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Abstract 
 

“In general we look for a new law by the following process. First 

we guess it. Then we compute the consequences to see what 

would be implied if we guessed right. Then we compare the 

computation to nature, with experiment or experience. If it 

disagrees with the experiment, our guess is wrong. In that simple 

statement is the key to science” – Richard P. Feynman 

 

Naturally occurring rocks are typically composed of various constituents with varied 

elastic properties, such as gases (CO2, methane, vapor, etc.), low-viscosity liquids 

(water, oil, etc.), high-viscosity liquids (heavy-oil, magma, kerogen, etc.) and solids 

(quartz, feldspar, calcite, etc.).  

The primary objective of this thesis is to identify the fundamental physical laws 

which govern the sensitivity of seismic velocities and effective rock stiffness to grain-

scale changes in rock constituents. Developed analytical solutions of macroscopic 

physical laws are further probed, benchmarked, and analyzed with numerical 

simulations of already established grain-scale physics at complex pore boundaries using 

the finite element method (FEM). Also, we suggest approximations to the exact 

solutions since sometimes direct measurements of the required parameters may not be 

available.  
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For fluid and solid substitution, which is one of the most fundamental problems in 

rock physics, we find that the exact solution requires parameters that depend on pore 

geometry, thus substitution is non-unique if only pore-fill volume fraction is known. 

We also prove that the classical Gassmann's bulk modulus equation is exact for solid 

substitution if compression-induced mean stresses (pressure) in initial and final pore 

solids are homogeneous, and either the shear modulus of the substituted solid does not 

change or no shear stress is induced in pores. Using the new exact substitution equations, 

we interpret that predicting solid-filled rock stiffness from a dry rock stiffness 

measurement requires more information (i.e., assumptions about the pore shape) as 

compared to predicting the same from a fluid-saturated rock stiffness.  

We also derive substitution relations for the P-wave modulus, assuming S-wave 

velocity or shear modulus is not known; this is a common practical problem. For the 

general case of solid substitution, exact P-wave modulus substitution equation depends 

on usually unknown parameters. However, for fluid substitution, fewer parameters are 

required and the dependence of exact substitution on these unknown parameters reduces 

with increase in Poisson's ratio of the mineral in rock frame. Thus we find that P-wave 

modulus fluid substitution, in the absence of shear velocity, can be performed with 

relatively higher confidence for rocks with calcite/dolomite frame (such as carbonates) 

as compared to those with quartz frame (such as sandstones).  

Since information on pore geometry is seldom available, we present four embedded-

bound constructions for fluid and solid substitution that are based on realizable materials.  

In the limiting case of pore fluids, for bulk modulus, two of these constructions reduce 

to the bounds of Gibiansky and Torquato, which illustrates that those bounds are 

optimum. The first two constructions correspond to a homogeneous pore stiffness and 

predict the smallest change in modulus.  The third construction prediction corresponds 

to a pore space with heterogeneous stiffness, and predicts much larger change in 

modulus. 

We also extend our exact substitution relations to substitute one or more phases in 

multimineralic isotropic rocks, these new solutions are also equivalent to relaxing the 

assumption of unchanging rock microstructure upon substitution – a core assumption in 



vii 
 

the current models. Both pore-fill phase and rock microstructure can change due to 

digenesis, dissolution, precipitation, partial freezing or melting, etc., and these situations 

can be modeled using the new formulation. Approximate bounds for the change in 

effective rock stiffness upon change in pore geometry are also developed which are in 

good agreement with laboratory and numerical examples; these bounds depend only on 

initial effective stiffness, properties of constituents and volume fractions of constituents. 

For high viscosity fluids (such as heavy-oil, magma, kerogen, etc.) Biot theory has 

consistently failed to reproduce laboratory measured dispersion. Over the years, grain-

scale dispersion mechanisms such as squirt (local-flow) and shear-relaxation have been 

more successful in explaining the measured dispersion. We present a new method to 

quantify the combined high-frequency effects of squirt and shear-dispersion (solid-

squirt) on the elastic properties of rocks saturated with viscous fluids. Viscous fluid at 

high-frequencies is idealized as an elastic solid of finite shear modulus, hydraulically 

locked in stiff and soft pores at high-frequencies. This method entails performing solid 

substitution in stiff pores of a dry rock frame which is unrelaxed due to solid-filled soft 

pores. The unrelaxed frame stiffness solutions require information on the pressure 

dependency of the rock stiffness and porosity. This method does not have any adjustable 

parameters and all required inputs can be directly measured. With various laboratory 

and numerical examples, we note that accounting for combined effects of squirt and 

shear-dispersion is necessary to explain laboratory measured velocities of rocks 

saturated with fluids of high viscosity. Predictions of the new method are in good 

agreement with laboratory data. 

Finally, we present a simple approach to model effective creep and relaxation 

functions of organic-rich shales. We find that model curves corresponding to mixing 

mineral inclusions in kerogen background better fit both dynamic and static laboratory 

measurements when compared to those corresponding to mixing kerogen inclusions in 

mineral background. We find that the creep time exponents are anisotropic and depend 

on boundary conditions of rock deformation. Often it is not possible to directly measure 

all time exponents, thus we present a simple set of empirical relations which can yield 

crude estimates of unmeasured time exponents starting with those measured directly.   
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Chapter 1  

Introduction 
 

 

 

  

1.1. Motivation 

The objective of this thesis is to discover and understand the physical equations 

governing heterogeneous porous media saturated with a viscous material. Such a medium 

is a good approximation for heterogeneous rocks. We are specifically interested in 

excitation wavelengths which are much larger than the pore scale size, so that 

heterogeneous porous medium can be replaced by an effective homogeneous medium. This 

is the general macroscopic description we seek. The specific motivations for this thesis are: 

1.1.1. The need for fundamental research on the problem of 
substitution  

Gassmann’s equations (1951) are commonly used to address one of the most 

fundamental problems in rock physics: predict the change in low-frequency seismic 
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velocities upon substitution (or replacement) of ideal fluids (for example, gas, water, light-

oil, etc.) which fully saturate interconnected rock pores. Gassmann’s results are 

inapplicable for rocks saturated with viscous solid-like materials such as bitumen, heavy 

oil, magma, glycerol, etc., since these viscous materials do not instantly flow and can also 

support shear tractions at the pore boundaries when loaded at finite rates. Ciz and Shapiro 

(2007) generalized Gassmann’s equation for a solid pore-filling. However, their 

generalized equation requires specifying a heuristic rock compressibility which cannot be 

directly measured and is also poorly understood. To get around this problem, Ciz and 

Shapiro suggested an approximate equation by replacing their heuristic parameter by 

elastic properties of the pore-filling material. Recent findings by Makarynska et al. (2010) 

suggest that the accuracy of this approximation is very limited. Makarynska et al. (2010) 

also report that although the self-consistent approach (Berryman, 1992) improves the 

predictions, the results are not satisfactory.  

Therefore, new exact solutions with clear mathematical description to the solid 

substitution problem are needed to develop accurate models which predict the change in 

seismic velocities upon substitution.  

 

1.1.2. Estimate high-frequency grain-scale dispersion effects 

Biot (1941; 1956a; 1956b; 1962) published a series of seminal papers and established 

the discipline of poromechanics. Biot theory describes wave propagation at seismic to 

ultrasonic frequencies in a fluid saturated porous medium by accounting for wave-induced 

relative motion between elastic solid and viscous pore fluid. This relative fluid motion (also 

sometimes referred as global flow) is caused by pressure gradients at the scale of the 

seismic wavelength (Figure 1.1). 

Over the years, we have reached a fairly good understanding why Biot theory fails to 

predict laboratory measured dispersion in most fluid saturated rocks. This is so since Biot 

theory does not account for energy loss due to grain-scale (or squirt) fluid motion (Mavko 

and Nur, 1975; O’Connell and Budiansky, 1977; Chapman et al., 2002; Dvorkin et al., 
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1995; also shown in Figure 1.1). Another significant problem with the very starting point 

of Biot’s theory is the assumption of an elastic potential function to obtain stresses using 

the variational method (V. de la Cruz et al., 1993; V. de la Cruz et al., 1985; Sahay et al., 

2001; Sahay, 2008). Such an elastic potential function will not be conserved for high 

viscosity fluids at high frequencies because of the strain-rate dependence or shear 

relaxation. Therefore, strictly speaking, Biot’s theory cannot describe seismic wave 

propagation in rocks saturated with high viscosity fluids. Therefore, a new model is needed 

to quantify the combined high-frequency effects of global, squirt and shear-relaxation on 

seismic velocities. 

 

 

Figure 1.1: Global and grain-scale fluid flow induced by a passing pressure wave denoted 

by red arrows. Black dots represent the displacement in the porocontinuum shown in 

brown color. 

 

Global Flow Gradient

Squirt Flow Gradients

Compression Dilatation Undisturbed
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1.1.3. Quantify the effects of change in pore shape on seismic velocity 

Change in rock pore geometry can occur due to variety of geochemical processes such 

as dissolution, precipitation, adsorption, etc., these processes typically lead to partial 

replacement of existing and/or formation of new phases (Hoefiner and Fogler, 1988; Guen 

et al., 2007; Vanorio et al., 2011; Vialle and Vanorio, 2011). In such situations, since 

changes in elastic properties of rock constituents are also accompanied by changes in pore 

geometry, no exact solutions to such a substitution problem exist at this point. For example, 

such general substitution relations are required for modeling time-lapse seismic signatures 

of subsurface movement of chemically reactive CO2 due to possible changes in the rock 

frame (Lumley, 2010).  

1.1.4. Coupled physics grain-scale simulations: A tool to learn from 

With the availability of superior computing power, we can now simulate coupled 

physics in complex rock pore-geometries to estimate properties. Similar approach has been 

successfully taken by various authors (Yeong and Torquato, 1998; Keehm, 2003; Sain, 

2010). These pore-scale simulations are able to capture multi-physics, coupled boundary 

conditions and complex geometries. In this thesis, the physical insight gained from grain-

scale simulations proved to be crucial.  

1.1.5. Modeling creep in organic-rich shale (2nd Project) 

Shale gas are vast energy reserves, but these complicated rocks are very difficult to 

characterize. Understanding the dependence of mechanical properties (static and dynamic) 

of shale on composition is critically important for various applications such as detection of 

organic rich shale from seismic, hydraulic fracturing to boost production, designing safe 

and cost effective drilling approach, etc. Laboratory measurements, although vital to our 

understanding of the fundamentals properties of shale, are typically limited to a few rock 

samples. The problem is further compounded due to experimental inaccessibility of certain 

mechanical properties. Therefore, theoretical modeling is required to compliment 

experiments as well as to further probe properties of shale rocks.  
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1.2. Chapter organization 

In chapters 2 and 3, we derive new exact equations for fluid and solid substitution for 

two phase isotropic rocks. For this problem, we discover that load-induced pore stress 

heterogeneity plays a pivotal role, and suggest methods to account for it quantitatively. The 

required parameters for the exact solution depend on the details of microstructure. In 

chapter 4, we present exact substitution relations for P-wave modulus for situations where 

measurements of rock shear velocity or shear modulus is not available.  

In chapter 5, we extend our two-phase solid substitution equations (in chapter 2) to 

multiphase rocks. These new solutions lead to approximate bounds for fluid and solid 

substitution. For fluid substitution, the mean of these approximate bounds improves on 

using Gassmann with Voigt-Ruess-Hill mineral average as a guess. 

Since the exact solutions to the substitution problem depend on parameters that require 

information of pore geometry, in chapter 6 we introduce the embedded bound method 

which is based on recursive usage of Hashin-Shtrikman bounds. This method is rigorous 

and the only geometric input required is the pore volume fraction. The embedded bounds 

seemingly bound the possible change in rock stiffness upon fluid or solid substitution in 

two phase isotropic rocks.  

In chapter 7, we present a phenomenological model to estimate the combined high-

frequency dispersion effects of grain-scale fluid flow and shear-relaxation in rocks 

saturated with high viscosity fluids, such as, magma, bitumen, etc. All required inputs for 

the model can be directly measured. This “solid-squirt” model is an extension to the 

Mavko-Jizba squirt model. 

In chapter 8, we present generalized exact substitution relations which relax the 

assumption of unchanging pore shape or grain geometry – which is a core assumption in 

the present theoretical models. These solutions can be used to estimate the change in 

seismic velocity upon change in microstructure due to dissolution, precipitation, and other 

geochemical processes that alter pore shape. In the absence of information on rock 

microstructure, we develop approximate bounds for such problem. 
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In chapter 9, we present a rock physics strategy for modeling creep and elastic 

properties of organic-rich shale rocks. The proposed modeling approach provides a simple 

recipe to investigate possible relations between elastic and creep properties of these very 

complicated source rocks. We find that for certain shale formations, modeling kerogen as 

the background phase yields better match with both static and dynamic laboratory 

measurements.  

Finally, in chapter 10, we list the outstanding questions which require further 

investigation. 
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Chapter 2  

Exact equations for fluid and solid 

substitution 
 

 

  

2.1. Abstract 

We derive exact equations, elastic bulk and shear, for fluid and solid substitution in 

monomineralic isotropic rocks of arbitrary pore shape, and suggest methods to obtain the 

required substitution parameters. We prove that the classical Gassmann's bulk modulus 

equation for fluid-to-fluid substitution is exact for solid-to-solid substitution if 

compression-induced mean stresses (pressure) or strains in initial and final pore solids are 

homogeneous, and either the shear modulus of the substituted solid does not change or no 

shear stress is induced in pores. Moreover, when compression-induced mean stresses in 

initial and final pore solids are homogeneous, we discuss exact generalizations of 

Gassmann's bulk modulus equation, which depend on usually known parameters. For 
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effective shear modulus, we discuss general exactness conditions of Gassmann and other 

approximations. Using the new exact substitution equations, we interpret that predicting 

solid-filled rock stiffness from a dry rock stiffness measurement requires more information 

(i.e., assumptions about the pore shape) as compared to predicting the same from a fluid-

saturated rock stiffness.  

2.2. Introduction 

In geophysics, it is of considerable practical interest to predict how the effective elastic 

properties of a rock change when the properties of the pore-filling material change. 

Naturally occurring pore-filling materials include gases (e.g., methane, CO2, helium, 

steam), liquids (e.g., brine, light-oil, heavy oil, magma), and solids (e.g., clay, bitumen, 

kerogen, salt, calcite, gas hydrates).  For monomineralic isotropic rocks, Gassmann’s 

(1951) equations relate the quasi-static fluid-saturated (“undrained” denoted by subscript 

“ud”) rock bulk and shear moduli with the corresponding dry (“drained” denoted by 

subscript “dry”) rock moduli – the operation commonly known as “fluid substitution”. 

These relations for fluid-to-fluid substitution can be written as: 

  dry
B

dry
AiB

Ai

i
ud

B

i
ud

KK
K

KK
K

KK
K







 )(

)(

    

 (2.1) 

and 

dry
i

ud  )(

  

.  (2.2) 

where   is the porosity (pore volume fraction); i = 1, 2, such that
1AK
 
and 

2AK
 
are the 

bulk moduli of the initial (denoted by A1) and final (A2) pore fluids, respectively; 
BK  is 

the bulk modulus of the mineral in the rock frame; dryK
 
and dry are the dry or drained 

effective bulk and shear moduli. Equations 2.1 and 2.2 relate the known or measured fluid-
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saturated effective moduli (bulk: )1(
udK and shear: )1(

ud ) containing the fluid A1 to the 

unknown fluid-saturated effective moduli (bulk: )2(
udK and shear: )2(

ud ) containing fluid A2. If 

the load-induced pore-pressure (mean stress in pores) is homogeneous, Gassmann’s 

relations in equations 1 and 2 are exact for fluid-saturated rocks. This requirement is 

satisfied by any monomineralic isotropic fluid-saturated rock with interconnected pores, 

thus Gassmann’s relations have considerable practical value. 

Ciz and Shapiro (2007) made a significant contribution by generalizing Gassmann’s 

relations to the case of solid-filled effective moduli. Their derivation is exact; however their 

expressions depend on additional (generally unknown) pore compliance parameters. 

Making heuristic approximations to the new parameters, Ciz and Shapiro proposed the 

following approximate solid-to-solid substitution equations: 

  dry
B

dry
AiB

Ai

i
ud

B

i
ud

KK
K

KK
K

KK
K







 )(

)(

  (2.3) 

and 

  dry
B

dry
AiB

Ai

i
ud

B

i
ud



















 )(

)(

  ,  (2.4)

 

where i = 1, 2; 1AK
 
and 

1A  are the bulk and shear moduli of the initial pore-filling 

solid (A1), and 2AK
 
and 

2A  are the bulk and shear moduli of the final pore-filling solid 

(A2); BK
 
and B  are the bulk and shear moduli of the mineral in the rock frame. Equations 

2.3 and 2.4 relate the solid-filled effective moduli (bulk: )1(
udK and shear: )1(

ud ) containing the 

solid A1 to the solid-filled effective moduli (bulk: )2(
udK and shear: )2(

ud ) containing solid A2.  

In this chapter, we refer to equations 2.3 and 2.4 as the Ciz-Shaprio (C&S) approximations.  

The dependence of Ciz and Shapiro’s new compliance parameters on pore geometry 

and material constants is not known, thus our understanding of the accuracy and validity 

of Ciz and Shapiro’s approximations (equations 2.3 and 2.4) has been incomplete. Unlike 

Gassmann’s relation for fluid-to-fluid substitution, we do not understand when and under 
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what conditions Ciz and Shapiro’s approximations are exact for fluid-to-solid, solid-to-

fluid or for the general problem of solid-to-solid substitutions. Therefore, this subject still 

requires further investigation and clarifications.  

In this chapter, we derive exact solid-to-solid substitution equations (bulk and shear) 

for monomineralic isotropic rocks using an alternative approach: reciprocity. This 

approach provides significant physical insight into the problem of fluid and solid 

substitution. Our new exact equations differ from those obtained by Ciz and Shapiro (2007) 

although both sets of equations are exact. The motivation here is to identify precise 

conditions under which the original Gassmann's equations (2.1 and 2.2) and Ciz and 

Shapiro’s equations (2.3 and 2.4) are exact for solid-to-solid substitution; and to derive 

new generalizations to these equations. One of the goals of this chapter is to express, 

whenever possible, the solid-filled effective stiffnesses in terms of other measurable 

quantities instead of heuristic compressibilities, and identify the precise general conditions 

under which solid-to-solid substitution is exact, like we currently understand these 

conditions for Gassmann’s fluid-to-fluid substitution relations.  

Using the recently proposed embedded bound method of Mavko and Saxena (2013; 

chapter 6), we obtain generalizations of Gassmann’s bulk modulus relation (equation 2.1) 

for solid-to-solid substitution. These generalizations require the same assumption of 

compression-induced homogeneous pore-pressure - required by the original Gassmann’s 

relation for bulk modulus. We also discuss the limitations associated with estimating solid-

filled stiffnesses starting with fluid-saturated and/or dry rock measurements, and address 

if some effective stiffness measurements yield better estimates than others.   

The sections are organized as follows. In the next section we derive exact fluid and 

solid substitution equations for bulk and shear, and present our main findings. Further 

clarifications on derivations are discussed in the Appendices. In the subsequent section we 

discuss how the new substitution parameters can be estimated and compare our theoretical 

predictions with numerical and laboratory data. Chapter ends with discussion and 

conclusions.  
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2.3. Substitution Equations 

In this section, we derive substitution equation for effective bulk and shear moduli 

relating the first solid-filled effective moduli (bulk: )1(
udK

 
and shear: )1(

ud ) of an isotropic 

monomineralic rock containing a linear elastic pore-filling solid A1 (bulk: 1AK
 
and shear:

1A ) and linear elastic frame mineral solid B (bulk: BK
 
and shear:

B ) to second solid-

filled effective moduli (bulk: )2(
udK

 
and shear: )2(

ud ) of the same rock but containing pore-

filling solid A2 (bulk: 2AK
 
and shear:

2A ). We use the term porosity as the volume fraction 

of pore-filling material even though we consider solid-filled pores.   

2.3.1. Bulk Modulus 

2.3.1.1. Derivation 

Let the outer surface (denoted by Ω) of an isotropic composite sample, as shown in 

Figure 2.1a, be subjected to compressive surface tractions as 

ii PnT     (i = 1, 2, 3)  on Ω  ,  (2.5) 

where 

iT are traction components, in are the components of an outward-pointing surface 

normal vector to the surface Ω, and P  is constant. The spatially-variable stresses induced 

at any point in frame-filling solid B are given by B
ij . These stresses are similarly related to 

tractions within B, B
iT , as 

j
B
ij

B
i nT     (i = 1, 2, 3)   .   (2.6) 

Here we use standard summation over repeated indices. Stresses B
ij  can be decomposed 

as 

B
ijij

BB
ij P     ,  (2.7) 
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where BP  is the pressure (negative of mean stress,

 

3/B
kk ), and B

ij are deviatoric stresses.  

 
(a) 

 
(b) 

 
Figure 2.1: Compressional tractions on an arbitrary pore shape composite. Case 1 (a): pores 

are filled with solid A1. Case 2 (b): pores are filled with solid A2. 

 

Let’s suppose the pores are filled with solid A1 (case 1) such that the compression-

induced stresses within solid A1 are given by 1A
ij .  These stresses are related to tractions 

1A
iT  as 

j
A
ij

A
i nT 11     (i = 1, 2, 3)  .  (2.8) 

Stresses in solid A1 are related to strains 1A
ij  by Hooke’s law: 









 ij

A
kk

A
ij

A
ij

A
kk

AA
ij K  111111

3
12   .  (2.9) 

Stresses and strains in solid A1 can be decomposed as 

111 A
ijij

AA
ij P     (2.10) 

and 
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1
1

1

3
A
ijij

A
A
ij

e
    ,  

where 1AP  is the pressure, and 1A
ij are deviatoric stresses in the pore-solid A1; 1Ae and 1A

ij

are mean and deviatoric parts of strains in solid A1.  

