. Both SC and 

DEM perform better for modeling heterogeneous induced stress in the pore space. 

However, they do not cover the entire area of HS bounds, which might raise some issue 

with modeling certain pore geometries. Also, as we have seen in this study SC and DEM 

models do not model the way we assume. In the case where AR=1, SC and DEM ideally 

should have shown no heterogeneity in the pore inclusions, due to our assumption of 

isolated pores, however, what we find is not quite what we assume. 
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