If instead of solid A1, the pores are filled by solid A2 (Figure 2.1b; case 2) then the 

corresponding equations 2.8, 2.9 and 2.10 are 

j
A
ij

A
i nT 22    (i = 1, 2, 3)  ,  (2.11) 









 ij

A
kk

A
ij

A
ij

A
kk

AA
ij K  222222

3
12   ,  (2.12) 

222 A
ijij

AA
ij P     (2.13) 

and 

2
2

2

3
A
ijij

A
A
ij

e
    . 

If the composite is isotropic, using the Betti-Rayleigh reciprocity theorem (Walsh, 1965; 

Mavko and Jizba, 1991) we can write the difference 12E  in elastic energy stored in the 

two cases above as 

      



dSuTuTV
K
P

K
PE

S

A
i

A
i

A
i

A
i

udud
 














 2112

)2(

2

)1(

2

12 2
1

22
  , (2.14) 

where 2,1 AA
iu  are displacements at the pore boundaries in the ith direction. The surface 

integral is over the surface S  of pore boundaries, and V is total composite volume. 

Detailed derivation of equation 2.14 is presented in Appendix A; a special case of equation 

2.14 was discussed previously by Hashin (1962; equation 8 in his paper). Using equations 

2.8 and 2.11, and Gauss' divergence theorem along with equilibrium conditions and 

Hooke’s law, equation 2.14 can be rewritten in the following form 
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22
  .  

  (2.15) 

The volume integral in equation 2.15 is over pore volume V . Note that the second term 

containing 21 A
ij

A
ij  is summed over repeated indices. For convenience we adopt the 

following volume average notation: 






 dV
V V


1
  ,  (2.16) 

where  is the pore volume average of any quantity  . Rewriting equation 2.15 in the 

volume average notation and taking out the constant terms from the right hand side, we get 

    21
21

21
21)2(

2

)1(

2 11
2
111 A

ij
A
ijAA

AA
AA

udud

PP
KKV

V
K
P

K
P



































   , (2.17) 

where VV /  is porosity  . Now if in equation 2.17 we put solid B in place of pore-filling 

solid A2, then the composite for the second case becomes homogeneous and B
ud KK )2( .  

    1
1

1
1

2

)1(

2 11
2
1111 A

ij
B
ijBA

AB
BAB

ud

PP
KKK
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   , (2.18) 

which also guarantees PPB   and 0B
ij  everywhere in the composite. Hence, equation 

2.18 reduces to

 

 

P
P

KK

KK A

BA

B
ud

1

1

)1(

11

11

























  .   (2.19) 

Similarly, if we replace pore-filling solid A1 with solid B we get  
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 .  (2.20) 

Next, rearranging terms from equation 2.17 we get 
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Multiplying equations 2.19 and 2.20 we get 
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Equating equations 2.21 and 2.22 we get 
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where 
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Note that equation 2.23 is the exact solid-to-solid substitution equation for effective bulk 

modulus.  

Parameter 1  describes the heterogeneity of compression-induced mean stress (or 

pressure) in initial and final pore-filling materials; parameter 2  describes the contribution 

of compression-induced shear stresses in initial and final pore-filling materials. Certain 

properties of parameters 1  and 2  are known:  if 21 AA KK   and 21 AA   , then 

Kud
(1) £Kud

(2)  (Hill, 1963); hence, 1 , 2  and 2  must be non-negative. For fluid-saturated 

rocks, Gibiansky and Torquato (1998) have shown that Gassmann’s bulk modulus equation 

is, in fact, a strict lower bound on the change in effective bulk modulus upon fluid-to-fluid 

substitution; this statement is identical to putting 11   and 02   in equation 2.23. For 

solid-to-solid substitution a general argument for 11   can be made but it is not rigorously 

proven here.  

Interestingly, when effective modulus of a composite is described by an exact closed-

form equation, we can estimate its load-induced stress heterogeneity from equation 2.23. 

For example, when shear modulus of the pore-solid and the frame mineral solid are equal, 

the exact expression for the effective bulk modulus is given by Hill's closed-form relation 

(Hill, 1963), from equation 2.23 we can check that for such composites compression-

induced mean stress in pores (pore-pressure) is homogeneous or constant, i.e., 11  .  

2.3.1.2. General exactness condition of Gassmann 

We recover an equation identical to the original Gassmann's fluid-to-fluid substitution 

equation (2.1) for effective bulk modulus, if for any composite, 11   (homogeneous 

mean stress in pores) and either 
21 AA  
 
or 02  . This proves that Gassmann's effective 

bulk modulus equation is exact for solid-to-solid substitution in any arbitrary pore shape 

solid-filled composite for which compression-induced mean stress or strain in initial and 

final pores (pore-pressure) is homogeneous and shear modulus of the substituted pore-

filling does not change, i.e., 021  AA  . 
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2.3.1.3. Generalized Gassmann for Solid-filled Rocks  

In chapter 6 we will discuss the embedded bound method (Mavko and Saxena, 2013) 

for estimating the change in effective bulk modulus upon substitution (solid or fluid). The 

approach is based on recursive use of the Hashin-Shtrikman (HS) (1963) bounds for two-

phase materials, which guarantees that the results are physically realizable. We note that 

exact solutions of the substitution parameters 1  and 2  can be obtained for composites 

which realize some of the infinitely many embedded bound constructions that are 

consistent with a given effective modulus
)1(

udK . Since there are an infinite number of 

embedded constructions, the substituted bulk modulus and the parameters 1  and 2  have 

a range of possible values each corresponding to a different microstructure. Among these 

embedded constructions, two constructions – referred in chapter 6 as 

minHS  and 

minHS , 

seem to predict the smallest change in bulk modulus upon substitution; and two 

constructions – 

fHS  and 

fHS , seem to predict the largest change. Further details on these 

constructions can be found in chapter 6. The corresponding closed form substitution 

equations can also be found in Appendix B.  

For fluid-to-fluid substitution, these four constructions are strict bounds on the 

substituted effective bulk modulus since these reduce to the rigorous bounds obtained by 

Gibiansky and Torquato (1998).  

Using equation 2.23 and equations B-3 to B-14, we obtain 11   (compression-

induced homogeneous mean stress in pores) for composites that attain 

minHS  and 

minHS  

constructions, whereas the parameter 02   differs for the two constructions.  Realization 

of  

minHS  is shown in Figure 2.2. The recipe to obtain substitution parameter 2  for these 

constructions is also discussed in the Appendix B. For both 


minHS  and 


minHS composites, 

the solid-to-solid substitution equations can be exactly written as: 

  )(
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  ,  (2.26) 
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where i = 1, 2; bulk modulus 
)(i

zbK  is the solid-filled effective modulus of the embedded 

composite ( 

minHS  or 

minHS ) in the special case when pores are filled with a hypothetical 

solid of zero bulk modulus and non-zero shear modulus of Ai .  

 

 
(a) 

 

 
(b) 

Figure 2.2: (a) Embedded bound composite (


minHS ); Frame solid B is shown in gray color 
and pore solid A1 is shown in black. (b) Substituted embedded bound composite. 

 

Generally for rocks of arbitrary pore shape, bulk modulus 
)(i

zbK  is related to the solid-filled 

bulk modulus 
)(i

udK  by the inequality 
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  .  (2.27) 
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Further details of equation 2.27 are in chapter 3. For the 

minHS  or 

minHS  composites 

equation 2.26 exactly and uniquely relate 
)(i

zbK  to 
)(i

udK . For the 

minHS  composite, bulk 

modulus 
)(i

zbK  can be further related to the dry bulk modulus dryK as  
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3111
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3111
)(

  and i = 1, 2 .  (2.28) 

For the 

minHS composite, the relation between the bulk modulus 
)(i

zbK  and the dry bulk 

modulus dryK  is a bit complicated but can be estimated using equations B-9 to B-14.  

Effective bulk modulus equations describing the composites that realize 

minHS  

(equations 2.26 and 2.28) or 

minHS  constructions (equations B-9 to B-14) can be described 

as exact generalizations of the original Gassmann’s equation (2.1) to the case of solid-filled 

rocks for which compression-induced mean stress (or pressure) in pores is homogeneous. 

For fluid-to-fluid substitution, these reduce to Gassmann’s equation (2.1).  

The 

fHS  and 

fHS  constructions, which seem to predict the largest change upon 

substitution, correspond to 11  , i.e., heterogeneous compression-induced mean-stress; 

this can be shown using equation 2.23 and equations B-15 to B-24.  

2.3.2. Shear Modulus 

2.3.2.1. Derivation 

Similar to the effective bulk modulus derivation we consider the following surface 

shear tractions (referred in this chapter as shear field) at the outer surface Ω (as shown in 

Figure 2.3a)  
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(a) (b) 

Figure 2.3: Shear tractions on an arbitrary pore shape composite. Case 1 (a): pores are filled 
with solid A1. Case 2 (b): pores are filled with solid A2. 

 

For these tractions, the difference 12E  in elastic energy stored between the two cases: 

composite filled with solid A1 and solid A2 (Figures 3a and 3b), is given by 
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Rearranging terms and using the volume averaging notation we get  
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   . (2.31) 

If instead of solid A2, the pores are filled with solid B then the composite becomes 

homogeneous and
B

ud  )2(
. In this case, equation 2.31 reduces to 
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Also if pores are filled with solid B, then 0BP , 01323332211  BBBBB   and 

  BB
2112  everywhere, this results in 
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121)1(

111 A
BAB

ud




























   .  (2.33) 

Similarly, if solid A1 is replaced by solid B, equation 2.31 becomes 
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From equations 2.31, 2.33 and 2.34 we obtain  
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Parameters 1 and 2 are given by 

2
12

1
12

21

2
12

1
12

21

1 2
1

2
1

AA

A
ij

A
ij

AA

A
ij

A
ij








    ,  (2.36) 

and 
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For effective shear modulus, equation 2.35 is the exact solid-to-solid substitution 

equation. Parameter 1  describes the heterogeneity of shear field-induced deviatoric 

stresses in initial and final pore-filling materials; parameter 2  describes the contribution 
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of shear field-induced mean stresses (or pressure) in initial and final pore-filling materials. 

Since if 21 AA KK  and 21 AA   , then, 
)2()1(

udud    (Hill, 1963), therefore parameters 1 , 

2 and 2   must be non-negative.  

2.3.2.2. General exactness of Gassmann and C&S 

If 11   (homogeneous deviatoric stresses or strains in pores), and either 21 AA KK 
 

or 02  , then equation 2.35 is identical to equation 2.4 and under these conditions Ciz 

and Shapiro’s approximation is exact. Clearly, the original Gassmann's equation (2.2) is a 

special case of equation 2.35. 

2.3.2.3. Generalized Gassmann for Solid-filled Rocks 

For the four limiting embedded bound constructions ( 

minHS  , 

minHS  , 

fHS  and 

fHS  ) 

we were not able to directly estimate shear substitution parameters 1 and 2 ; this is 

simply due to the fact that there are two unknowns ( 1  and 2 ) for each construction 

equation, and also it is not trivial when 11  . However, the shear solid-to-solid 

substitution equation using the 

minHS  construction (which seem to predict the smallest 

change along with the 

minHS  construction) can be simplified as 

  )(

)(

)(

)(

i
bc

B

i
bc

AiB

Ai

i
ud

B

i
ud




















  ,  (2.38) 

where,  
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  and i = 1, 2 ,  (2.39) 

and 
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For fluid-to-fluid substitution equation 2.38 reduces to Gassmann’s equation 2.2. Shear 

substitution equations for the remaining constructions: 

minHS , 

fHS  and 

fHS  can be 

obtained by using shear equations for the HS bounds in place of bulk equations; these are 

discussed in chapter 6.   

2.4. Application 

Substitution parameters 2,1 and 2,1  have clear mathematical definitions and thus can 

be easily calculated if induced stresses (point-by-point) in the initial and final pores are 

known. As an example, in Tables 2.1 and 2.2 we summarize these parameters calculated 

using the Finite Element Method (FEM) for two composites: first with spherical pores (case 

1) and second with concave shape pores (case 2; same as case 1 but flipped frame and 

pore); composites are shown in Figure 2.4.  

 
(a) 

 
(b) 

 
Figure 2.4:  Case 1 (a) and case 2 (b): for both composites pore-filling solids (A1 and A2) 

occupy black region and frame solid B occupies the white region. Note that in case 1 
(a) pores are spherical in shape and in case 2 frame mineral occurs as spheres.    

 

The numerically calculated values of 2,1 and 2,1

 

(in Tables 1 and 2) satisfy the 

derived exact equations 2.23 and 2.35. We note that these parameters are smaller for case 
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1 in which pores are of spherical shape when compared to case 2 in which pores are of 

concave shape. This example demonstrates that pore shape affects the substitution 

parameters; however the extent and degree of this dependence requires further 

investigation. 

 
 Porosity 

  
Frame 
Solid 

BBK ,
(GPa) 

Pore 
Solid 

11 , AAK 

(GPa) 
 

Pore 
Solid 

22 , AAK 

(GPa) 
 

Moduli 
)1()1( , udud K  

 
(GPa) 

Moduli 
)2()2( , udud K  

 
(GPa) 

Case       

1 0.6 36,  45 4, 2 10, 7 4.03, 7.24 12.06, 15.54 

2 0.4 36,  45 4, 2 10, 7 12.82, 14.9 21.12, 22.13 

 
Table 2.1:  Calculated effective solid-filled bulk and shear moduli for the 3D composites 

shown in Figure 2.4. 
 
 

 Porosity 
  

Frame 
Solid 

BBK ,
(GPa) 

Pore 
Solid 

11 , AAK 

(GPa) 
 

Pore 
Solid 

22 , AAK 

(GPa) 
 

Parameters 
21 ,  

Parameters 
21 ,   

Case       

1 0.6 36,  45 4, 2 10, 7 1.01, 0.08 1.17, 0.03 

2 0.4 36,  45 4, 2 10, 7 1.09, 0.11 1.35, 0.08 

 
Table 2.2:  Calculated parameters 2,1  and 2,1  for the 3D composites shown in Figure 

2.4. 
 

 

We note that for substitution problems parameters 2,1 and 2,1  can also be estimated 

using rock images as an alternative to assuming predefined values. As an example we 

consider the following substitution problem - predict effective stiffness measurements of 

wax-filled Massillon light sandstone (porosity 0.22) at high temperature starting with the 

stiffness measurements at low temperature, as reported by Wang (1988). Temperature 



CHAPTER 2: FLUID AND SOLID SUBSTITUTION 27 

dependent wax (pore solid) bulk and shear moduli were also reported by Wang (1988). 

Since 3D image of a Massillon light sandstone sample is not available we use a pre-

segmented 3D image of Fontainebleau sandstone (porosity 0.15; Andrä et al., 2013), shown 

in Figure 2.5. For the digital Fontainebleau sample, assuming Quartz as frame mineral 

(bulk: 36 GPa; shear: 45 GPa) and temperature dependent wax bulk and shear moduli we 

numerically calculate parameters 2,1

 

and 2,1 using FEM. In Figure 2.6 we compare high 

temperature wax-filled laboratory measurements with those predicted by equations 2.23 

and 2.35 with the FEM calculated parameters 2,1

 

and 2,1  starting with the low 

temperature wax-filled sandstone laboratory measurements (although these parameters 

depend on initial and final pore-filling material properties, for this problem these are 

roughly: 1.11  , 7.02  , 9.11   and 2.02  ). We also compare predictions of 

Gassmann’s equation, the C&S approximation and the embedded bounds.  

 
Figure 2.5: Digital Fontainebleau sandstone sample. Pores shown in black and rock frame 

mineral shown in white.  Size of 200 x 200 x 200 and a voxel edge length is 7.5 µm. 
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The least change predicted by the embedded bounds is closer to the laboratory 

measurements when compared to that predicted by Gassmann and the C&S approximation. 

The embedded bounds contain the laboratory measurements. Predictions using the FEM 

calculated Fontainebleau sample parameters 2,1

 

and 2,1  are closer to the laboratory 

measurements when compared to any of the above models. However, the laboratory 

measured change in effective shear modulus is much larger, which could be due to various 

plausible reasons, such as difference in pore shape between Massillon and Fontainebleau 

sandstones, dispersion effects and errors in laboratory measurement. In addition to these, 

it is possible that the rock images do not resolve thin compliant pores or cracks, which 

could impact the numerically calculated parameters 2,1

 

and 2,1 . It is expected that if 

cracks were included in this calculation, due to increase in pore compliance heterogeneity 

we will actually calculate larger values for the substitution parameters. For instance, if we 

heuristically choose 4.21   and 6.02  , parameters larger than those calculated with 

the FEM, we can fit the measured effective shear moduli quite well, as shown in Figure 

2.6b.  

 
(a) 

 
(b) 

Figure 2.6: Laboratory measurements of wax-filled moduli (circles) of Massillon light 
sandstone versus temperature, data taken from Wang (1988). The predictions of hot 
wax-filled sandstone bulk (Figure a) and shear moduli (Figure b) starting with cold 
wax-filled moduli (bulk and shear) are shown. These predictions are calculated from 
the temperature dependent elastic moduli of wax, also reported by Wang. The 
embedded bounds nearly contain the measurements and the lower embedded bound 
predictions improve on the Gassmann and C&S approximations. Predictions using 
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Fontainebleau image calculated parameters 2,1 and 2,1 are closer to the laboratory 
measurements. The best fit substitution curve, which is non-unique, is also shown for 
shear moduli with the corresponding values of 1  and 2 .  

 

2.5. Approximate Substitution Relations 

Here we discuss specific substitution problems: dry to solid, fluid to solid, dry to fluid, 

etc. Exact solid-to-solid substitution for effective bulk modulus, equation 2.23, leads to the 

following exact equations 
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where udK  is the solid-filled effective bulk modulus with pore-filling solid of bulk modulus 

AK
 
and shear modulus A . Bulk modulus zsK  is the fluid-saturated effective modulus 

when pores are filled with a fluid of bulk modulus AK
 
(assuming elastic fluid of zero shear 

modulus). Bulk modulus zbK  is the solid-filled effective modulus when pores are filled 

with a hypothetical solid of zero bulk modulus and non-zero shear modulus of A . Note 

that parameters 1  and 2   in equations 2.41, 2.42 and 2.43 may not be identical, since 

they depend on initial and final pore-filling materials. 

If only 2   is known then solid-filled bulk modulus udK  can be predicted starting with 

fluid-saturated bulk modulus zsK  using equation 2.42. Similarly, if only 1 is known (for 

example, 11  ), solid-filled bulk modulus udK  can be predicted starting with bulk 
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modulus zbK  using equation 2.43. However, predicting solid-filled bulk modulus udK  

starting with the dry bulk modulus (in equation 2.41) requires knowledge of both 

parameters 1  and 2  . Clearly, predicting solid-filled bulk modulus from fluid-saturated 

bulk modulus measurement requires fewer assumptions as compared to predicting solid-

filled shear modulus from dry bulk modulus measurement.  

Using equations 2.41, 2.42 and 2.43 and replacing the usually unknown parameters 1

and 2  , the effective bulk moduli can be approximately written as a function of various 

effective stiffnesses: 

dry
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  . (2.44) 

Bulk modulus zbK  in equation 2.44 can be further approximated as a function of dryK

using equation 2.28.  

Similarly, equation 2.35 for effective shear modulus leads to the following exact 

equations 
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and 
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2   ,  (2.47) 

where same subscripts (ud, dry, zs and zb) are used as in equations 2.41-2.43 to denote 

different effective shear moduli. Similar to the discussion on effective bulk modulus, from 

equations above, we note that predicting solid-filled shear modulus from fluid-saturated 

shear modulus measurement requires fewer assumptions as compared to predicting solid-
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filled shear modulus from dry shear modulus measurement. Using equations 2.45, 2.46 and 

2.47, the effective shear moduli can be related approximately as: 

dry
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  . (2.48) 

Shear modulus zb  in equation 2.48 can be approximated as a function of dry using 

equations 2.38 and 2.39.  

For fluid-saturated porous media with connected or disconnected pores the exact results 

in equations 2.41 and 2.45 reduce to 
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where AK
 
is the bulk modulus of pore fluid.  The last terms in equation 2.49 and 2.50 

capture the contribution of load-induced heterogeneous pore-pressure.  

2.6. Chapter Summary 

For arbitrary pore shape isotropic monomineralic rocks we derive exact substitution 

equations for effective bulk and shear moduli using reciprocity (equations 2.23 and 2.35). 

General substitution equations depend on usually unknown parameters 2,1 and 2,1  but 

these can be calculated computationally if information on rock microstructure is available. 

With the advent of fast computing and availability of digital rock images such as, CAT 

scans, SEM images, etc., substitution parameters can be calculated instead of making 

heuristic assumptions. However, digital images of rocks often do not sufficiently resolve 

thin compliant pores which may affect the calculated substitution parameters. If absolutely 
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no information on microstructure is known, substitution is inherently non-unique since 

parameters 2,1 and 2,1  cannot be constrained; in this situation the possible range of change 

in effective moduli can be contained by the embedded bound method.  

With the derived exact equations, we reproduce the known result that the classical 

Gassmann's effective bulk modulus equation for fluid-to-fluid substitution is exact if the 

compression-induced pore-pressure (or mean stress in pores) is homogeneous. Moreover, 

we prove that this equation is also exact for the general case of solid-to-solid substitution, 

if in addition to homogeneous mean stresses (pressure) in initial and final pores, the shear 

modulus of substituted pore solid does not change. Similarly, for effective shear modulus, 

Ciz and Shapiro's approximation is exact if shear field-induced deviatoric stresses (or 

strains) initial and final pore-filling solids are homogeneous, and either the bulk modulus 

of the substituted solid does not change upon substitution or no mean stresses are induced 

in pores. 

We note that embedded bound method equations which predict the smallest change 

upon substitution are generalizations of Gassmann’s bulk modulus equation to the case of 

solid-filled rocks. These exact equations require the same exactness condition as required 

by the original Gassmann’s bulk modulus equation - compression-induced homogeneous 

mean stress (or pore-pressure). Solid-filled rocks with connected pores might not satisfy 

this requirement. These generalizations depend on known parameters and thus should be 

used to obtain a conservative guess on the change in effective stiffness upon substitution.  

Predicting solid-filled rock stiffness (both bulk and shear) starting with a dry rock 

measurement requires relatively more information and assumptions when compared to 

predicting the same with a fluid-saturated measurement. Therefore, to predict or model 

solid-filled stiffness, whenever possible, we recommend selecting fluid-saturated 

measurements (low or ultrasonic frequency) instead of dry measurements. We provide 

approximate expressions for solid-filled effective stiffnesses in terms of other measurable 

effective stiffnesses.  
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2.8. Appendix A 

Betti-Rayleigh theorem states that traction )1(T  acting on the surface ( BS ) of a linear 

elastic solid B associated with displacement field 
)1(

iu (i = 1,2,3), and traction )2(T  acting 

on the same solid and associated with displacement field 
)2(

iu are related as 

    B
S

iiB
S

ii dSuTdSuT
BB

  )1()2()2()1(   .  (A-1) 

To derive equation 2.14 we now use equation A-1. For the two pore-fill cases discussed in 

the main body, let’s consider tractions acting on the frame mineral solid B as follows: For 

the first case when pores are filled with solid A1, traction 


iT  acting on the outer surface 

Ω (associated with displacement field
)1(

iu ) and traction 
1A

iT  on the pore boundaries 

(associated with displacement field 
1A

iu ). For the second case when pores are filled with 

solid A2, traction 


iT   acting on the outer surface (associated with displacement field
)2(

iu ) 

and traction 
2A

iT on the pore boundaries (associated with displacement field
2A

iu ). Using 

equation A-1 we get 
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Multiplying equation A-2 by ½ on both sides and collecting terms we obtain 
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LHS of equation A-3 is the difference in elastic energy between the two cases, i.e., 12E .  

2.9. Appendix B 

2.9.1. Parameters 2,1  for 

minHS  construction 

To calculate the change in effective bulk modulus upon substitution as predicted by the 



minHS  construction, start by first calculating the parameters Qf  and Q  from the following 

equations  
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where QQf   . Expression for )1(
QK is given by 
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Next, from the calculated Qf  and Q  estimate the new modulus using the following 

equations 
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For the 

minHS construction, from equations 2.23 and B-3 to B-6 we obtain the bulk modulus 

substitution parameters 

11      (B-7) 

and 
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2.9.2. Parameters 2,1  for
 



minHS  construction 

The change in effective modulus as predicted by the 

minHS  construction can be calculated 

by equations B-9 to B-14. To estimate this change, start by calculating Qf  and Q  from 

the following equations: 
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where QQf   . The expressions for )1(
QK  and )1(

Q  are given by 
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Next, calculate the new modulus using the following equations 
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where, 
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For the 

minHS construction, substitution parameter 11   and the parameter 2  can be 

calculated using equations 2.23 and calculated Q . 

2.9.3. Parameters 2,1  for
 



fHS  construction 

The change predicted by the 


fHS  construction can be calculated by solving equations B-

15 to B-20. To estimate the substituted modulus start by calculating Pf  and P  from the 

following equations: 

 
1

)1()1(1)1(1

)1()1(

3
4

1

















PPPP
A

P
Pud

KfKK

fKK


  , (B-15) 

where PPP ff   1 . The expressions for )1(
PK  and )1(

P  are given by 
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Next, calculate the new effective modulus using 
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where, 
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2.9.4. Parameters 2,1  for 

fHS  construction 

The change predicted by the 


fHS  construction can be estimated by solving equations B-

21 to B-24. Start by estimating Pf  and P  from the following equations: 
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where PPP ff   1 . The expression for )1(
PK  is  
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Next, calculate the new effective modulus using 
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For the 


fHS  and 


fHS constructions, 11   can be shown by solving equations 23 and B-

15 to B-24 and assuming 21 AA   . 
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Chapter 3  

Further insights into substitution from 

the method of volume averaging (MVA) 
 

 

3.1.  Abstract 

Using the method of volume averaging (MVA), we re-derive the exact solid 

substitution equation for isotropic effective bulk modulus for porous media with solid-

filled pores. Similar to our previous result which was derived using the principle of 

reciprocity, the new result also requires an additional parameter which might not be directly 

measured or known. Both solutions are exact. However, unlike the previous exact solution 

which needed two additional dimensionless parameters, the parameter required in the new 

solution (using the MVA) is a heuristic effective rock stiffness. We establish rigorous 

inequalities between the required additional stiffness and other measurable effective 

stiffnesses.  
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3.2. Introduction 

Gassmann’s equation (1951) is known as a fluid substitution equation, as it predicts the 

change in effective elastic moduli of a fluid-saturated porous medium when replacing one 

pore-fluid with another. The only inputs required are the initial effective fluid-saturated 

bulk modulus, porosity, elastic moduli of frame solid, and moduli of initial and final pore-

fluids. It makes this prediction without detailed knowledge of pore geometry, except for 

the necessary condition of homogeneous pore-pressure (Grechka, 2009). If absolutely no 

information on rock geometry is available (except for porosity), Gibiansky and Torquato 

(1998) have shown that fluid substitution is non-unique: there exist an infinite number of 

rock microstructures of same porosity and initial fluid-filled effective bulk modulus but 

their fluid substituted effective bulk modulus may differ. Gibiansky and Torquato have 

also shown that Gassmann’s effective bulk equation is, in fact, a strict lower bound on the 

change in bulk modulus upon fluid substitution which corresponds to cases where the pore-

space is connected or the induced pore-pressure is homogeneous. Gibiansky and Torquato 

also obtained an upper bound on fluid substitution which corresponds to cases where the 

pore-space is disconnected or the induced pore-pressure is heterogeneous. This upper 

bound is generally tighter than the corresponding Hashin-Shtrikman (1963, referred here 

as HS) upper bound.  

Fluid substitution using Gassmann’s equation is frequently implemented in exploration 

geophysics, with applications ranging from time-lapse seismic analysis, fluid detection 

from seismic signatures, invasion compensation for sonic well logs, etc. However, when 

rock pores are filled with solids or viscoelastic materials such as cold heavy-oil, bitumen, 

clay, kerogen, gas-hydrates, pore-mineral precipitates, etc, traditional fluid-to-fluid 

substitution is not applicable. For such fluid-to-solid, solid-to-fluid or solid-to-solid 

substitution problems, Kantor and Bergman (1984), and Berryman and Milton (1988) have 

suggested rigorous bounds on the change in effective elastic properties upon solid 

substitution. Although these bounds are tighter than Hashin-Shtrikman bounds, they still 

provide a wide range of possible effective stiffness upon solid substitution.  



CHAPTER 3: INSIGHTS INTO SUBSTITUTION FROM MVA 42 

In this chapter, we re-derive exact solid substitution equation for effective bulk 

modulus by relating different composite or solid-filled porous medium stiffnesses using 

rigorous volume averaging (Whitaker, 1999). We restrict this study to the case of isotropic 

and mono-mineralic frame, but we consider general pore structure including disconnected 

pores. The volume averaging approach used to derive the exact solution is distinct from 

using the approach of reciprocity discussed in Chapter 2. But both solutions are exact and 

comparable. The goal of this chapter is to provide further insights into the problem of 

substitution using the method of volume averaging, and also to relate the required 

additional substitution parameters with measurable parameters through inequalities.  

As discussed in the previous chapter, Ciz and Shapiro (2007) also had previously 

generalized Gassmann’s effective fluid-saturated bulk and shear equations for solid-filled 

porous media with a heuristic effective compressibility parameter. Approximating this 

parameter, Ciz and Shapiro proposed approximate solid substitution equations, one each 

for effective bulk and shear moduli. For effective bulk modulus, this approximate equation 

is identical to Gassmann’s fluid-saturated substitution equation. Makarynska et al. (2010) 

have pointed out some deficiencies of Ciz and Shapiro’s approximation, in their attempts 

to model laboratory measurements of heavy oil saturated rocks. In this chapter, we show 

in some detail, that Ciz and Shapiro’s approximate solid substitution equation is limited to 

rocks with stiff identical ellipsoidal pores. We also show that Ciz and Shapiro’s 

approximation may not always fall within Hashin-Shtrikman bounds, especially for low 

porosity compliant rocks. 

The sections are organized as follows. In the next section all of the main results are first 

described without the derivations. Since the theoretical methodology and the associated 

algebra are quite involved, all derivations are kept in a separate section following the main 

results. Further details of the derivations are in the appendices. 

3.3. Solid substitution & main results 

We consider an isotropic porous medium composed of a pore-filling elastic solid 

(denoted by superscript A; bulk and shear moduli: AAK , ) and frame elastic solid (denoted 
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by superscript B; bulk and shear moduli: BBK , ). The volume fraction of pore solid A (or 

porosity) is denoted by   and the volume fraction of frame solid B is  1 . In this section, 

we will summarize composite compressibilities, and present exact and approximate solid 

substitution equations. Derivations will be discussed in the next section.  

3.3.1. Composite compressibilities and inequalities 

Hickey et al. (1995) defined compressibilities for fluid-filled media with 

interconnected pores using macroscopic equations obtained by volume averaging. 

Similarly we consider five compressibilities of a composite with total initial volume 0V  and 

initial pore volume 000 VV A  . For the first compressibility bcC , we apply pressure P̂  

(pressure averaged over total volume, referred in this chapter as total macroscopic pressure) 

with a constraint that pressure AP  (spatially varying pore-pressure AP averaged over pore 

volume) is kept constant (equation 3.1); no constraint is placed on mass conservation of 

the pore-fill. For the second compressibility udC , we apply increments of total macroscopic 

pressure P̂  while keeping the mass of both solids ( BAM , ) conserved (equation 3.2). The 

second compressibility is the effective solid-filled compressibility of the composite. 

Following the notation of Hickey et al. (1995) and Zimmerman (1991) we define the two 

effective compressibilities and bulk moduli as 
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and 
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Effective solid-filled bulk modulus udK can be expressed exactly as a function of the bulk 

modulus bcK in the form
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  ,bcud KK    (3.3) 

where 
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Derivation of equation 3.3 is discussed in the later section on volume averaging. Using the 

traction-free condition at the pore boundaries, we define the effective dry rock 

compressibility as previously suggested by various authors (Shapiro and Kaselow, 2005; 

Ciz and Shapiro, 2007) 
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Next, with the aim of further expressing bulk modulus bcK in terms of known quantities 

and/or pore-filling independent effective moduli, such as dry bulk modulus dryK , we define 

two more composite compressibilites as 
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and 
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  (3.6) 

The central difference between moduli in equations 3.1 and 3.5 is that for bulk modulus

zbK point-by-point (in space) pore-pressure is kept constant, whereas, for bulk modulus

bcK pore volume averaged pore-pressure is kept constant. The motivation of selecting bulk 



CHAPTER 3: INSIGHTS INTO SUBSTITUTION FROM MVA 45 

moduli zbK and sqK from a number of possible composite stiffnesses is since these are 

related to bulk modulus bcK through the following inequalities: 

drysqbc KKK 
  (3.7) 

and 

.dryzbbc KKK 
  

(3.8) 

Proof of inequalities in equations 3.7 and 3.8 is discussed in Appendix A. These 

inequalities and equation 3.3 yield strict lower bounds on udK  in terms of stiffnesses dryK , 

zbK   and sqK  expressed as 

    ,dryzbud KKK    (3.9) 

    .drysqud KKK    

One way to achieve the required conditions for zbK is by filling the pores with a 

hypothetical pore-filling solid of zero bulk modulus  0AK  and shear modulus A , 

keeping the same solid frame and volume fractions. Obviously most real materials do not 

satisfy this condition (zero bulk and finite shear), but nevertheless this is a convenient 

mathematical quantity. Conditions for bulk modulus sqK can be achieved by filling the 

pores with a fluid of finite bulk modulus 
AK  and zero shear modulus  0A

 
with the 

additional constraint that the increment of average pore-pressure is kept at zero. In this 

study, we will use the above properties to approximate bcK  with zbK
 
and sqK , and further 

express zbK
 
and sqK in terms of known quantities.  

So far no assumption about the pore geometry has been made, and throughout this 

Chapter we discuss the general case of connected or disconnected and heterogeneous 

geometry of pores.   
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Now we invoke as yet unknown function  which relates the bulk modulus bcK  to the 

dry bulk modulus dryK
 
as 

.)( drybc KK    (3.10) 

If details of pore geometry are not known, the function   is non-unique since a number 

of microstructures can have the same dry stiffness but their fluid or solid-filled stiffness 

may differ.  It is possible to express function   using parameters 1 and 2  discussed in 

the previous chapter.  

Using equations 3.3 and 3.10 we can obtain a transform for substituting a linear elastic 

solid with another linear elastic solid in the pores of a porous medium. For convenience, 

we name the initial pore-solid as solid A1 (bulk:
 

1AK
 
and shear:

1A ) and the final pore-

solid as solid A2 (bulk:
 

2AK
 
and shear:

2A ).  

Solving equation (3.3) for 
)1(

bcK  gives: 
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Then relating the known or measured solid-filled bulk modulus )( )1(
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with the pore-solid 

A1 to the unknown solid-filled bulk modulus )( )2(
udK  with pore-solid A2 using equations 3.3 

and 3.10, we get
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where 
)1(

bcK and 
)2(

bcK  are the effective bulk modulus bcK  associated with pore-solid A1 and 

A2, respectively. Functions 2,1  relate the dry bulk modulus with bulk moduli
)2(),1(

bcK . Note 

that the above equation for bulk modulus
)2(

udK , is algebraically equivalent to the form given 

in equation (3.3). 

Equation 3.11 is the exact solid substitution equation (in an implicit form), which can 

be used to predict the unknown solid-filled bulk modulus
)2(

udK , but requires the knowledge 

of functions 1 and 2  (or in general 
)2(

bcK  as a function of 
)1(

bcK ), in addition to the known 

initial pore solid-filled bulk modulus )( )1(
udK , porosity, bulk properties of the pore and frame 

solids (solids A1, A2 and B). However, if for a particular pore geometry composite, 

)2()1(
bcbc KK  , equation 3.11 does not require functions 1

 
and 2 since 

)1(
bcK and 

)2(
bcK  cancel 

out, which can be easily checked.  

Detailed study of all possible composites for which function is known is beyond the 

scope of this study, but some examples include the composites which realize Hashin-

Shtrikman bounds (Hashin and Shtrkiman, 1963), for which analytical expressions for 

effective stiffness were obtained by Hashin (1962).  

3.3.2. Limitations of Ciz and Shapiro's approximation 

Ciz and Shapiro (2007) derived the following exact solid substitution equation for 

effective solid-filled bulk modulus by invoking a stiffness )(i
ifK  
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where i = 1, 2. Both equations 3.3 and 3.12 are exact but equation 3.3 instead features bulk 

modulus bcK . Using equation 3.3 stiffness )(i
ifK can be written as 
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If details of pore geometry are not known, Ciz and Shapiro suggested approximating 

Aii
if KK )(  which is equivalent to dry

i
bc KK )(  resulting in 

,
11111

1111

0

0
)()(



















































dry
BBAiB

dry

dry
BAiB

iCS
ud

i
ud

KKKKKK

KKKK
KK





 (3.14) 

,)()(
drydry

i
bc KKK    

where i = 1, 2. Equation 3.14 is referred here as the C&S approximation. 

Interpreting the constraints on 
)(i

bcK  (equation 3.1) suggests that approximating 

Aii
if KK )( or dry

i
bc KK )(

 
implies that for a bulk compression the induced pore-shear stress 

is negligible and the induced pore-pressure is homogeneous. This is in agreement with our 

findings on the C&S approximation for bulk modulus in the previous Chapter 2. Also, this 

is further substantiated by the fact that equation 3.14 is the exact equation for effective bulk 

modulus of a composite with a spherical inclusion (solid A) and a spherical shell frame 

(solid B).  For this composite, upon bulk compression the induced pore-pressure is 

homogeneous and no shear stress is induced in the pores (Hashin, 1962), and the exact 

expression for 
)(i

udK  and dryK  are 
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The C&S approximation (equation 3.14) can be obtained by expressing and equating B  

as a function of 
)(i

udK  and dryK
 
in equation 3.15. Note that a different relation is obtained if 

we equate BK  instead of B .  A solid-to-solid substitution form of the C&S approximation 

is 
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 (3.16) 

Since a two phase spherical composite is a realization of Ciz and Shapiro’s approximation 

we note that this approximation (equation 3.14) is inconsistent for composites for which 

bulk compression induced pore-shear stress is large, for example, any composite that 

realizes the lower Hashin-Shtrikman bound (if frame solid B is stiffer, both in bulk and 

shear, than pore solid Ai). The solid-to-solid substitution form (equation 3.16) instead 

assumes that either the pore-shear modulus remains invariant upon substitution (
21 AA   ) 

or no shear stresses are induced in pores. Therefore, Ciz and Shapiro’s approximate 

substitution equation (equation 3.16) for effective solid-filled bulk modulus is limited to 

cases where bulk compression induced pore-pressure is homogeneous and shear contrast 

between substituted pore solids is negligible, for example, rocks with stiff identical 

ellipsoidal pores. 

In Appendix A, we show that if    01212  AAAA KK , Ciz and Shapiro’s 

approximation will under predict the change in magnitude of effective solid-filled bulk 

modulus upon substitution, or 

.)1()2()1()2(
ud

CS
ududud KKKK    (3.17) 
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As an example, we consider four solid-filled granular composites with known porosities, 

as shown in Figure 3.1. For each of these geometries, frame solid (B) has elastic properties 

of Quartz (bulk: 36 GPa, shear: 45 GPa) and its effective dry bulk modulus is computed 

using the finite element method (FEM). Next, we predict the approximate solid-filled bulk 

moduli using the C&S approximation starting with the FEM computed dry bulk moduli, 

porosity, elastic properties of frame solid (B) and elastic properties of final pore-filling 

solid A2. Note that for this case the initial pore-filling solid A1 has zero bulk and shear 

stiffness (dry rock). These solid-filled bulk moduli predictions are compared with those 

numerically computed using FEM as shown in Figure 3.2. We note that Ciz and Shapiro’s 

approximate substitution under predicts the FEM computed solid-filled bulk moduli. Also, 

since Ciz and Shapiro’s approximate substitution equation ignores the induced pore-shear 

stress, for soft granular geometries its predictions are below the lower Hashin-Shtrikman 

bound (Figure 3.2, right). This can be easily predicted by comparing equation 3.14 with 

the expressions of Hashin-Shtrikman bounds (Mavko et al., 2009). In Figure 3.2 we also 

show the minimum initial dry bulk moduli for different final pore-filling solids (A2) for 

which the predictions by C&S approximate solid substitution equation will be within 

Hashin-Shtrikman bounds. We can see from these curves that for low porosity compliant 

composites, Ciz and Shapiro’s approximate substitution equation provides unphysical 

predictions. This is regardless of pore geometry. The predictions of upper and lower 

embedded bounds contain the FEM computed moduli, and the lower embedded bound is a 

better approximation than the C&S approximation.  

 

3.4. Theory of volume averaging & derivation of results 

In this section, we derive equation 3.3 using the method of volume averaging. We begin 

with a brief review of the general method of volume averaging for two phase systems 

(Whitaker, 1999), with two phases denoted by A and B, respectively. The method of 

volume averaging is a mathematically rigorous approach to spatially average equations, 

valid within a particular phase, in order to obtain their macro-scale continuum description.  
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The method of volume averaging links the averages of derivatives to derivatives of 

averages with the following averaging theorem: 

.ˆ111
 

ABS i
A

V

A
iV

A
i dSn

V
dV

V
dV

V
 (3.23) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.1:  Four pore geometries for FEM calculations shown in Figure 3.2. Quartz frame 
is transparent and dry pores are shown. a) porosity: 0.44, bulk: 3.24 GPa and  shear: 
4.33 GPa; b) porosity: 0.47, bulk: 1.92 GPa and  shear: 2.66 GPa; c) porosity: 0.2, 
bulk: 19.6  GPa and  shear: 21.9  GPa; d) porosity: 0.02, bulk: 34.2 GPa and  shear: 
42.1 GPa. 

 

 



CHAPTER 3: INSIGHTS INTO SUBSTITUTION FROM MVA 52 

 
(a) 

 
(b) 

 
Figure 3.2:  (a) Minimum required dry bulk modulus for C&S approx. predictions to be 

within Hashin-Shtrikman (HS) bounds for solid-filled bulk modulus with pore-filling 
A2: water (bulk 2.25 GPa, shear 0), kaolinite clay (bulk 1.5 GPa, shear 1.4 GPa), 
arbitrary solid (bulk 5 GPa, shear 5 GPa)  and Han's clay (bulk 25 GPa, shear 9 GPa). 
For all cases frame solid has properties of Quartz (bulk 36 GPa, shear 45 GPa). FEM 
computed dry moduli (black filled circles) for geometries shown in Figure 3.1. (b) 
FEM computed effective solid-filled bulk moduli (gray filled circles) for the arbitrary 
solid (bulk 5 GPa, shear 5 GPa) compared with C&S approx. solid-filled moduli 
(circles). New approximation is shown in squares.  

 

Here A is any quantity associated with the phase A, and is defined to be zero everywhere 

outside phase A. Symbol i  is the spatial derivative operator. The symbol ABS refers to the 

interface between phases A and B within the averaging volume V and jn̂  is the unit normal 

pointing from phase A to B. To denote phasic average, we use an overbar  A ; we use a 

hat symbol  Â  for the average over volume V:  

,1
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A
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A dV
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  (3.24) 
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Both averages A  and Â  are defined at centroid 0x  of the averaging volume V. To 

complete the averaging process, we define the point-by-point spatial deviation at position 

vector y within the averaging volume as 

,~ AAA     (3.25) 

where A~  is the spatial deviation of the quantity A  about its phasic average A . Using 

equation 3.24, we can write 
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   (3.26) 

Theorem 1 (equation 3.23) represents a three-dimensional version of the Leibniz rule for 

interchanging differentiation and integration. It has been derived by various authors (Marle, 

1967; Slattery, 1967). Extensive discussion on this subject can be found in Whitaker 

(1999). A conceptual diagram of the volume averaging process is shown in Figure 3.3 for 

two phases A and B. In this chapter, phase A is the pore-filling elastic solid and phase B is 

the frame elastic solid.  

3.4.1. Quasi-static equations of motion: Pore-scale description 

The standard linearized quasi-static equations of motion, in Einstein’s summation 

convention for repeated indices, at the pore-scale (point-by-point in space) for pore-filling 

(denoted by superscript A) and frame elastic solid (denoted by superscript B) are as follows: 

 Continuity equations 
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Here, BA
ju , are the point-by-point jth displacement components and B,A are the respective 

densities. The subscript 0 indicates the unperturbed value. 

 
 Figure 3.3: A two-phase system with phases A and B. The method of volume averaging 

applied to volume V with the contact interface (shown with dash lines) between two 
phases A and B. The centroid of the averaging volume denoted by 0x  and y  is the 
relative position vector for points within the volume. 

 

 Momentum conservation and stress equations 

  ,0 A
ijj    (3.28) 

  ,0 B
ijj    

where A
ij  and B

ij are the linear elastic stress tensors (point-by-point) for each phase, given 

by 
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.B
kl

B
ijkl
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Here, A
ijklC  and B

ijklC  are standard fourth rank linear elastic stiffness tensors, which for 

isotropic solids are expressed as: 
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where BAK ,  and BA, are the bulk and shear moduli of elastic solids, respectively. The 

strain tensors are 
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If 0A  pore-filling phase A will be an ideal pore fluid.  

 Boundary conditions 

At the phase-phase interface we impose no-slip condition and continuity of traction: 

,B
j

A
j uu     (3.32) 

,k
B
jkk

A
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where kn is the normal vector to the phase-phase interface. 
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3.4.2. Quasi-static equations of motion: Macroscopic description 

Using volume-averaging Theorem 1 (equation 3.23), we volume average the pore-scale 

physics equations to obtain the macroscopic descriptions and their corresponding point-by-

point spatial deviation equations using equation 3.25. These equations are listed in 

equations 3.33-3.40 and their derivation is discussed in Appendix B.  

 Macroscopic continuity equations 
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 Macroscopic pressure equations 

Phasic averages are 
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 Spatial deviations about the averages 
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 Macroscopic shear stress equations  

Phasic averages are 
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where ijD , is defined in equation B-8, and ji  . Shear stresses BA,
12 , BA,

13  and BA,
23  

are the volume averaged shear stresses in x-y, x-z and y-z planes, respectively. 

Spatial deviations about the averages are 
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 Total macroscopic pressure and shear stress 

  ,1ˆ
00

BA PPP      

  ,1ˆ 00
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ijij     (3.38) 

where total macroscopic pressure and shear stress  ji   are denoted by P̂  and jk̂ , 

respectively. 

 Porosity and deviatoric strain equations 

Following the thermodynamic study presented by de la Cruz et al. (1993) and later 

discussed by Sahay (1996) and Spanos (2009), we write the porosity perturbation equation 

as 
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Deviatoric strain equation is 
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The parameters BA, and BA,  are phenomenological constitutive parameters which 

depend on pore geometry and the elastic properties of the poro-continuum constituents. 

The rest of the symbols have their usual meaning, as listed in Appendix C. Next, using 

equations 3.33-3.40 we will derive expressions for effective bulk moduli udK and bcK as 

defined in equations 3.1 and 3.2.  

3.4.3. Effective compressibilities & constitutive parameters 

 Bulk modulus bcK as a function of parameters A  and B  

To measure bulk modulus bcK  we keep the increment of average pore pressure at zero 

while the total macroscopic pressure is changed. The fractional change in total volume 

under these conditions is used to quantify the measured bulk modulus. For this stiffness, 

the mass of the frame solid B has to be conserved, which means 

   ,01  VddM BB    (3.41) 
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Using equation 3.41 we can redefine the bulk modulus bcK in terms of mass density: 
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Using equations 3.33, 3.34, 3.38 and 3.39 we obtain 
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 (3.43) 

 Solid-filled effective bulk modulus udK as a function of 

parameters A  and B  

To measure bulk modulus udK  we individually conserve masses of both elastic solids 

of the composite as 

    ,11 000 VV BB     (3.44) 

.000 VV AA     (3.45) 

Hickey et al. (1995) suggested that the above equations result in a simple condition 
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  (3.46) 

Solving equation 3.2 with condition in equation 3.46 and equations 3.33, 3.34, 3.38 and 

3.39 we get 

     .1 00
ABBAAABA

ud KKKKK    (3.47) 

Equation 3.47 can also be obtained by simply invoking 

,BA uu    (3.48) 

in equations 3.34 and 3.38, since for an effective solid-filled bulk modulus experiment the 

average displacement for pore solid A and frame solid B will be equal.  
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 Relation between parameters A  and B  

The macroscopic parameters, A  and B , in equation 3.39 relate the divergence in 

macroscopic displacements with the change in volume fraction of the two constituents. In 

a macroscopic sense, finite shear moduli must affect this process. Hence both A  and B  

depend on the bulk and shear properties of the elastic constituents. A straightforward use 

of displacement continuity yields 

.BBAA KK     (3.49) 

The validity of equation 3.49 was also recently discussed by Spanos (2009). Using equation 

3.49 along with the result from the solid-filled experiment presented in equation 3.47, we 

can obtain expressions for A  and B : 
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Equation 3.50 suggest that both A  and B are positive quantities (Spanos, 2009). This is 

because the Voigt average of the two bulk moduli will always be larger than the effective 

solid-filled bulk modulus (Mavko et al., 2009). Using equations 3.43, 3.47 and 3.49, udK  

can be related to bcK  which leads to equation 3.3.  

3.5. Comparisons between equations from reciprocity and MVA 

Exact result in equation 3.3 derived using the MVA can be written as 
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 (3.51) 

If the induced pressure in the pore space is homogenous, then by definition we must have

zbbc KK  . Using reciprocity we can also express udK  in terms of zbK  (equation 2.43) to 

obtain: 
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1   ,  (3.52) 

If load-induced pore-pressure is homogenous, it is equivalent to substituting 11   in 

equation 3.52. Therefore, under this assumption both reciprocity and the MVA yield the 

same result. However, the result obtained using reciprocity is seemingly more intuitive 

than that obtained using the MVA. 

3.6. Chapter summary 

We derive an exact solid substitution equation for bulk modulus which generally 

requires an additional stiffness; we relate this additional stiffness to other measurable 

effective stiffnesses using rigorous inequalities. We show that a closer/better estimate of 

the true solid-filled rock bulk modulus can be obtained starting with bulk modulus 

measurement of the same rock but filled with a hypothetical pore-filling or a fluid-saturated 

bulk modulus, as compared to starting with the dry rock bulk modulus measurement.  

We conclude that Ciz and Shapiro’s approximation implies homogeneous pore-

pressure and invariant pore-filling shear modulus upon substitution. Due to these 

assumptions, Ciz and Shapiro’s approximation does not always fall within Hashin-

Shtrikman bounds, especially for low porosity compliant rocks. Furthermore, depending 

on stiffness of the initial and final pore-filling solids, it underestimates the change in 

magnitude of effective solid-filled bulk modulus upon substitution. Although Ciz and 
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Shapiro’s approximation seem to have limited practical utility due to the assumptions 

above, it can provide good estimates for rocks with stiff identical ellipsoidal pores. As 

discussed in the previous chapter, the lower embedded bound provides closer estimates to 

the true rock stiffness when compared to Ciz and Shapiro’s approximation.  
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3.8. Appendix A 

3.8.1. Proofs of inequalities/statements in equations 3.7, 3.8 and 3.17 

 Proof drysqbc KKK   

Gibiansky and Torquato (1998)  have shown that fluid-filled effective bulk modulus  

(pores filled with a fluid of elastic properties: 0, AAK  ) as predicted by Gassmann's 

equation starting with measured dry bulk modulus dryK  is a lower bound on the true fluid-

filled effective bulk modulus, hence the following inequality holds 

    ,drysq
fluid

ud KKK    (A-1) 

where 
f luid

udK is the true fluid-filled effective bulk modulus and function   is given in 

equation 3.3.  Now if the shear stiffness of the pore-filling increases, i.e., 0A , then the 

new effective bulk modulus udK  must also increase from 
f luid

udK , i.e,   

,f luid
udud KK    (A-2) 

from equation 3.3,  A-1 and A-2 we get 

.drysqbc KKK 
  (A-3)
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 Proof dryzbbc KKK   

Due to energy considerations, solid-filled effective bulk modulus udK , hypothetical 

pore-fill bulk modulus zbK  and bulk modulus bcK  (which can be expressed as a function 

of udK  from equation 3.3) must monotonically increase with increment in shear stiffness 

A  of the pore-filling solid A if other elastic constants: AK , BK and B , pore-shape and 

volume fractions remain unchanged. Also, for a given composite when 0A  we know 

from Gibiansky and Torquato (1998) 

,dryzbsqbc KKKK    (A-4) 

and when BA   , from Hill (1963), and Hashin and Shtrikman (1963) it can be shown 

that 

,dryzbbc KKK    (A-5) 

note that equations A-4 and A-5 are true regardless of the value of 
AK . Also if 0AK , 

then zbbc KK   for BA  0 , therefore when 0AK  and BA  0 we must have 

.dryzbbc KKK    (A-6) 

 Proof that C&S approximation underestimates stiffness 

change upon substitution 

Inequality in equation A-6 can also be written as 

,hKK zbbc    (A-7) 

where h is an unkown non-negative quantity that depends on the elastic properties of the 

composite. Certain properties of h are known: when 0A , from equation A-4 we have 
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.0 drysq KKh   (A-8) 

When BA   , from equation A-5 we have 

.0h   (A-9) 

Now since when 0AK , 0h  for BA  0 , h must increase/decrease if both AAK ,  

increase/decrease such that other elastic constants  BBK , , pore-shape and volume 

fractions remain unchanged.  

Next, using these properties of quantity h, we will prove that Ciz and Shapiro’s 

approximation will under predict the change in magnitude of effective solid-filled bulk 

modulus, when substituting pore solid A1 with pore solid A2 if 

   02121  AAAA KK . Consider first if 12 AA   , then we know 

.)1()2(
zbzb KK     (A-10) 

From equations 3.11 and A-7 we get  
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The C&S approximation predicted solid A2 filled effective bulk modulus (referred here as

)2(CS
udK ) is given by
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 (A-12) 

Now if in addition to 12 AA    , 12 AA KK   then we know 
)1()2( hh  ; using this along 

with equations A-10, A-11 and A-12 we get 

.)2()2(
ud

CS
ud KK    (A-13) 

Similarly, if 12 AA    and 12 AA KK  , we get 

.)2()2(
ud

CS
ud KK     (A-14) 

3.9. Appendix B: Macroscopic description 

3.9.1. Macroscopic continuity equations 

Volume-averaging the solid continuity equations we get  

  ,01

0

0 










V

A
jjA

AA

dVu
V 


  (B-1) 

simplifying equation B-1 for an elastic solid results in  

.0ˆ1
0

0

0
0 


 dSnu

V
u

ABS j
A
j

A
jjA

AA





  (B-2) 

The quantity dSnu j
A
j ˆ is the volume swept out by the solid displacement A

ju at the pore 

interfaces; hence its area integral in equation B-2 is actually the change in volume fraction 

of the pore-filling solid and is equal to 0  . This is valid regardless of the local 

fluctuations in solid displacement A
ju . Therefore, equation B-2 reduces to 
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,0
0

0

0

0 











 A
jjA

AA

u   (B-3) 

and similarly for phase B we obtain, 

,0
1 0

0

0

0 













 B
jjB

BB

u   (B-4) 

where 0 denotes the unperturbed volume fraction. 

3.9.2. Macroscopic stress equations 

Volume-averaging the pore-scale stress tensors and using boundary conditions, we get 
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and  

    ,
2
11 00 








 kl

B
kl

B
lk

BB
ijkl

B
ij uuC   (B-5) 

where  
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We can separate the dilatational part of kl from its deviatoric part in the following way:  

  .ˆ
3
2ˆˆ

2
11

3
1

0  









BAS p
B
pklk

B
ll

B
kklkl dSnununu

V
  (B-7) 

It is convenient to refer to the area integral in equation B-7 as klD , i.e. 
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For the isotropic stiffnesses, equations B-4 and B-5 reduce to the following: 
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and 
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  (B-10) 

Average pressure for the two phases are defined as 

 3

A
llAP




  (B-11) 

and 

.
3

B
llBP


   (B-12) 

Equations B-9 to B-12 represents the volume averaged fields defined at the centroid 0x  of 

the averaging volume V, for an arbitrary pore-shape composite media. To obtain the 

corresponding spatial deviation we decompose the stress tensor and displacement field as  

      ,,~, 000 yxxyx A
ij

A
ij

A
ij     (B-13) 

     yxuxuyxu A
j

A
j

A
j ,~, 000    

and 
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      ,,~, 000 yxxyx B
ij

B
ij

B
ij     (B-14) 

      .,~, 000 yxuxuyxu B
j

B
j

B
j    

where BA
ij

,~  and BA
ju ,~  are the spatial deviation stress tensors and displacement fields, 

respectively. These are defined at the relative position vector y for points within the 

volume. Substituting equations B-13 and B-14 in the pore-scale stress tensor equations and 

subtracting the resulting equations from equations B-9 and B-10 we get the spatial 

deviation equations for solid pressures and shear stresses  
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where for shear stress in equations B-15 and B-16, ji  . 

3.9.3. Porosity and Deviatoric Strain Equation 

To complete the set of macroscopic equations, we need to define two macroscopic 

constitutive relations that link pore-scale physics to the macroscopic description. For the 

first such relation, we relate change in volume fraction to macroscopic displacement 

gradients as 
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.,,0
A
ll

AB
ll

B uu     (B-17) 

Similarly, we relate the deviatoric area integral in equation B-8 to traceless displacement 

gradient as 
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Parameters BA, and BA,  are phenomenological constitutive parameters and depend on 

pore geometry and the elastic properties of the poro-continuum constituents. 

 

3.10. Appendix C 

BA,    :  Superscript for solid A (pore-filling) and B (frame solid) 

2,1 AA :  Superscript for initial pore-filling solid A1 and final pore-filling solid A2 

V          :  Averaging or total volume  

AV , 
BV  :  Volumes of solid A and B 

ABS        :  Surface integral over pore boundaries, normal pointing from solid A to B 

           :  Phase volume average of any quantity    

̂            :  Bulk volume average of any quantity    

~            :  Spatial deviation of any quantity    

0x            :  Centroid of averaging volume 

y             :  Relative position vector with respect to the centroid 

             :  Volume  fraction of solid A 

0              :  Denotes unperturbed value 

n̂              :  Surface normal   

BA ,      :  Densities of solid A and B 
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BA u,u      :  Displacement of solid A and B 

BM           :  Mass of solid B 

B
ij

A
ij  ,      :  Stress in solid A and B, shear stress tensors in solid A and B, if ji   

BA PP ,       :  Pressure in solid A and B 

BA CC ,       :  Stiffness tensors 

BA K,K      :  Bulk modulus of solid A and B 

BA ,        :  Shear modulus of solid A and B 

BA ,       :  Macroscopic volume fraction constitutive parameters 

BA  ,         :  Macroscopic deviatoric strain constitutive parameters 

bcK               :  Effective bulk modulus as defined in equation 3.1 

udK               :  Effective saturated or solid-filled bulk modulus  

zbK               :  Effective bulk modulus as defined in equation 3.5 

sqK               :  Effective bulk modulus as defined in equation 3.6 

dryK              :  Effective dry or drained bulk modulus as defined in equation 3.4  
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Chapter 4  

Predicting change in P-wave modulus 

upon substitution with missing S-wave 

modulus 
 

 

4.1.  Abstract 

The problem of predicting change in seismic velocities (P and S-wave) upon change in 

pore-fill material is commonly known as substitution. For isotropic rocks, P and S-wave 

velocities are fundamentally linked to the effective P-wave and shear moduli. Change in 

S-wave velocity (or shear modulus) upon fluid substitution can be predicted with 

Gassmann starting with only the initial S-wave velocity, however, predicting the change in 

P-wave velocity (or P-wave modulus) using Gassmann requires knowledge of both initial 

P and S-wave velocities or moduli.  



CHAPTER 4: P-WAVE MODULUS SUBSTITUTION 74 

In this study, we present a rigorous derivation of P-wave modulus fluid and solid 

substitution in monomineralic isotropic rocks, assuming S-wave velocity or shear modulus 

is not known. For the general case of solid substitution, exact P-wave modulus substitution 

equation depends on usually unknown parameters. However, for fluid substitution, fewer 

parameters are required and the dependence of exact substitution on these unknown 

parameters reduces with increase in Poisson's ratio of the mineral in rock frame. Thus we 

find that P-wave modulus fluid substitution, in the absence of shear velocity, can be 

performed with relatively higher confidence for rocks with calcite/dolomite frame as 

compared to those with quartz frame. In addition, we propose a new P-wave modulus fluid 

substitution recipe which in the absence of initial shear modulus improves on a previously 

suggested approximation, and thus is recommended for practice.   

  

4.2. Introduction 

The effective elastic moduli that govern P and S-wave velocities  SP VV ,  in rocks are 

sensitive to change in properties of pore-filling materials. In nature, pore-filling materials 

occur as gaseous, liquid and solid phases. Quantifying the degree to which the effective 

elastic properties change with change in pore-filling material is commonly referred to as 

the substitution problem; fluid or solid substitution is one of the most fundamental 

problems in Rock Physics and has a range of practical applications, such as sonic log 

invasion correction, seismic reservoir monitoring, AVO modeling, etc.  

For isotropic monomineralic fluid-saturated rocks, Gassmann (1951) provides relations 

that operate separately on initial effective bulk and shear moduli, which are typically 

estimated from the combination of P and S-wave velocities, and density. Using 

Gassmann’s relations we can predict the change in SV  without the knowledge of PV , but 

the reverse is not true, i.e., both PV  and SV  are needed to predict the change in PV . These 

predictions are exact if load-induced pore-pressure is homogeneous under quasi-static 

deformation. 
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A common practical problem arises when PV  is measured but SV is not measured or is 

unreliable; in such situations both initial bulk and shear moduli are not known individually 

and thus Gassmann’s relations are not directly applicable. To tackle this practical problem, 

two broad approaches are commonly used in geophysics (Bachrach et al., 1998; Sengupta 

et al., 2003; Røgen et al., 2004; Han and Batzle, 2004; Dvorkin et al., 2007; Yan and Han, 

2010). First approach is to guess the missing SV using an empirical relation, and then use 

Gassmann's relations. The second approach is to employ the Gassmann-like approximation 

suggested by Mavko et al. (1995) which directly estimates the substituted change in P-

wave modulus without the shear modulus. This approximation was motivated by a rigorous 

graphical interpretation of Gassmann’s bulk modulus equation – extended heuristically to 

P-wave modulus. Since the precise implicit physical assumption in this approximate 

equation is not well understood, its range of applicability is not clear. Moreover, both of 

these approaches are not applicable to the general case of solid substitution - required when 

pore space is occupied with heavy-oil, solid hydrocarbon, clay, salt, mineral precipitate, 

etc. 

In this paper, we present the first formal derivation of an exact expression that operates 

on P-wave modulus for either fluid or solid substitution. We restrict this study to 

monomineralic isotropic solid-filled rocks but consider arbitrary pore geometry.  

The organization of this paper is as follows: We begin with presenting the exact fluid 

and solid substitution equations with further clarifications discussed in the Appendices. We 

discuss techniques to approximate substitution parameters required in the exact substitution 

equation, and compare the substitution predictions with numerical and laboratory 

examples. Finally, we present a recipe for practitioners to perform P-wave modulus 

substitution.  

4.3. Exact equations for substitution 

In chapter 2 we derived exact substitution equations for effective bulk and shear moduli 

(Saxena and Mavko, 2014) relating the initial solid-filled effective moduli (bulk: 
)1(

udK
 
and 

http://library.seg.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Sengupta%2C+Madhumita)
http://library.seg.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(rogen%2C+b)
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shear:
)1(

ud ) of an isotropic monomineralic rock containing a pore-filling solid A1 (bulk: 

1AK
 
and shear:

1A ) and frame mineral solid B (bulk: BK
 
and shear:

B ) to the second 

solid-filled effective moduli (bulk: 
)2(

udK
 
and shear:

)2(
ud ) of the same rock but containing 

pore-filling solid A2 (bulk: 2AK
 
and shear:

2A ). The bulk modulus equation is: 
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In equation 4.1,   is the volume fraction of pore-filling solid (i.e., porosity); 
P  and 



ij

are bulk-compression induced pressure (negative of mean stress) and deviatoric stresses 

within the pore-filling phase; e  and 


ij  are the corresponding compression-induced 

volumetric and deviatoric strains within pore-filling solid   (   A1 or A2). These are 

formally related to stress 

ij and strain 

ij as  

  ijijij P    ,  (4.4) 




  ijijij
e


3

  .  (4.5) 

The stress and strains in equations 4.4 and 4.5 are related by Hooke's law. The overbar 

operator,   represents pore volume average of any quantity  . Here we use standard 

summation over repeated indices. Further details are in chapter 2. Parameter 11   
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describes the heterogeneity of compression-induced mean stress (or pressure) in initial and 

final pore-filling materials; with 11  occurring in the special case of perfectly uniform 

stress/strains in the pores. The parameter 02   describes the relative contributions of 

compression-induced to average shear stresses in the initial and final pore-filling materials. 

The corresponding exact substitution equation for effective shear modulus is: 

      
  

 )2()1(
)2()1(

12

2
21

1
21

udud
ud

B
ud

B

ABAB
AAAA KK 




 




   , (4.6) 

where  

2
12

1
12

21

2
12

1
12

21

1 2
1

2
1

AA

A
ij

A
ij

AA

A
ij

A
ij








    ,  (4.7) 

and 

2
12

1
12

21

2
12

1
12

21

21

21

221

21

2 4
1

AA

AA

AA

AA

AA

AA

AA

AA eePP
KKKK 





 














   . (4.8) 

Parameter 11   describes the heterogeneity of shear field-induced deviatoric stresses in 

initial and final pore-filling materials; parameter 02   describes the contribution of shear 

field-induced mean stresses (or pressure) in initial and final pore-filling materials. Note 

that substitution parameters 1 , 2 , 1  and 2  depend on induced stresses/strains in pores 

of both initial and final rocks.  

The new result in this paper, is the exact relation between the initial solid-filled 

effective P-wave modulus (
)1(

udM ) containing pore-filling solid A1 and frame solid B to 

second solid-filled P-wave effective modulus (
)2(

udM ) of the same rock but containing pore-

filling solid A2: 
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and 
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Derivation of equation 4.9 is discussed in Appendix A. The substitution parameters 1  and 

2   depend on induced stress/strains (in pores of both initial and final rocks) upon uniaxial 

strain deformation (as per equation A-1). Parameter 
  describes the ratio of pore-filling 

solid strain component (for uniaxial strain applied in direction 1) and volumetric strain. If 

  21 AA , then equation 4.9 becomes independent of parameter 2   and reduces to  
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4.4. Special case of fluid substitution 

Assuming ideal elastic pore fluids i.e., 021  AA  , equations 4.1, 4.6 and 4.9 reduce 

to the following exact fluid substitution relations 
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Equations 4.13, 4.14 and 4.15 depend on parameters 1 , 2   , 1 , 
1A  and 

2A  which in 

turn depend on the details of rock microstructure. For rocks with inter-connected pores 

such that induced fluid pore-pressure can equilibrate at very low frequencies, we must have 

111   and 02   (Berryman, 1999), under these special conditions, equations 4.13, 

4.14 and 4.15 further reduce to 
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In the special case of inter-connected fluid saturated pores, substitution equations 4.16 (for 

bulk) and 4.17 (for shear) are independent of further details of pore geometry and are 

identical to Gassmann’s equations, where as the P-wave modulus substitution equation still 

requires knowledge of parameters 1A  and 2A . If both initial bulk (
)1(

udK  ) and shear 

(
)1(

ud  ) moduli are known, then fluid substituted bulk and shear moduli 
)2(

udK  and 
)2(

ud  can 

be obtained by solving equations 4.16 and 4.17; also the substituted P-wave modulus 

(
)2(

udM ) can be obtained by the simple relation: 3/4 )2()2()2(
ududud KM  . However, if only 

the initial P-wave modulus 
)1(

udM  is known and no initial measurements of 
)1(

udK  and 
)1(

ud  

are available, then parameters 
1A  and 

2A  are needed to estimate the fluid substituted P-

wave modulus 
)2(

udM . To understand the dependence of equation 4.18 on parameters 1A  

and 
2A we rewrite this equation in the following way 
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where 

 
B

B
B










1
212

  .  (4.20) 

In equation 4.20, 
B is the Poisson's ratio of frame solid B. Note that as 

B  increases B  

decreases, and the dependence of P-wave modulus substitution equation (4.19) on 


( 2,1 AA ) subsequently diminishes. This has clear practical implications. For instance, 

compared to quartz which has a Poisson's ratio of B 0.08 (i.e., 7.1B
) and P-wave 

modulus of BM 119 GPa (Mavko et al., 2009), calcite has a relatively large Poisson's 

ratio B 0.32 (i.e., 55.0B
) but similar P-wave modulus as quartz ( BM 96 GPa). 

Therefore, when parameter 
 is not well constrained, P-wave modulus fluid substitution 

in rocks with calcite as the frame solid can be performed with less uncertainty than in rocks 

composed of quartz. In the next section, with the aid of effective media models, we will 
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show that parameter   also generally reduces with increase in frame solid Poisson’s 

ratio; this reinforces the above argument.  

Now we will discuss some properties of parameter  defined in equation 4.11 (and 

A-13). If the rock is uniaxially deformed (as per equation A-1) the ratio  e/11  (and  ) 

will increase as the pore fluid becomes more resistive. For example, if in equation 4.11, we 

put K  i.e., make the pore-filling material incompressible then we must have 

0e  and  . Similarly, parameter  will assume large values for rocks with 

fluid-filled crack like pores (of near zero volume). Clearly,  depends on both properties 

of rock constituents and details of the microstructure. 

Comparing exact result in equation 4.19 with the approximation suggested by Mavko 

et al. (1995) we note that their approximation implicitly assumes 1  (when deformed 

as per equation A-1). The physical assumption of this approximation is that all of the pore 

volume change comes about due to strain in the uniaxial strain direction, i.e.,   e11 . 

Hence, this approximation is not strictly valid for situations when 1  or   e11 , for 

example, when pore fluid is incompressible or pores are crack like.  

In the next section, we discuss exact solutions to  for a single ellipsoidal inclusion 

embedded in an infinite elastic medium. Subsequently, we approximate the effects of 

inclusion interactions on  and other substitution parameters using established effective 

media models. 

 

4.5. Estimating substitution parameters 

For a single ellipsoidal inclusion (pore) embedded in an infinite elastic medium 

(frame), exact analytic solutions to substitution parameters 1 , 2 , 1 , 2  , 1 , 2  , 
1A

and 
2A can be obtained. These solutions are as follows: 

1111     ,   (4.21) 
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022     ,  (4.22) 
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where B and B  (   A1, A2) are shape coefficients (Eshelby, 1957; Wu, 1966; 

Berryman, 1980; Torquato, 2001). For a spherical inclusion these are given as 
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    BBBBBB KKH  2/896/    ,  (4.28) 

Details of the derivation of equations 4.21 to 4.25 are discussed in the Appendix B. Note 

that parameters: 2  , 
1A and 

2A  do not depend on the absolute values of 
 B

 and 
B

 

but instead depend on their ratio: 
  BB / .  

Parameters in equations 4.21 to 4.25 do not include effects of inclusion interaction in a 

composite with multiple inclusions. Such effects might be substantial. For instance, since 

the strain field within a single ellipsoidal inclusion is homogeneous we obtain 11  , 

however a second nearby inclusion can make the strain field heterogeneous, resulting in 

11  . 

Various effective medium models such as the self-consistent scheme (Wu, 1966; O' 

Connell and Budiansky, 1974; Berryman, 1980), differential effective medium (Cleary et 

al., 1980; Norris, 1985), Kuster-Toksӧz approximation (Kuster and Toksӧz, 1974), etc., 

can be used to approximate the effects of inclusion interactions. For example, using the 
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self-consistent scheme, for two-phase composite of solids B and A1 (or A2), we can 

approximate the shape coefficients   *PB  and   *QB  (   A1 or A2), which can 

be iteratively solved using the two equations: 

     01 ****   PKKPKK BB    ,  (4.29) 

     01 ****   QQ BB    .  (4.30) 

Expressions for iP*  and iQ*  ( i  A1, A2 and B) for various ellipsoidal shapes (assuming 

randomly oriented so that every orientation is equally probable) can be found in Mavko et 

al. (2009). For ellipsoidal shape pores, equations 4.29 and 4.30 can be solved iteratively 

using expressions in equations 4.26 and 4.27 for iP*  and iQ*  (instead of B  and B ). 

Using effective media approach, we approximate the parameters 2  , 
1A and 2A  as 
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   .  (4.33) 

 

4.6. Discussion 

Figure 4.1a shows calculated 
 (   A1 or A2) when   0.3 as a function of various 

inclusion aspect ratios and elastic properties of inclusion material embedded in a quartz 

frame ( BK  36 GPa; B  45 GPa; B  0.08). We note that for aspect ratio > 0.2, the 

calculated value of 
 from both the self-consistent (SC) and the differential effective 

medium (DEM) approximations is nearly idependent on inclusion elastic properties and is 

approximately constant ~ 1.2. For aspect ratio < 0.2, the calculated 
 becomes 
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increasingly sensitive to inclusion elastic properties and assumes larger values than 1.2. 

Similarly, Figure 4.1b shows the same example but for calcite frame ( BK  77 GPa; B  

32 GPa; B  0.32); for this case the calculated value of  for aspect ratio > 0.2 is nearly 

idependent on inclusion elastic properties with an approximate value of ~ 0.9. Therefore, 

from Figures 1a, b we note that when aspect ratio > 0.2 the calculated  is nearly a 

constant value.  

 
(a) 

 
(b) 

Figure 4.1: Calculated 
 using SC (self-consistent) and DEM  (differential effective 

medium) approximations for a range of inclusion aspect ratios and elastic properties 
of pore-filling material (porosity = 0.3). Figures 1a and 1b show calculations for quartz 
and calcite as the frame solid, respectively.  

 

After some algebra, for aspect ratio > 0.2,  as obtained using SC can be 

approximated as  
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Also, if 
 ,K <<

BBK ,  then 
 can be further approximated as 
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Using  in equation 4.35, the term B  in the denominator (on the LHS) of the exact 

fluid substitution equation 4.19 can be simplified as 

 
  

 3/1
14.1

214 2












BB

B
B   .  (4.36) 

If   0.3, for quartz frame rock we obtain  B 1.8, whereas for calcite frame rock we 

get  B 0.32. Hence, we note for calcite frame rocks with pores aspect ratio > 0.2, 

B << 1 thus estimating  for calcite rocks is relatively less important as compared to 

quartz frame rocks for which B >> 1.  

 

 
Figure 4.2: Fontainebleau sandstone digital sample (Andrä et al., 2013). Pores shown in 

black and rock frame mineral shown in white, with as size of 200×200×200 and a 
voxel edge length of 7.5 μm. 

 

 

To illustrate this let's consider an example of a digital Fontainebleau sandstone sample 

(porosity 0.15; Andrä et al., 2013; shown in Figure 4.2). Assuming quartz frame, using the 

FEM, we numerically compute the following dry rock effective stiffnesses: )1(
udK 23.5 

GPa, )1(
ud 27 GPa and )1(

udM 59.4 GPa. We simulate dry pores by assuming zero 

stiffness of pore-filling material (i.e., 1AK  0 GPa; 1A  0 GPa). Next, using full 

Gassmann (equations 4.16 and 4.17), we can estimate the effective P-wave modulus 
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corresponding to brine-filled pores ( 2AK  3 GPa; 2A  0 GPa), which comes out to be 

)2(
udM 61.7 GPa. Here we assume full Gassmann provides exact estimates. Similarly, we 

obtain predictions for )2(
udM  assuming 1 (Mavko et al., 1995) and   for spherical 

inclusions in equation 4.19; these predictions are 62.3 GPa and 61.5 GPa, respectively. The 

disagreement between predictions of the change in P-wave modulus ( )1()2(
udud MM  ) 

between the full Gassmann and the two approximate methods is ~ 26 % ( 1 ) and 7 % 

(   for spherical inclusions). Next, we consider the same digital rock sample but digitally 

replace quartz with calcite as the frame solid and re-compute the dry rock effective 

stiffnesses to obtain )1(
udK 37.4 GPa, )1(

ud 20.6 GPa and )1(
udM 64.9 GPa. For this case, 

the full Gassmann predicted brine-saturated P-wave modulus is )2(
udM 69.8 GPa. Equation 

4.19 with 1 predicts )2(
udM 68.9 GPa whereas equation 4.19 with   for spherical 

inclusions predicts )2(
udM 69.6 GPa. The new error in predicting the change in P-wave 

modulus upon substitution by the two methods is 17 % and 3 %, respectively, which is 

significantly lower when compared to the error calculated for quartz frame case.   

 

 
(a) 

 
(b) 

Figure 4.3: (a) Change in dry sandstone (data by Han, 1986) P-wave modulus upon fluid 
(water) substitution (initial dry rock - water saturated rock) as predicted by full 
Gassmann (in black circles), and the two approximate methods. (b) plot for carbonates 
(Vanorio et al., 2008).  
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Similar to numerical examples above, Figures 3a,b show P-wave modulus fluid 

substitution starting with laboratory measured dry sandstone (Han, 1986) and dry carbonate 

(Vanorio et al., 2008) data. In these plots, we compare the change in P-wave modulus upon 

substitution (dry rock P-wave modulus - brine-saturated rock P-wave modulus) as 

predicted by full Gassmann, equation 4.19 with 1 , and using equation 4.19 with 

approximate   for spherical inclusions. Both approximate methods work quite well for 

carbonates when compared to sandstones. For sandstones, predictions using equation 4.19 

with   for spherical inclusions are much closer to full Gassmann when compared to 

predictions using Mavko et al. approximation (i.e., equation 4.19 with 1 ). These 

examples again demonstrate that the approximate methods work better for rocks with 

higher Poisson's ratio frame mineral. 

 

 
(a) 

 
(b) 

Figure 4.4: Hashin-Shtrkiman bounds for isotropic water-saturated sandstone of 20 % 
porosity. For all effective moduli combinations (P and S-wave), the increase in 
darkness indicates increasing difference in dry rock P-wave moduli (in GPa) as 
predicted by full Gassmann and the approximate P-wave modulus methods: (a) 


for spheres (b) 1

.  

 

The above numerical and laboratory examples sample limited P-wave and shear moduli 

combinations. For a general test of the approximate methods, in Figures 4a,b we show 

Hashin-Shtrkiman bounds (Hashin and Shtrikman, 1963) for water-saturated sandstones of 
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20% porosity (   0.2; BK  36 GPa; B  45 GPa; 1AK  2.25 GPa). These plots 

display all combinations of effective P-wave and shear moduli of water-saturated 

sandstones. Starting with these effective water-saturated moduli combinations we predict 

dry P-wave moduli, using full Gaassmann (using both effective P-wave and shear moduli) 

and approximate methods (using only effective P-wave modulus). The difference between 

predictions of full Gassmann and the approximate methods are shown in color on these 

plots (absolute values). We note that predictions using equation 4.19 with approximate   

for spherical inclusions (shown in Figure 4.4a) generally are in better agreement with full 

Gassmann predictions as compared to assuming 1  (Figure 4.4b). Also, the former 

method performs best for moduli combination consistent with known SP VV   empirical 

curves for water-saturated sandstones (Castagna et al., 1993; Greenberg and Castagna, 

1992; Vernik et al., 2002; Han, 1986; Mavko et al., 2009). Therefore, substitution using 

equation 4.19 with approximate   for spherical inclusions will be quite close to 

substitution predictions using full Gassmann with measured PV and predicted SV from the 

known empirical SP VV   relations for sandstones.  

 

4.7. Substitution recipe 

4.7.1. Fluid substitution in rocks with interconnected pores 

Start by estimating the initial P-wave modulus using the measured P-wave velocity 
)1(

PV and bulk density )1(  

 2)1()1()1(
Pud VM    .  (4.37) 

Bulk density is related to rock mineral density B and intial pore-fluid density 1A  as 

  1)1( 1 AB     .  (4.38) 
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Next, approximate the parameter  (   A1 or A2) using the preferred effective media 

method by solving equations 4.32 and 4.33. This will typically require information on the 

inclusion aspect ratio. For stiff pores (i.e., aspect ratio > 0.2) saturated with relatively soft 

fluids (i.e., K  << BK ), instead of solving equations 4.32 and 4.33 with effective media 

models, we can simply approximate   as 
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Now estimate the fluid substituted effective P-wave modulus using 
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  . (4.40) 

Finally, obtain the new P-wave velocity as 

)2(

)2(
)1(


ud

P
MV    ,  (4.41) 

where )2(  is the final bulk density related to final pore-fluid density 2A  as 

 12)1()2( AA     .  (4.42) 

 

4.7.2. Fluid or solid substitution in rocks with disconnected pores 

Follow the steps above except in place of equation 4.40 use equation 4.9 to obtain the 

substituted effective P-wave modulus. This substitution exercise will require knowledge of 

parameters 1  and 2   in addition to parameters 1A and 2A . The latter three parameters 

can be approximated using equations 4.31 to 4.33. If pore space compliance is 

heterogeneous, the parameters 1  will typically assume a value larger than 1.  
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4.8. Chapter summary 

For arbitrary pore shape isotropic monomineralic rocks we derive fluid and solid 

substitution equations for effective P-wave modulus using reciprocity (equation 4.9). In its 

most general form this equation depend on usually unknown parameters, however these 

have a clear physical interpretation and mathematical description. Exact solution to these 

substitution parameters can be obtained for a single ellipsoidal inclusion embedded in an 

infinite matrix. In this paper, we explored the possibility of including the effects of 

inclusion interaction on these substitution parameters by using effective media 

approximations such as the self-consistent, differential effective medium, etc.  

In the special case of fluid substitution in rocks with interconnected pores, only 

substitution parameters 1A and 2A are needed. The contribution of these parameters to 

the substitution equation is weighted by the Poisson's ratio of the frame solid (or mineral), 

such that a higher frame solid Poisson's ratio leads to substitution predictions which are 

less sensitive to obtaining accurate approximations to parameters 1A and 2A . This 

implies that P-wave modulus substitution (without initial shear modulus or velocity) can 

be performed with higher confidence for carbonates or limestones when compared to 

sandstones.  

We find that if pore aspect ratio > 0.2, effective media model approximated parameters, 
1A and 2A , are nearly constant and this value depends on elastic properties of rock 

constituents and porosity. In contrast, previously suggested heuristic approximation 

implicitly assumed 1  (   A1, A2) for all cases. Also, we find that substitution 

predictions using approximate   for spherical pores provide better match with full 

Gassmann solution when compared to assuming 1 ; and also are consistent with 

substitution using full Gassmann with predicted SV  from known empirical SP VV   

relations. Therefore, we recommend the new fluid substitution recipe to predict the change 

in PV  when SV  is missing or is unreliable.  
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4.10. Appendix A: Derivation of the main result 

In this section, we will derive the exact P-wave modulus substitution equation relating 

the initial solid-filled effective P-wave modulus )1(
udM , of an isotropic monomineralic rock 

containing a pore-filling solid A1 (bulk: 1AK  and shear: 1A ) and frame mineral solid B 

(bulk: BK  and shear: B ) to the second solid-filled P-wave modulus )2(
udM , of the same rock 

but containing pore-filling solid A2 (bulk: 2AK  and shear: 2A ). Consider the following 

uniaxial displacement  321 ,, uuuu 
 on the outer surface (denoted by  ) of an isotropic 

composite sample 

11 xu       (A-1) 

032   uu    on   ,  

where ix are Cartesian coordinates (i = 1, 2, 3), 


iu
 
is displacement in the ith  direction, and 

  is constant. The spatially-variable stresses within solid B are given by B
ij  which are 

related to tractions 
B

iT , as 

j
B
ij

B
i nT     (i = 1, 2, 3)   ,  (A-2) 

where jn  is the outward unit normal to any surface within B. Stresses B
ij  are related to 

strains B
ij  by Hooke’s law: 
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Strains B
ij  can be decomposed as 

B
ijij

B
B
ij

e
 

3
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Let’s suppose that the pores are filled with solid A1 such that the induced stresses 1A
ij

within solid A1 are related to tractions 
1A

iT  as 

j
A
ij

A
i nT 11     (i = 1, 2, 3)  .  (A-5) 

Stresses in solid A1 are related to strains 1A
ij  by Hooke’s law: 
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If instead of solid A1, the pores are filled by solid A2 then the corresponding equations A-

5 and A-6 are 

j
A
ij

A
i nT 22     (i = 1, 2, 3)  ,  (A-7) 
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As discussed in Saxena and Mavko (2014), we can write the difference 12E  in elastic 

energy stored in the two cases above as 

    



 dSuTuTVMME
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iudud   21122)1()2(

21 2
1

2
1

  , (A-9) 

where 
2,1 AA

iu  are displacements at the pore boundaries in the ith direction. The surface 

integral is over the surface S  of pore boundaries, and V is total composite volume. Using 
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Gauss' divergence theorem and adopting volume average notation, equation A-9 can be 

rewritten in the following form 

      211221122)1()2( 21 A
ij

A
ij

AAAAAA
udud eeKKMM 


    , (A-10) 

where  is the pore volume average of any quantity  . Now if in equation A-10 we put 

solid B in place of pore-filling solid A2, then the composite for the second case becomes 

homogeneous and   BBB
ud MKM  3/4)2(

.  

      B
ij

A
ij

ABBAAB
ud

B eeKKMM 


 11112)1( 21
   , (A-11) 

which also guarantees Be , 3/211  B and 3/3322   BB
 everywhere in the 

composite. Hence, equation A-11 reduces to
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For convenience we now define,  
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Hence equation A-12 can be rewritten as 

      11111)1(

3
41 AAABAAB

ud
B eeKKMM  


   . (A-14) 

Similarly, if we replace pore-filling solid A1 with solid B in equation 4.18 we get  

      22222)2(

3
41 AAABAAB

ud
B eeKKMM  


   . (A-15) 

Next, rearranging terms from equation A-10 we get 
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Multiplying equations A-14 and A-15 we get 
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  (A-17) 

Equating equations A-16 and A-17 we obtain equation 4.9.  

 

4.11. Appendix B: Parameters for a single inclusion 

Eshelby (1957) showed that the strain ( 1A
ij , 2A

ij ) induced within a single ellipsoidal 

inclusion in an infinite isotropic matrix is homogeneous and is linearly related to constant 

strain 0
ij  applied at infinity as 

011
kl
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ijkl

A
ij T     ,                 (B-1) 
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where tensor T (   A1, A2) is given by 
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When rock is deformed as per equation A-1, we have  0
11 and

00
23

0
13

0
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22   , therefore equation B-1 reduces to 
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0
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ij

A
ij T   .                 

Moreover, since the induced strains within the inclusion are homogeneous, we readily 

obtain 11  . Solution of parameter 2   in equation 4.23 can be obtained by expanding and 

solving  
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  . 

Following the same procedure we obtain expressions for parameters 
1A and 2A  given 

in equations 4.24 and 4.25, respectively. Similarly, we can solve for parameters 1 , 2 , 1  

and 2   (as defined in equations 4.2, 4.3, 4.7 and 4.8, respectively) using equations B-1 

and B-2 under compressional and shear strains. 
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Chapter 5 

Fluid substitution in multimineralic 

rocks 
 

 

  

5.1. Abstract 

Brown and Korringa extended Gassmann's fluid substitution for bulk modulus to 

multimineralic rocks with interconnected pores; their strikingly simple yet general result 

requires two additional bulk stiffnesses - which despite mathematical elegance are less 

intuitive than those required for Gassmann. This creates a practical problem, so much so 

that even though virtually all rocks are multimineralic, in practice, Brown and Korringa's 

result is seldom used. Using reciprocity we revisit this substitution problem and obtain 

exact fluid substitution relation for bulk modulus, which much like Brown and Korringa, 

requires two additional bulk stiffnesses. Although, fundamentally identical to Brown and 

Korringa, our exact solution algebraically differs from Brown and Korringa's result, and 
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features two different additional bulk stiffnesses. This reformulation of Brown and 

Korringa's result leads to strict constraints/bounds on change in rock stiffness upon 

substitution; and a fluid substitution recipe which significantly improves on using 

Gassmann as a guess with Voigt-Ruess-Hill or Hashin-Shtrikman bound average of 

minerals in the rock frame.  

5.2. Introduction 

Gassmann's (1951) fluid substitution relations predict the change in effective rock 

stiffness upon change in saturating pore-fluid; these relations are frequently used to address 

a variety of problems in Geophysics, examples include fluid detection from seismic, fluid 

invasion correction for well log data, interpreting time-lapse seismic attributes, etc. 

Gassmann's equations are exact if rock frame is monomineralic (single mineral), initial and 

final pores are fully saturated with ideal elastic fluids, and load-induced pore-pressure 

under quasi-static deformation is homogeneous – a requirement satisfied by rocks with 

interconnected pores. Gassmann’s equations can be written as 
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and 

)2()1(
udud     ,  (5.2) 

where )1(
udK  and )2(

udK are the initial and final (fluid substituted) undrained (saturated) bulk 

moduli, respectively; )1(
ud  and )2(

ud are the initial and final (fluid substituted) effective shear 

moduli, respectively; 
1fK and 

2fK are bulk modulus of initial and final pore-fluid, 

respectively. 
BK  is the bulk modulus of the mineral in rock frame and f  is the volume 

fraction of interconnected pores (porosity). An important reason behind the popularity of 
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Gassmann’s equations (5.1 and 5.2), is because all required inputs are usually known or 

measured.  

Brown and Korringa (1975) extended Gassmann’s bulk modulus equation to the case 

of multimineralic rock frame (of mixed mineralogy), thus generalizing equation 5.1 to 

obtain 
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which contains two additional fluid-independent bulk moduli 
SK and 

SK 
, defined as 
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where V  is the rock volume, fV  is the fluid-saturated pore volume (of fluids f1 or f2), CP  

is the confining pressure, f
CD PPP   is the differential pressure and 

fP  is the pore 

pressure  (fluid pressure in f1 or f2). Symbol 
P

. denotes that pressure P is held constant. 

Moduli 
SK and 

SK 
are related as (Mavko et al., 2009) 

mix
f

f
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f
S KKK 








111
  .  (5.6) 

In equation 5.6, modulus 
mixK  is the true bulk modulus for the mineral mix and must satisfy 

Hashin-Shtrikman bounds (HS) (Hashin and Shtrikman, 1963). For monomineralic rocks, 

it is trivial to obtain 
SK =

SK 
=

mixK =
BK , thus we recover Gassmann's result in equation 

5.1. For shear modulus, Brown and Korringa obtained the same result as Gassmann 

(equation 5.2), i.e., no change upon fluid substitution. More recently, Gassmann and Brown 



CHAPTER 5: FLUID SUBSTITUTION IN MULTIMINERALIC ROCKS 101 

and Korringa's relations have been generalized to rocks with solid filled rocks (Ciz and 

Shapiro, 2007; Chapter 2). But in this chapter, we focus only on the problem of fluid 

substitution in isotropic rocks with interconnected pores.  

Brown and Korringa's exact solution is remarkably simple, especially for a theory that 

tackles mixed mineralogy of arbitrary mineral distribution, however, this result is difficult 

to use in practice since the required moduli SK  and SK   are (generally) neither trivially 

known nor easy to measure (Hart and Wang, 2010). In addition, approximations to these 

moduli are also not obvious. This is so since these capture an effective mechanical response 

of multiple minerals composing the rock frame. Moreover, in practice, information on 

mineral distribution is quite uncertain.  

Therefore, a common alternative is to instead use Gassmann's equation as a guess with 

Voigt-Ruess-Hill (VRH) average or Hashin-Shtrikman bound average (HSA of the mineral 

mix (Mavko et al., 2009) as the modulus of an effective mineral in the rock frame, i.e., 

approximate BSS KKK   . Several authors (Knackstedt et al., 2005; Ciz et al., 2008; 

Makarynska et al., 2007) have shown that such approximations although valid for spatially 

dispersed distribution of minerals, can induce large errors if either mineral distribution 

deviates from dispersed or the contrast between mineral phases becomes significant - for 

example, when soft clay occurs as a pore-lining phase in a sandstone. Mavko and Mukerji 

(2013) using effective media models along with analytical solutions for ideal shapes, 

discussed the applicability range of using Gassmann with VRH mineral average.  

Quantifying the effects of combined uncertainty associated with both mineral 

distribution and their relative contrast on fluid substitution has clear practical implications. 

Therefore, in this chapter, we reformate Brown and Korringa's result, which leads to 

rigorous constraints on fluid substitution in multimineralic rocks.  Exploring limiting 

solutions to the required parameters, we obtain three new approximations which describe 

the above discussed uncertainty. Also, when combined, these approximations lead to an 

approximation which provides significantly better predictions than using Gassmann's 

equation with VRH or HSA mineral average as a guess. In the limiting case of 
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monomineralic rock frame, all approximations discussed in this chapter, reduce to 

Gassmann's result in equation 5.1.  

5.3. Reformulation of Brown-Korringa & main results  

5.3.1. Derivation 

Let the outer surface of an isotropic composite sample with N elastic phases be subjected 

to compressive surface tractions as 

PnT   ,  (5.7) 

where n  is the outward-pointing normal vector to the outer surface, and P is constant 

(confining pressure). Let the spatially variable stress induced in any phase q (q   1 to N; 

of volume fraction q ) be given by q
ij , which can be decomposed into isotropic and 

deviatoric parts as 

q
ijij

qq
ij P     ,  (5.8) 

where qP  is the pressure (negative of mean stress,

 

3/q
kk ), and q

ij
 
are deviatoric stresses. 

Here we use standard summation convention over repeated indices. Each phase q has bulk 

and shear moduli given by qK  and q , respectively. Upon substitution, moduli of all but 

one of these phases change to 
2qK  and 2q ; for convenience, we name the un-changing 

phase as B (B  q). Now using Betti-Rayleigh reciprocity theorem (Hashin, 1962; Chapter 

2), we can write the change in elastic energy ( 12E ) upon substitution as 
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where )1(
udK  and )2(

udK are initial and substituted effective bulk moduli, respectively; q is 

the volume average of any quantity q  (over the volume of phase q). Now if in equation 
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5.9 we choose Bq KK 2  and Bq  2 , then the composite upon substitution becomes 

homogeneous, i.e., B
ud KK )2(  and 
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this also guarantees PPB   and 0B
ij  everywhere in the second composite. Hence, 

equation 5.10 further reduces to
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Similarly, if we choose 
Bq KK 1

 and Bq  1  we get  
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Next, rearranging terms from equation 5.10 we get 
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Multiplying equations 5.11 and 5.12 we get 
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From equations 5.13 and 5.14, we obtain 
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  (5.15) 

Equation 5.15 is the exact substitution equation for effective bulk modulus for substitution 

of N-1 phases in a N phase composite. More details on equation 5.15 will be discussed 

elsewhere. In the special case of multimineralic isotropic rocks (composed of N phases) 

with fluid-saturated interconnected pores (denoted by phase f1), bulk modulus substitution 

equation 5.15, for substitution of only the fluid phase f1 with fluid phase f2, reduces to 
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to obtain this result we used 2121 ffff PPPP  , since compression induced pore-pressure 

will be homogeneous under quasi-static conditions due to pore connectivity. Also we have 

dropped the volume averaging sign for pressure in fluid phases f1 and f2. Equations 5.15, 

5.16 and 5.17 are the central results of this chapter. Equation 5.16 is fundamentally 

identical to Brown and Korringa's equation 5.3 which is also derived in Appendix A using 

the same principle of reciprocity (G. Mavko, personal communication).  
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Interestingly, if the mineral phases only vary in their shear moduli and the bulk moduli 

of all solid minerals are the same, i.e., rock frame is homogeneous in bulk modulus (say 

bulk modulus Bq KK  ), then, equation 5.16 further reduces to the original Gassmann 

(1951) bulk modulus relation in equation 5.1, and Brown and Korringa's moduli simply 

reduce to BSS KKK   . This is true even if all minerals in the rock frame have different 

shear moduli; some can be fluids of bulk modulus BK . Therefore, for this case, the original 

Gassmann's bulk modulus equation 5.1 is exact. This trivial case is not apparent from 

Brown and Korringa's result in equation 5.3.  

5.3.2. Approximations 

The only sets of unknowns in our exact result in equation 5.16 are parameters fq PP / . 

In the absence of information on mineral distribution, these parameters must be 

approximated. Therefore, we will now analyze limiting values which should contain the 

true solution. The easiest solutions are to either invoke the iso-stress (i.e., qf PP  ) or the 

iso-strain (i.e., qqff KPKP //  ) condition in the exact result in equation 5.16. The iso-

stress condition is satisfied when phase q is suspended in fluid phase f; for such cases the 

exact substitution equation is: 
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Similarly, if we invoke the iso-strain condition, the exact substitution equation reduces to 
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Generally, since information of mineral distribution is unknown, exact results in equations 

5.18 and 5.19 can be regarded as approximations if iso-stress and iso-strain conditions are 

not strictly satisfied. Thus, we refer to equations 5.18 and 5.19 as the iso-stress and iso-

strain approximations, respectively; these are actually strict bounds on fluid substitution 

but only if initial and final pore-fluids (both) are either very soft or very stiff - which will 

be shown in the next section.  

To obtain a more restrictive range of parameters fq PP /  we now use Hashin-

Shtrikman bounds (Hashin and Shtrikman, 1963). Assuming an isotropic mix of the fluid 

phase f and mineral phase q, such that this mix can be represented by a two-phase 

composite, using Hashin-Shtrikman bounds and equation 5.11 (for a two phase composite) 

we obtain the following inequalities 
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where, 



HS
mixfqK  and 



HS
mixfqK  are upper and lower Hashin-Shtrikman (HS) bounds on bulk 

modulus for a mix of phases q and f, respectively (HS bounds expressions are presented in 

Appendix B). Using this result for the lower HS bound, we obtain the following 

approximation 
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and using the upper HS bound we obtain 
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where 
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  . 

Note that the result in equation 5.21 is actually identical to the iso-stress approximation, 

which is no surprise since both cases assume phase q as a suspension in fluid phase f.  For 

a three phase spherical shell composite, if phase q is the inner shell and fluid phase f is the 

inner sphere, then equation 5.22 is the exact substitution equation; we refer to it as the HS+ 

approximation.  

The range predicted by the iso-stress and iso-strain approximations describes the 

uncertainty associated with fluid substitution in multimineralic isotropic rocks when 
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mineral distribution within the rock frame is unknown. This range will be narrower if we 

instead choose to describe the range with iso-stress and HS+ approximations.  

For rocks saturated with soft fluids, the iso-stress approximation will overestimate the 

true change upon fluid substitution, whereas the iso-strain and HS+ approximations will 

underestimate the true change; this will be justified in the next section. In the limiting case 

of monomineralic rocks, all of these approximations converge to Gassmann's equation.  

As an example of the substitution range predicted by these approximations, consider a 

sandstone of 25 % porosity and dry rock bulk modulus of 15 GPa, say the mineral frame 

of this sandstone is composed of 50 % quartz (bulk modulus: 36 GPa; shear modulus: 45 

GPa) and 50% clay (bulk modulus: 12 GPa; shear modulus: 10 GPa); such that the clay 

distribution within the rock frame is unknown. Using the iso-stress and iso-strain 

approximations, we predict brine (bulk modulus: 3 GPa) saturated bulk modulus of 18 GPa 

(assuming iso-stress) and 16 GPa (assuming iso-strain), respectively. Similarly, using the 

iso-stress and HS+ approximations, we predict a slightly tighter range of 16.6 - 18 GPa. 

Using Gassmann with the Voigt-Ruess-Hill mineral average, we obtain brine-saturated 

bulk modulus of 15.9 GPa, which is outside the range predicted by either set of 

approximations. Similarly, using Gassmann with the Hashin-Shtrikman bound mineral 

average, we obtain brine-saturated bulk modulus of 16 GPa, which is also outside our 

predicted range. Using Gassmann with the mineral modulus obtained from the upper HS 

bound of the mineral mix and again with the lower HS bound of the mix yields a range of 

15.8 - 16.2 GPa, this range is not contained by the range predicted by the iso-stress and 

HS+ approximations.  

 

5.4. Bounds on fluid substitution 

Rigorous constraints on stiffnesses 
1K and 

2K  (defined in equation 5.17) will lead 

to bounds on fluid substitution. For this analysis, from this point onwards, we assume that 

phase B is the stiffest phase in the composite which may or may not be the predominant 

phase, unless specified otherwise.  
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Hill's theorem states that the overall effective rock stiffness increases with increase in 

stiffness of any rock phase (Page 370 in Hill, 1963). A consequence of this theorem is that 

the confining pressure and volume averaged pressure in each phase must have the same 

sign. Therefore, stiffnesses 1K  and 2K  must be positive (negative) if phase B is the 

stiffest (softest) in the rock; which leads to a strict upper (lower) bound on the change in 

effective bulk modulus upon substitution in multimineralic rocks 
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Equation 5.23 is identical to Gassmann's equation (if inequality sign is replaced with 

equality). This result proves that if mixed mineralogy is ignored and we use Gassmann's 

equation assuming the stiffest solid as the predominant frame mineral phase, i.e., idealize 

rock frame as monomineralic, then the predicted change in effective bulk modulus upon 

fluid substitution will always overestimate the true change. Result in equation 5.23 may 

seem sharp but baring cases where the rock frame is more or less homogeneous in bulk 

modulus; this strict bound is not very restrictive, which will be shown with examples later. 

Also note that if equation 5.23 is used as equality it can yield implausible predictions of 

effective bulk modulus for large contrast in initial and final pore fluids stiffness; this is so, 

since there may not be any physically realizable effective bulk modulus that can satisfy the 

forced equality.  

5.4.1. Stiff initial and final fluids 

In equation 5.11 (or 5.12), choosing iso-stress conditions, i.e., PPP fq   we 

recover Reuss average for the effective bulk modulus. Hill (1963) proved that this choice 

of iso-stress condition results in the softest possible effective bulk modulus, therefore 

whatever the rock microstructure, the following inequality holds 
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Similarly, if we invoke the iso-strain condition, i.e.,  

BBqqfff
ud KPKPKPeKPe ////  , which yields the stiffest possible 

effective bulk modulus (Hill, 1963), we obtain the inequality 
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where, e is the volumetric strain in the composite and fe  is the volumetric strain in fluid 

phase f. Inequalities in equation 5.24 (or 5.25) feature unknown parameter PP f /  (or 

ee f / ). The parameter PP f /  is simply the Skempton's coefficient (Mavko et al., 2009); 

for isotropic multimineralic rocks with interconnected pores, Green and Wang (1986) 

obtained the following relation in terms of Brown and Korringa's moduli 
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where dryK  is the dry effective bulk modulus. Also equation 5.26 can be rewritten in terms 

of strains as 
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If 1/ PP f , then from equation 5.27 we obtain 
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Thus equations 5.16 and 5.28 describe a lower bound on the change in bulk modulus upon 

substitution (the iso-stress approximation in equation 5.18), valid if 1/ PP f  (for rock 

with both initial and final pore-fluids). This condition can be achieved if both initial and 

final fluid phases are very stiff, i.e., Sf KK  . Clearly, this condition will be difficult to 

achieve for naturally occurring rocks since usually the fluid phase is much softer than 

mineral phases. However, it is known that SK   can take quite small values for rocks with 

compliant pore-lining clay, and sometimes even negative (Berge and Berryman, 1995). 

Similarly, if 1/ ee f , then equation 5.25 leads to the following inequality  
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  .  (5.29) 

Equations 5.16 and 5.29 describe an upper bound on the change in bulk modulus (the iso-

strain approximation in equation 5.19), if 1/ ee f ; this condition can be achieved if both 

initial and fluid phases are quite stiff, i.e.,     1111 /1/   uddrySudud
f KKKKKK .  

5.4.2. Soft initial and final fluids 

If both initial and final pore-fluids are very soft, i.e.,  0fK  then regardless of 

mineral distribution, qf PP  and 
qf ee  , which leads to the following inequalities 
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and 
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Therefore, the iso-stress and iso-strain approximations, for rocks with very soft initial and 

final fluids (i.e.,  0fK ) will overestimate and underestimate the true change upon fluid 

substitution, respectively.   

 

5.5. Examples and applications 

In this section, using various theoretical and numerical examples, we will demonstrate 

the practical utility of the iso-stress approximation in equation 5.18, the iso-strain 

approximation in equation 5.19, the HS+ approximation in equation 5.22, and the strict 

upper/lower bound on change in bulk modulus upon fluid substitution in equation 5.23. 

As the first example, we discuss fluid substitution in a three phase spherical composite 

(shown in Figure 5.1). Exact closed form solutions to the effective bulk modulus of the 

three phase spherical composite are known, these are not repeated here since already 

published in Christensen (1991) or Mavko and Mukerji (2013).  

 

 
Figure 5.1: Three-phase spherical composite. 

 

 

We consider the following geometric and elastic details: outer quartz shell of radius R1 

= 2.5 (elastic properties BK  36 GPa; B  45 GPa), soft clay inner shell of radius R2 = 
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2.3 (elastic properties qK  5 GPa; q  3 GPa) and an empty inner sphere of radius R3 

= 1.8; this yields f 0.37 and q 0.4. For this case, we calculate dryK  6.9 GPa, and 

the following Brown and Korringa's moduli: SK  16.1 GPa and SK   91.4 GPa.  

 

 
(a) 

 
(b) 

Figure 5.2: Example of fluid substitution in the three-phase spherical composite shown in 
Figure 5.1: (a) soft clay (b) stiff clay.  The true effective dry bulk modulus is shown 
in open black symbols. These plots show the predicted dry bulk moduli starting with 
the true fluid-saturated bulk moduli. The HS+ approximation provides exact 
predictions. The upper bound provides a rather unrestrictive range for the dry bulk 
modulus. The iso-stress and iso-strain approximations contain the true dry bulk 
modulus.  

 

Using the iso-stress, iso-strain and HS+ approximations, along with the upper bound 

in equation 5.23,  we predict the dry bulk modulus (with empty inner sphere) starting with 

the true fluid-saturated bulk moduli calculated for a range of fluids filling the inner sphere 

(true, since calculated from the closed form solution), 
1fK  between 0 and 5 GPa. We 

compare these predictions with the analytically computed dry bulk modulus. These results 

are shown in Figure 5.2a. For such this composite, the HS+ approximation is the exact 

equation for fluid substitution. Predictions of the iso-stress and iso-strain approximations 

contain the dry bulk modulus; these approximations overestimate and underestimate the 

true change in bulk modulus upon substitution, respectively. The range predicted by the 

iso-stress and HS+ is much narrower, since for this case the HS+ approximation is the 
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exact solution. We also compare the predictions using Gassmann's equation (equation 5.1) 

with Voigt-Ruess-Hill (VRH) mineral average of phases B and q - referred as "Gassmann 

with VRH mix"; these predictions fall outside the range predicted by the above 

approximations. Also compared are the predictions of Gassmann's equation with HS bound 

mineral average of phases B and q - referred as "Gassmann with HSA mix", these 

predictions are quite close to the predictions of Gassmann with VRH mix. Figure 5.2b 

shows the same example in Figure 5.2a but for stiff clay of qK  21 GPa and q  15 

GPa. For both cases, predictions of using the mean of the iso-stress and HS+ 

approximations - referred as "Mean of iso-stress and HS+" improve on the prediction of 

Gassmann with VRH mix or Gassmann with HSA mix. 

In the next few examples, we will compare model predictions with the finite element 

method (FEM) computed elastic moduli of digital sandstone rocks. The FEM computed 

moduli are assumed to be “exact” since the associated numerical error is found to be 

smaller than the symbols used for plotting.  

Figure 5.3a shows a segmented 3D image of Fontainebleau sandstone sample (porosity 

f 0.15; Andrä et al., 2013). The FEM was first carefully benchmarked with the 

monomineralic digital rock (in Figure 5.3a) by matching the fluid substitution 

computations with Gassmann's predictions. Next, the monomineralic rock frame which 

was mainly composed of quartz is digitally altered to replace some quartz parts with clay. 

We consider two cases: in the first case (shown in Figure 5.3b) we digitally replace a part 

of quartz with a pore-lining clay phase, and in the second case (Figure 5.3c) we randomly 

replace some quartz with clay to obtain a dispersed distribution of clay in the rock frame.  

Using the FEM we calculate the dry and fluid-saturated effective bulk modulus for a 

range of fluid bulk moduli, between 0 and 5 GPa, such that the clay volume fraction is 

0.27. We assume quartz bulk and shear moduli of 36 GPa and 45 GPa, respectively; and 

soft clay with bulk and shear moduli of 5 GPa and 3 GPa, respectively. Next, starting with 

the FEM calculated fluid-saturated bulk modulus we predict the dry rock effective bulk 

modulus using the methods discussed above. These calculations are shown in Figure 5.4.  
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(a) 

 
(b) 

 
(c)  

Figure 5.3: Digital Fontainebleau sandstone sample with fluid-saturated pores shown in 
black and quartz phase shown in gray. Digitally altered samples are shown in figures 
b, c and d; clay is shown in white. (b) clay occurs as a pore-lining phase (c) clay occurs 
as a dispersed phase in the rock frame. Both cases (b and c) have the same volume 
fractions of pores, clay and quartz.  

 

In Figure 5.5, we perform the same modeling exercise as in Figure 5.4, but instead vary 

the soft clay mineral fraction keeping the initial fluid modulus fixed (water, of bulk 

modulus: 2.25 GPa). We note that the iso-stress and iso-strain approximations contain the 

FEM computed dry rock bulk modulus, but the range predicted by the iso-stress and HS+ 

approximations is relatively narrower. Regardless of the mineral distribution, the 

predictions of Gassmann with VRH mix as well as Gassmann with HSA mix are quite off, 
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whereas predictions of Mean of iso-stress and HS+ are significantly closer to the FEM 

calculated dry bulk modulus. Similarly, Figure 5.6 shows the same modeling exercise as 

in Figure 5.5, but in this plot we instead present the range of substituted moduli as predicted 

by various model combinations: the iso-stress and HS+ approximations, the iso-stress and 

iso-strain approximations, using Gassmann once with Voigt bound on the mineral mix and 

again with Ruess bound on the mineral mix, and similarly using Gassmann with the HS 

lower and upper bound on the mineral mix. The range predicted by all model combinations 

contains the FEM computations. We note that the predicted range using Gassmann with 

either Voigt-Ruess or HS bounds is quite wide when compared to the range predicted using 

the iso-stress and iso-strain approximations; the iso-stress and HS+ approximations further 

improve on this range.  

 

 
(a) 

 
(b) 

Figure 5.4: Example of fluid substitution in the digitally altered Fontainebleau sandstone 
sample shown in Figures 3b and 3c, for soft clay. FEM computed effective dry and 
fluid-saturated bulk moduli are shown in open and filled black symbols, respectively. 
Plots show the predicted dry bulk moduli starting with FEM computed fluid-saturated 
bulk moduli. Plots (a) and (b) show calculations for pore-lining and dispersed clay, 
respectively.  
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(a) 

 
(b) 

Figure 5.5: Fluid substitution in the digitally altered Fontainebleau sandstone sample: pore-
lining soft clay (a) and dispersed soft clay (b). FEM computed effective dry and fluid-
saturated bulk moduli are shown in open and filled black symbols, respectively. Plots 
show the predicted dry bulk moduli starting with FEM computed water-saturated bulk 
moduli, as a function of varying clay fraction in the mineral frame.  

 

 
(a) 

 
(b) 

Figure 5.6: Range of predicted fluid substitution in the digitally altered Fontainebleau 
sandstone sample: pore-lining soft clay (a) and dispersed soft clay (b). Range predicted 
by various model combinations is shown, each range plot is slightly shifted 
horizontally for clarity.  

 

Figures 5.7, 5.8 and 5.9 show the same calculations as in Figures 5.4, 5.5 and 5.6, 

respectively, but for a stiff clay of 21 GPa bulk modulus and 15 GPa shear modulus. For 

stiff clay the range predicted using any above method is relatively narrower than the 
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previous case of soft clay. Interestingly, the range predicted using Gassmann with either 

Voigt-Ruess or HS bounds is very narrow, but does not contain the FEM computations. 

The range predicted by the iso-stress and iso-strain approximations and the iso-stress and 

HS+ approximations contains the FEM computations.  

For all examples discussed above (stiff or soft clay) we note that the predictions of 

Mean of iso-stress and HS+ generally fairs better than any other approximation.  

 

 
(a) 

 
(b) 

Figure 5.7: Example of fluid substitution in the digitally altered Fontainebleau sandstone 
sample shown in Figures 3b and 3c, for stiff clay. FEM computed effective dry and 
fluid-saturated bulk moduli are shown in open and filled black symbols, respectively. 
Plots show the predicted dry bulk moduli starting with FEM computed fluid-saturated 
bulk moduli. Plots (a) and (b) show calculations for pore-lining and dispersed clay, 
respectively.  
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(a) 

 
(b) 

Figure 5.8: Fluid substitution in the digitally altered Fontainebleau sandstone sample: pore-
lining stiff clay (a) and dispersed stiff clay (b). FEM computed effective dry and fluid-
saturated bulk moduli are shown in open and filled black symbols, respectively. Plots 
show the predicted dry bulk moduli starting with FEM computed water-saturated bulk 
moduli, as a function of varying clay fraction in the mineral frame. 

 

 

 
(a) 

 
(b) 

Figure 5.9: Range of predicted fluid substitution in the digitally altered Fontainebleau 
sandstone sample: pore-lining stiff clay (a) and dispersed stiff clay (b). Range 
predicted by various model combinations is shown, each range plot is slightly shifted 
horizontally for clarity.  
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5.6. Chapter summary 

Equation 5.16 is the exact fluid substitution equation for bulk modulus in 

multimineralic isotropic rocks with interconnected pores. This equation is algebraically 

different yet fundamentally identical to Brown and Korringa's result. As in Brown and 

Korringa’s bulk modulus equation, this new equation requires two additional moduli. 

However, unlike Brown and Korringa, the additional moduli in the new result explicitly 

depend on the ratio of bulk compression induced mean stresses (or pressure) in various 

rock phases, weighted by the respective phase volume fraction and the contrast in stiffness. 

This result proves that Gassmann's bulk modulus equation for fluid substitution is still 

exact for those multimineralic rocks for which the mineral phases only vary in their shear 

moduli and the bulk moduli of all minerals are the same, i.e., rock frame is homogeneous 

in bulk modulus. Similarly, the strict upper (lower) bound in equation 5.23 proves that if 

actual heterogeneous mixed mineralogy is ignored and Gassmann's equation is used 

assuming the stiffest (softest) solid as the predominant frame mineral phase, i.e., idealize 

rock frame as monomineralic, then the predicted change in effective bulk modulus upon 

fluid substitution will always overestimate (underestimate) the true change. This is 

regardless of mineral distribution.   

We conclude that the new exact solution is easier to approximate (if needed) when 

compared to Brown and Korringa's result. For instance, the result in equation 5.16 leads to 

three new approximations in equations 5.18 (iso-stress), 5.19 (iso-strain) and 5.22 (HS+). 

The iso-stress and iso-strain approximations are proved to be strict bounds when initial 

and final pore-fluids are either very stiff or very soft. If the initial and final pore-fluids are 

very soft, then the predictions of iso-stress and iso-strain overestimate and underestimate 

the true change. The HS+ approximation in equation 5.22 is exact for a three phase 

spherical composite; this approximation along with the iso-stress approximation provides 

a narrower range on bulk modulus upon fluid substitution when compared to that predicted 

by the iso-stress and iso-strain approximations. These approximations describe the 

uncertainty associated with not knowing the mineral distribution in the rock frame. 
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 With the aid of several theoretical and numerical examples, we have shown that the 

mean of iso-stress and HS+ approximations yields useful predictions (i.e., close to the true 

solution) for predicting the change in rock bulk modulus upon fluid substitution. For the 

examples studied in the chapter, this method provides significantly better predictions when 

compared to the predictions of using Gassmann with Voigt-Ruess-Hill or Hashin-

Shtrikman bound average of minerals in the rock frame. Therefore, we propose using this 

approximation when information on mineral distribution in the rock frame is not available. 

However, if information on mineral distribution is available, geometry specific 

approximations may still yield better predictions. 
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5.8. Appendix A: Derivation of Brown and Korringa 

Consider experiments A, B, and C applied to a rock with total volume V and pore 

volume VV ff   as shown in Figure 5.A-1. Increments of confining pressure CP  and pore 

pressure fP  are applied in various combinations. For convince, we define an additional 

constant
K  which describes the dry rock pore space bulk modulus as 

fPC

f

f P
V

VK 




11


  .  (A-1) 
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Figure 5.A-1: Three stress experiments applied to the same rock sample, for use in the 

Betti-Rayleigh reciprocity theorem. 

 

Experiment A (Figure 5.A-1) has uniform confining pressure PPC   applied to all surfaces 

inside and outside the rock. In this case the overall volume of the rock sample shrinks as 

the minerals become elastically compressed by the applied pressure. Experiment B has the 

same confining pressure PPC   applied only to the outside surfaces of the rock. The pore 

surfaces are stress free. In this case the outside surfaces of the sample deform according to 

the effective dry rock bulk modulus, dryK . Experiment C has the confining pressure PPC   

applied to the outside surfaces of the sample, while the induced pore pressure increment 

fP  of the saturated rock is applied internally to the pore surfaces. In this case the outside 

surfaces deform according to the effective saturated or un-drained rock bulk modulus udK

. Applying the reciprocity theorem to experiments A and B (Figure 5.A-1), we can write 

Sdryfdry VPVPVP     ,  (A-2) 

we can rewrite equation A-2 as 

S
fdry KVPPKVPPKVPP ///     ,  (A-3) 

dividing through by VP 2 gives 
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S
f

dry KKK
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  .  (A-4) 

Similarly, applying the reciprocity theorem to experiments B and C, we can write 

ud

f
f

dry KP
P

KK
11





  ,  (A-5) 

where PP f /  is the ratio of pore pressure induced in the pore space to the applied external 

confining pressure. The saturated pore volume change can be related to the pore pressure 

increment using the fluid bulk modulus: 

f
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  .  (A-6) 

Similarly, applying reciprocity theorem to experiments A and C, we can write 
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Combining equations A-4, A-5 and A-7 gives 
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   , (A-8) 

replacing the dry modulus in equation A-8 we obtain Brown and Korringa's fluid 

substitution equation 5.3.  
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5.9. Appendix B: Hashin-Shtrikman bounds 

The expressions for HS bounds on elastic bulk and shear moduli of an isotropic two-

phase composite are given by 
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where the superscripts (1) and (2) refer to the properties of the two phases.  Equations B-1 

and B-2 yield the upper bound when 
)1(K  and )1(  are the maximum bulk and shear moduli 

of the individual phases, and the lower bounds when 
)1(K  and )1(  are the minimum bulk 

and shear moduli of the phases.  
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Chapter 6 

Embedded bounds on fluid and solid 

substitution 
 

 

  

6.1. Abstract 

Fluid and solid substitution of bulk and shear moduli are exact and unique for materials 

whose elastic bulk and/or shear moduli fall on the Hashin-Shtrikman bounds.  For materials 

whose moduli lie between the bounds, solid and fluid substitution of bulk moduli can be 

computed exactly, but not uniquely. Every initial bulk modulus can be realized with an 

infinite number of microstructures and therefore transforms to an infinite number of moduli 

upon substitution of the pore fill. This non-uniqueness arises when detailed information on 

the material pore geometry is not available. We present four embedded-bound 

constructions for fluid and solid substitution that are based on realizable materials.  In the 

limiting case of pore fluids, for bulk modulus, two of these constructions reduce to the 
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bounds of Gibiansky and Torquato, which illustrates that those bounds are optimum.  For 

solids, the first two constructions correspond to a homogeneous pore stiffness and predict 

the smallest change in modulus.  The third construction prediction corresponds to a pore 

space with heterogeneous stiffness, and predicts much larger change in modulus. 

   

6.2. Introduction 

Predicting the change of rock elastic properties upon substitution of the pore-filling 

material is one of the most fundamental problems in rock physics. Gassmann (1951) 

derived expressions for the change in rock effective elastic moduli when the pore-filling 

materials are ideal fluids.  His results are stunningly simple and general under the 

assumptions that the empty frame of the rock is linear elastic, the solid phase (mineral) is 

homogeneous, the pore-filling material has the same load-induced pressure everywhere, 

and the shear stress within the fluid is everywhere zero.  

Although Gassmann’s results apply to arbitrary anisotropy, we limit the discussion in 

this paper to the isotropic case, where the bulk modulus, 



K , and shear modulus, 



G, 

completely describe the rock’s elasticity.  In this case, Gassmann predicts 

 fmin
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drymin
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satmin
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  ,  (6.1) 

drysat GG    ,  (6.2) 

where 



Kdry  is the dry (“drained”) rock effective bulk modulus, 



K sat  is the bulk modulus of 

the rock when fully saturated (“jacketed”) with an ideal fluid, 



Kmin  is the elastic bulk 

modulus of the mineral, 



K f  is the bulk modulus of the pore fluid, and 



  is the porosity.  In 

equation 6.2, 



Gsat  and 



Gdry  are the effective shear moduli of the saturated and dry rock, 

which are predicted to remain unchanged with substitution of the pore fluid.  (Brown and 

Korringa, 1975, extended Gassmann’s derivation to the case of heterogeneous, though still 

linear elastic, mineralogy.) 
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The utility and simplicity of Gassmann’s result comes from its dependence on only a 

single average stiffness parameter of the dry pore space, 



K , defined as 



1
K


1
v 

v 
Pc Pp

   ,  (6.3) 

where 



v   is the total pore space volume, 



Pc  is the confining pressure, and 



Pp  is the pore 

pressure. The pore stiffness,



K , can be determined, for example, from dry rock 

measurements: 



1
K


1


1
Kdry


1

Kmin









  .  (6.4) 

In terms of 



K , one can rewrite equation 6.1 as 



1
Ksat


1

Kmin



K F ; F 

K f Kmin

Kmin K f
K f      . (6.5) 

An infinite number of connected pore microstructures exist that share the same 



Kmin , 



Kdry , 



K , and 



 .  Each will have exactly the same Gassmann-predicted response to pore-fluid 

change. The same cannot be said if the pores become filled with solids or viscoelastic 

materials, or if the pore space becomes disconnected. 

Solid substitution, rather than fluid substitution, applies, for example, when predicting 

how elastic moduli of heavy oil reservoirs change with saturation or upon heating or steam 

injection.  Solid substitution is also necessary to model plugging of pore space with cement 

or salt or removal of minerals during the formation of secondary porosity.  Solid 

substitution takes place during alteration of feldspar to clay, or when comparing clean pore 

space with clay-filled pores.  Equations for solid substitution also allow predictions of 

changes in viscoelastic pore-filling materials, by virtue of the viscoelastic correspondence 

principle. 

In this paper, we present techniques for computing the change in effective bulk 

modulus of a rock upon substituting solids, liquids, or viscoelastic materials in the pore 
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space.  The approach is based upon recursive use of the Hashin-Shtrikman (1963) bounds 

for two-phase materials, which guarantees that the results are physically realizable.  We 

reproduce the known result (Kanter and Bergman, 1984; Berryman and Milton, 1988) that 

the rock response to changes in (solid or fluid) pore fill is non-unique.  The “embedded-

bound” method reduces to the upper and lower bounds for fluid substitution developed by 

Gibianski and Torquato (2000), illustrating that those bounds are optimum.  Changes in 

the effective bulk modulus are smallest when the pore space is stiff and homogeneous, and 

largest when the pore space is heterogeneous, including cracks. 

In this paper, we generalize the term “porosity” to mean the volume fraction of rock 

that is being substituted.  When substituting one pore fluid for another, porosity has its 

usual meaning; when the pore space is completely filled with a mineral, we still refer to 

that volume fraction as porosity. 

We present here results only for the effective bulk modulus.  Results for shear modulus 

will be presented in the future. 

  

6.3. Substitution on the bounds 

Hashin and Shtrikman (1963) and Walpole (1966) found expressions for bounds on the 

elastic bulk and shear moduli of an isotropic two-phase composite: 
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where the subscripts 1 and 2 refer to the properties of the two phases.  Equations 6.8 and 

6.9 yield the upper bound when 



Km  and 



Gm  are the maximum bulk and shear moduli of the 

individual phases, and the lower bounds when 



Km  and 



Gm  are the minimum bulk and shear 
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moduli of the phases.   We will refer to equations 6.8 and 6.9 as the HS bounds.  

Superscripts HS+ and HS- designate upper and lower bounds, respectively. 

It has been known for some time that the HS bounds on the elastic moduli of two-phase 

porous media are Gassmann-consistent.  That is, if the bulk modulus of a two-phase 

material, in which one of the phases is a fluid, falls on one of the HS bounds, then if the 

fluid is replaced by a second fluid, the modulus of the resulting composite remains on the 

bound.  This was implied by the original derivation of Hashin and Shtrikman, (1963) in 

which their trial stress and strain fields in the pore phase were constant (Gibiansky and 

Torquato, 2000); in the case of fluids, this means uniform pressure and zero shear stress in 

the pore space, which are equivalent to Gassmann’s assumptions.  The uniformity of the 

inclusion stress for microstructures attaining the bound has also been pointed out, for 

example, by Gibiansky and Sigmund (2000).  Yan and Han (2011) also discuss the 

consistency of the HS bounds with Gassmann’s model.  It is interesting that fluid-saturated 

two-phase media whose moduli fall on the bounds will be consistent with Gassmann fluid 

substitution, even if the pores are not connected. 

 

6.4. Bounds on bulk modulus for fluid substitution 

When two-phase materials do not fall on the bounds, then fluid substitution may not be 

Gassmann-consistent.  In the geophysics literature, deviation from Gassmann’s predictions 

has been extensively discussed in the context of unequilibrated pore pressure as occurs in 

disconnected pores or during unrelaxed “squirt flow” (Biot, 1962; Mavko and Nur, 1975; 

Budiansky and O’Connell, 1977; Stoll and Bryan, 1970; Mavko and Jizba, 1991; Chapman, 

et al., 2002; Gurevich, et al., 2009; Saxena and Mavko, 2014).   Fluid substitution with 

unequilibrated pore fluids yields larger changes in bulk modulus than those predicted by 

Gassmann.  

Gibiansky and Torquato (2000) discuss the non-uniqueness of fluid substitution and 

present rigorous bounds on the change in bulk modulus that can occur upon fluid 

substitution in a two-phase composite.  If the initial bulk modulus is 



Ksat
(1)

 when the rock is 
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saturated with fluid of bulk modulus 



K f
(1) , then upon substituting a new fluid with bulk 

modulus 



K f
(2), the saturated bulk modulus 



Ksat
(2)

 must lie in the interval 

2
)2(

1 FKF sat     if   )1()2(
ff KK     ,  (6.10) 
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   . 

Some properties of equation 6.10 are as follows. 

 The modulus 



F1 is equivalent to Gassmann’s prediction of saturated bulk modulus.  



F1 

corresponds to the smallest possible change in bulk modulus upon fluid substitution, 

which occurs when the rock pore space is well connected and the pore pressure can 

equilibrate under bulk compression. 

 The modulus 



F2 corresponds to the largest possible change in bulk modulus upon fluid 

substitution.  This occurs when the pore pressure is not uniform throughout the pore 
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space under bulk compression—for example, when the rock pore space is disconnected 

or tight and has very heterogeneous pore stiffness (i.e., unrelaxed squirt flow). 

 If 



K f
(1)0 and 



Ksat
(1)

 is on either the HS+ or HS- bound, then upon fluid substitution to 



K f
(2)0 , 



Ksat
(2)F1F2, is on the same corresponding bound for the new fluid; hence, fluid 

substitution for an initially saturated rock whose bulk modulus falls on a bound is 

unique. 

 If the initial case is dry (



K f
(1)0), and if 



Ksat
(1)

 is on HS+ or HS- bound, then upon fluid 

substitution, 



F1 is still Gassmann’s prediction of the saturated rock bulk modulus and 

will lie on the same corresponding HS+ or HS- bound computed with the new fluid.  If 

the dry 



Ksat
(1)

 is on the HS- bound, then



F2 will be on the HS+ bound, and if the dry 



Ksat
(1)

 

is on the HS+ bound, then



F2 will stay on the HS+ bound. 

 If the initial case is dry (



K f
(1)0), and if 



Ksat
(1)

 lies anywhere between (but not on) the HS- 

and HS+ bounds, then 



F2 is the HS+ bound computed with the new fluid.  If the initial 

rock is saturated, the prediction for dry modulus 



F2 lies on HS-. 

Next, we introduce physical realizations of the Gibiansky and Torquato bounds. 

 

6.5. Solid substitution on the bounds 

For two-phase composites, the HS bounds, equations 6.8 and 6.9 are physically 

attainable by a multitude of microstructures (Hashin and Shtrikman, 1963; Norris, 1985; 

Milton, 1984; Gibiansky and Sigmund, 2000).  For example, the HS bound on the bulk 

modulus, but not the shear modulus, can be realized by a multi-scale, space-filling pack of 

coated spheres. Milton (1984) found that both the bulk and shear bounds can be realized 

simultaneously by certain multi-rank laminate geometries. The differential effective 

medium approach was shown by Norris (1985) to achieve the bounds on both bulk and 

shear moduli simultaneously when the inclusions are disk-shaped.   Bucher (1976) and 

Norris (1985) pointed out that the non-symmetric self-consistent scheme of Wu (1966) for 

disk-shaped geometries attain both bounds when    02121  GGKK .   
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While two-phase microgeometries exist that can attain the bounds on bulk modulus, 

but not the shear modulus, Berryman and Milton (1988) have shown that any two-phase 

microgeometry that attains the bounds on shear modulus must necessarily attain the bound 

on bulk modulus.  Reviews on the subject of realizability of the bounds can be found in 

Gibiansky and Sigmund (2000), Norris (1985), Milton (2002), and Liu (2011).   

The significance of realizability for this paper is the following.  Since the bounds are 

realizable, there exist multiple two-phase microstructures for which equations 6.8 and/or 

6.9 are the exact equations for the effective moduli of those materials.  If either bulk or 

shear modulus of the initial composite, composed of solid or fluid phases with moduli (



K1,



G1) and  (



K 2 ,



G2 ), falls on the upper or lower bound, then when phase (



K 2 ,



G2 ) is replaced 

by another solid or fluid phase (



K 2 ,



G 2 ), the corresponding moduli of the new composite 

are again on the respective bounds, as long as    02121  GGKK  and 

   02121  GGKK .  That is, microstructures who’s corresponding moduli fall exactly 

on a bound represent a class of materials for which we can perform both liquid and solid 

substitution, exactly and uniquely.  

 
(a) 

 
(b) 

Figure 6.1: Hashin-Shtrikman bounds on bulk modulus.   a) example for quartz mineral 
with pore filling moduli 



K2  3  GPa and 



G2  2   GPa.  b) example for quartz 
mineral with pore filling moduli 



K 2  2  GPa and 



G 2 1 GPa.  Materials that 
happen to fall on the bulk modulus bounds, points A and B, transform to points A’ and 
B’.   
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Examples of the solid substitution on the bounds are shown in Figure 6.1.  Figure 6.1a 

corresponds to a two-phase rock with quartz mineralogy (



K1  36 GPa, 



G1  45 GPa) and 

solid pore fill with moduli 



K 2  3 GPa and 



G2  2 GPa.  Points 



A  and 



B correspond to 

two realizable composites whose bulk moduli fall along the upper and lower bounds, 

respectively. Figure 6.1b corresponds to the same quartz mineralogy but a different pore 

filling material with moduli 



K 2  2 GPa and 



G 2 1 GPa.  The substitution of the pore fill 

causes the composites at 



A  and 



B to move with the bounds and transform to 



A  and 



B , 

respectively.  As mentioned earlier, in this paper, we use the terms “porosity” and “pore 

volume fraction” to mean the volume fraction of the pore-filling material, even if it is a 

solid. 

 
(a)  

(b) 
Figure 6.2.  Hashin-Shtrikman bounds on bulk modulus. a)  example for calcite mineral 

(



K1  72  GPa, 



G1  32  GPa), with pore filling moduli 



K2  30  GPa and 



G2  32  
GPa .  b)  same mineral with pore filling moduli 



K 2  30  GPa and 



G 2  0  GPa.   

 

An exception to the uniqueness of the substitution on the bounds occurs when the shear 

moduli of all initial phases are equal, causing the initial upper and lower bounds to 

coincide, as in Figure 6.2.  In this case, the point A (Figure 6.2a) corresponds to a composite 

with calcite mineralogy (



K1  72  GPa, 



G1  32  GPa) and solid pore fill with moduli 



K2  30  GPa and 



G2  32  GPa.  Upon substitution with a pore fill with moduli 



K 2  30  

GPa and 



G 2  0 GPa, the upper and lower bounds separate (Figure 6.2b).  The new 
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composite modulus 



A  could fall on or anywhere between the bounds, depending on the 

pore geometry.  Another exception is the degenerate case when the initial pore-filling 

material is identical to the grain material. 

 

6.6. Solid substitution using embedded bounds 

Since equations 6.8 and 6.9 are physically realizable, we can embed the realizations 

recursively to represent additional pore space geometries, and to calculate exactly, but not 

uniquely, the change in effective modulus upon either solid or fluid substitution in the pore 

space.  

 
(a) 

 
(b) 

Figure 6.3.  Substitution of solid pore fill (



K21 GPa and 



G20.5  GPa) with a different 
solid pore fill (



K 23 GPa, 



G 22  GPa) using a modified upper HS bound 
construction.  a)  Dashed curves are absolute bounds for initial composition.  Data 
point 



X  falls between the bounds, but can be physically realized by a HS+ composite 
consisting of end members at 



P  and 



Q.  b)  With new composition, absolute bounds 
shift.  Points 



P  and 



Q move to 



P  and 



Q .    The same realizable microgeometry 
used to fit 



X  leads to the exact prediction 



X  at new composition.  

 

The HS bounds plotted in Figure 6.3a show the range of possible bulk moduli for rocks 

composed of quartz mineralogy (



K1  36  GPa, 



G1  45  GPa) and solid pore fill (



K2  1 

GPa and 



G2  0.5 GPa) .  Point 



X  represents one rock with porosity 



X 0.2 and bulk 

modulus 



KX 15  GPa.  Points 



P  (



P0.1;



KP30.89  GPa) and 



Q (



Q0.3; 



KQ4.32  GPa) 
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fall on the upper and lower and bounds, respectively (both bulk and shear moduli are on 

the respective bounds). We choose porosities 



P  and 



Q  so that a HS+ bound constructed 

from the materials 



P  and 



Q passes through point



X : 



KX  KP 
fQ

KQ  KP 
1
 fP KP 

4
3

GP











1  , (6.11) 

where 



fP  is the volume fraction of material 



P  and 



fQ  1 fP  is the volume fraction of 

material 



Q, such that that 



X  fPP  fQQ .  With this construction, 



KX  is the modulus of 

a realizable composite of materials 



P  and 



Q, which in turn, are realizable composites of 

the mineral and pore-fill materials. Therefore, equation 6.11 is the exact expression for 

multiple microgeometries that have modulus 



KX . 

Figure 6.3b shows the corresponding plot of bulk moduli when the solid pore fill (



K21 

GPa, 



G2  0.5 GPa) is replaced by a different solid pore fill (



K 23 GPa, 



G 22  GPa).   

Upon solid substitution, the original points 



P  and 



Q are transformed to points 



P  and 



Q , 

respectively, lying on the new bounds at porosities 



P  and 



Q ; the upper bound between 

points 



P  and 



Q is transformed, as well.  The bulk modulus 



K X  at point 



X  corresponds to 

the original rock with the solid pore-fill replaced by the new solid.  Hence, 



K X  is an exact 

(though non-unique) prediction of the bulk modulus after substituting one solid pore fill 

with another solid pore fill: 



K X  K P 
fQ

K Q  K P 
1
 fP K P 

4
3 G P











1   . (6.12) 

Although all of the constructions of the type discussed in Figure 6.3 are based on the same 

Hashin-Shtrikman equations, in this paper we refer to the absolute HS bounds to indicate 

mixtures of the mineral and pore-fill end members, and modified HS bounds to indicate 

embedded mixtures, such as that between materials at points P and Q. 
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(a) 

 
(b) 

  
(c) (d) 

Figure 6.4.  (a) and (b) similar to Figure 6.3 - Substitution of solid pore fill (



K2  1 GPa 
and 



G2  0.5  GPa) with a different solid pore fill (



K 2  3 GPa, 



G 2  2  GPa).  
Data point 



X  can be physically realized by an infinite number of HS composites of 
end members at 



Pi  and 



Qi  spanning along the upper and lower bounds, respectively. 
The range of realizable microgeometries used to fit 



X  leads to a range of predicted 



X  at new composition. (c) and (d) same as (a) and (b) for shear modulus 18XG  
GPa.  

 

The intrinsic non-uniqueness of the solid substitution is illustrated in Figure 6.4.  Figure 

6.4a describes the same composition as in Figure 6.3a.  The gray lines show some of the 

infinite number of modified upper HS  realizations of point 



X  constructed from pairs 



P i  

and 



Q i .  The corresponding predictions of the composite bulk modulus when the solid pore 
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fill is replaced by the new solid pore fill are shown in Figure 6.4b.  Each construction of 

the original point 



X  transforms to a slightly different 



K X  upon substitution of the pore 

material.  That is, upon solid substitution, the bulk modulus can take on a range of possible 

values, which depend on the (usually unknown) underlying microstructure.   

 

 
(a) 

 
(b) 

  
(c) (d) 

Figure 6.5. Substitution of solid pore fill (



K2  1 GPa and 



G2  0.5  GPa) with a 
different solid pore fill (



K 2  3 GPa, 



G 2  2  GPa).  a) data point 



X  is realized by 
modified HS+ and HS- bounds passing from the mineral and pore-fill end members.   
b)  substituting the pore fill from solid to liquid leads to a range of possible results. (c) 
and (d) same as (a) and (b) for shear modulus 18XG  GPa. 

 



CHAPTER 6: EMBEDDED BOUNDS 140 

Figures 6.4c and 6.4d show the same plots as in Figures 6.4a and 6.4b, but for shear 

modulus 18XG  GPa.  

Figures 6.5a and 6.5b shows limiting cases of the constructions described in Figures 

6.4a and 6.4b, respectively.  In Figures 6.5a and 6.5b, curve ( GA min ) and curve 

( DA min ) are modified upper and lower HS bound constructions from the mineral point, 

minA , passing through the point 



X .  We refer to these as the 



HSmin
  and 



HSmin
  

constructions, respectively. Curve ( EA f  ) and curve ( BA f  )  are HS+ and HS- 

constructions from the pore-fill point, fA , passing through the point 



X .  We refer to these 

as the 



HS f
  and 



HS f
  constructions, respectively. Curve (



CH) shows HS+ and HS-  

constructions from the upper and lower bounds at the data porosity 0.2.  Figures 6.5c and 

6.5d shows the same constructions after replacing the solid pore filling material with the 

second solid pore-fill material.  

From numerical examples, we conjecture that the four embedded HS constructions 

( 

minHS , 

minHS , 

fHS , 

fHS ) illustrated in Figure 6.5 bound the range of substituted 

moduli, XK   and XG , that can be achieved with this class of embedded HS realizations.  

We have not found a rigorous proof that this is always so.  However, we discuss in the next 

section that the 

minHS  and 

fHS   predictions of 



K X  reduce to the Gibiansky and Torquato 

bounds when the pore-fills are fluids.  Note that the points G, D, E and B for bulk and shear 

HS constructions may not be the same.  

Closed-form expressions for the solid-to-solid substitution using 

minHS  and 

fHS  are 

given in the Appendix A.  Strategies for numerical construction of the 

minHS  and 

fHS  are 

given in Appendix B.   
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6.7. Properties of embedded bounds when pore-fills are fluids 

6.7.1. Bulk modulus 

We now return to the problem of fluid substitution.  We show that the 



HSmin
  and 



HS f
  

predictions reduce to the Gibiansky and Turquato bounds for bulk modulus, illustrating 

that those bounds are optimum. 

 
(a) 

 
(b) 

Figure 6.6. Bulk modulus substitution of fluid pore fill (



K2  1 GPa and 



G2  0 ) with 
a different fluid pore fill 



K 2  10  GPa and 



G 2  0 .  a)  bulk modulus data point 



X is realized by modified HS+ and HS- bounds passing from the mineral point, as 
well as vertical HS bound.  b)  substituting the pore fluid leads to a range of possible 
results.   

 

Figure 6.6 shows the bulk modulus for rocks of quartz mineralogy and pore space filled 

with fluids.  In Figure 6.6a, the pore fluid has moduli 



K2  1 GPa and 



G2  0 .  The 

embedded bound constructions in Figure 6.6 are the same as described earlier:  the 



HSmin


 

curve is the modified HS+ mix of the mineral point minA  and the absolute lower bound 

point 



G.   Similarly, the 



HSmin


 curve is the modified HS- mix of the mineral point minA  

and the absolute upper bound point 



D.  When the pore fill is a fluid (or dry), the 



HSmin


- 

constructed substitutions of 



KX  to 



K X  can be shown, with some algebra, to be exactly the 

same as Gassmann’s prediction – or as Gibiansky and Torquato show, the smallest possible 
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change in bulk modulus.  (The 



HSmin
  fluid substitution is also exactly equal to Gassmann’s 

prediction, if the shear modulus at point D is also on the upper HS bound.)  A coated-sphere 

realization of the 



HSmin
  constructions is illustrated in Figure 6.7.  We see that for this 

choice of microstructure, the fluid phase always occurs in inclusions of the same shape 

(shells in 7a).  We emphasize that there are numerous microgeometries, other than spheres, 

that also correspond to the embedded HS constructions.   

When the pore-filling material is a fluid (zero shear modulus), the construction of the 



HSf
  from the pore-fluid point fA  through point X  is identical to the Gibiansky and 

Torquato second bound, 



F2 .  This can also be proved algebraically.  A coated-sphere 

realization of this construction is shown in Figure 6.7c.  

When the pore-filling material is a fluid (zero shear modulus), the 



HS f
  construction 

from the pore-fluid point fA  to any point on the lower bound stays on the lower bound.  

The point 



X  cannot be realized in this way, unless it is on the lower bound.  A coated-

sphere example realization of this construction is shown in Figure 6.7b.  

In summary, the embedded bound constructions represent physical realizations of the 

Gibiansky and Torquato bounds when the pore-filling materials are fluids.  This illustrates 

that the Gibiansky and Torquato bounds are optimum. 



CHAPTER 6: EMBEDDED BOUNDS 143 

 
Figure 6.7. Coated-sphere realizations of the constuctions in Figures 5 and 6.  Black 

represents the pore-filling material.   a) 


minHS  -- mix of mineral point and lower 
bound point G.  b) 



fHS  --mix of fluid point and lower bound point E.   c) 


fHS   -- 
mix of pore fill point and upper bound point B.  
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6.7.2. Shear modulus 

Figure 6.8a shows shear modulus of quartz mineralogy and pore space filled with solid 

of 



K2  1 GPa and 0001.02 G GPa. The embedded bound constructions shown in Figure 

6.8a are as follows:  the 



HSmin
  curve is the modified HS+ mix of the mineral point minA  

and the absolute lower bound point 



G.  Similarly, the 



HSmin
  curve is the modified HS- 

mix of the mineral point minA  and the absolute upper bound point 



D.  The 

fHS  curve is 

the modified HS- mix of the pore fill point fA  and the absolute upper bound point B. As 

the value of pore fill shear modulus approaches zero, i.e., 02 G ,  the 

fHS  curve becomes 

increasingly indeterminant numerically. Figure 6.8b shows the substituted shear modulus 

corresponding to pore fill solid of 



K 2  10  GPa and 01.02 G . Numerically, the 

substitution predictions of 

fHS curve approaches the absolute HS+ mix of the mineral and 

pore fill.  

  
(a) (b) 

Figure 6.8. Shear modulus substitution of fluid pore fill (



K2  1 GPa and 01.02 G ) 
with a different fluid pore fill 



K 2  10  GPa and 01.02 G .  a)  shear modulus data 
point 



X is realized by modified HS+ and HS- bounds passing from the mineral point, 
as well as vertical HS bound.   
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6.8. Marion’s bound average method 

The vertical black lines in Figures 6.5-6.8 represent constructions of data point 



X  from 

composites of point C  on the absolute upper bound and point 



H  on the absolute lower 

bound;  both 



C and 



H  lie at the same porosity 



X  as the data point 



X .  Using equation 

6.8, 



KX  can be constructed as a modified HS+ mix of the materials at point  



C  (



K HS
, 



GHS
) and point 



H  (



K HS
, 



GHS
), such that the fraction of material 



C is 



f   and the 

fraction of material 



H  is   f1 .   Alternatively the data point 



KX  can be constructed as 

an HS- mix of the materials at point 



C ( HSK , 
HSG ) and point 



H  (



K HS
, 



GHS
), such 

that the fraction of material C  is 



f   and the fraction of material 



H  is   f1 .  The 

fractions are given by 

















HSHSHSHS

HSHSHS
X

GKGK

GKGKf
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  , (6.13) 
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)3/4(
1

  . (6.14) 

 

After substituting the pore-filling material (fluid or solid), the absolute bounds are 

recomputed to yield the materials at points C  and H  .  Finally, the substituted modulus 

is computed by once again constructing the HS+ and HS- mixes using fractions 



f   and 



f  , respectively.  

These modified HS constructions at constant porosity resemble the Bound Average 

Method (BAM) introduced by Marion and Nur (1991). In that work, Marion and Nur 

constructed the starting data point 



KX  as an arithmetic average (Voigt bound) of moduli 

on the upper and lower bounds. They predicted the change in elastic moduli upon solid or 
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liquid substitution in the pore space by taking the same arithmetic average after 

recomputing the upper and lower bounds for the new composition.  Yan and Han (2011) 

further discussed the linear BAM approximation.  We refer to the present constructions as 

the BAMHS+ and BAMHS- method of substitution. 

 
(a) 

 
(b) 

Figure 6.9. Comparison of BAMHS predictions with the modified HS constructions.  Bulk 
and shear moduli  substitution of solid pore fill (



K2  1 GPa, 



G2  0.5  GPa) with 
a different fluid pore fill (



K 2  3  GPa, 



G 2  2  GPa ).  Effective moduli measured 
with the initial composition are 



K X  15  GPa and 



GX  18  GPa. 

 

Figure 6.9a illustrates our BAMHS solid-to-solid substitution (same parameters as in 

Figure 6.5); Figure 6.9b illustrates the corresponding prediction for shear modulus using 

fraction f obtained from equations 6.13 and 6.14. The BAMHS predictions are shown by 

yellow diamonds; the 



HSmin


,  



HSmin


, 



HS f
 , and 



HS f
  predictions are marked with squares. 

The HS-BAM predictions again illustrate the nonuniqueness of the substituted modulus, 

though they do not span the entire range of predicted XK   or XG  as the 



HSmin


,  



HSmin


, 



HS f
 , and 



HS f
  constructions. The linear BAM prediction is shown by open diamonds.  For 

these examples the linear BAM prediction lies close to the 



HSmin


 prediction, which 

represents the smallest change in modulus upon substitution. The equations for predicting 

the solid substitution using the BAMHS method are much simpler than for the other 

constructions (see the Appendix A).   
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6.9. Comparison with other methods 

6.9.1. Ciz and Shapiro 

Figure 6.10 compares the modified bound solid-substitution predictions with those of Ciz 

and Shapiro (Eqns. 6 and 7), again using the same material parameters as in Figure 6.5.   

From numerical examples, we find that the C&S approximation tends to predict the 

minimum change in the modulus upon substitution.  This is consistent with our findings in 

Chapter 3. In the case of Figure 6.10, the C&S prediction lies outside of the range defined 

by the modified bound constructions. 

 

 
(a) 

 
(b) 

Figure 6.10. Comparison of the C&S approximation with the modified HS constructions.  
Substitution of solid pore fill (



K2  1 GPa, 



G2  0.5  GPa) with a different solid 
pore fill (



K 2  3 GPa, 



G 2  2  GPa ).  Effective moduli measured with the initial 
composition are 



K X  15  GPa and 



GX  18  GPa. 

 

6.9.2. Berryman and Milton 

Berryman and Milton (1988) discussed bounds (B&M) on elastic bulk and shear 

moduli that incorporate information about the three-point correlations of the pore space 

geometry.  The geometric information makes the B&M bounds more restrictive than the 

HS bounds, and at least as tight as the bounds of Beran and Molyneux (1966).  Using the 



CHAPTER 6: EMBEDDED BOUNDS 148 

B&M results, measured elastic moduli can be inverted for bounds on two parameters, which 

depend only on geometry.  These parameters can, in turn, be used to put bounds on the 

elastic moduli if the pore-filling material is changed.  Figure 6.11 compares solid-to-solid 

substitution using the B&M bounds with the 



HSf
 and 



HSmin


 constructions, for the same 

material parameters presented in Figure 6.5. The B&M predictions are tighter than the HS 

bounds, but broader than the range spanned by the 



HS f
  and 



HSmin


 constructions.   

 

 
(a) 

 
(b) 

Figure 6.11. Comparison of the Berryman and Milton predictions with the modified HS 
constructions.  Bulk and shear moduli substitution of solid pore fill (



K2  1 GPa, 



G2  0.5  GPa) with a different fluid pore fill (



K 2  3  GPa, 



G 2  2  GPa). 
Effective moduli before substitution are 



K X  15  GPa and 



GX  18  GPa. 

 

 

6.10. FEM examples 

We next consider a digital bituminous-sand rock sample. This sample was imaged, 

processed and later segmented using a commercially available software. This digital 

sample is shown in Figure 6.12a. Imaging revealed that the sample has quartz grains (size 

roughly between 0.1 mm- 0.25 mm; volume fraction 0.56), bitumen-filled pores (volume 

fraction 0.37) and air-filled pores (volume fraction 0.07). The spatial resolution of this 
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segmented digital rock is 0.004 mm and the cube length is 1.6 mm. To avoid partial 

saturation we digitally replace all air-filled pores with quartz.  

 

 
        (a) 

 
         (b) 

Figure 6.12: (a) Digitial rock bitumenous sand sample of size 1.6 mm and spatial resolution 
(x, y and z) of 0.004 mm. Quartz is shown in white and bitumen is shown in black. (b) 
Grossmont carbonate digital sample. Calcite grains shown in white and bitumen shown 
in black.  

 

Next, we assume that when bitumen is cold it behaves like an elastic solid of bulk 

modulus 4 GPa and shear modulus 0.7 GPa, and when bitumen is heated it still behaves 

like an ideal elastic solid, but with reduced bulk modulus of 3 GPa and reduced shear 

modulus varying between 0.7 GPa and 0.0001 GPa. We model quartz, which is the mineral 

in the rock frame, as a linear elastic isotropic solid of bulk modulus 36 GPa and shear 

modulus of 45 GPa. Next, we compute effective elastic moduli of the digital rock samples 

using the Finite Element Method (Garboczi and Berryman, 2001; Arns et al., 2002). In 

Figures 13a and 13b, we present the results for predicting hot bitumen-filled rock moduli 

starting with the FEM computed cold bitumen-filled rock moduli using above listed 

substitution models. These predictions are then compared with the numerically computed 

hot-bitumen moduli. The choice of this substitution case is motivated by the expected final 

pore saturation conditions as a result of heating a heavy oil reservoir - which reduces the 

shear and bulk moduli of heavy oil thus increasing mobility which leads to enhanced oil 

production. Similar to this example, Figure 6.14 shows the same modeling exercise as in 

http://www.sciencedirect.com/science/article/pii/S0098300412003172#bib11
http://www.sciencedirect.com/science/article/pii/S0098300412003172#bib1
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Figure 6.13 but for a digital Grossmont carbonate rock sample of porosity 0.28 (reported 

in Andrä et al., 2013). 

 

 
(a) 

 
(b) 

 
Figure 6.13: Predictions of hot bitumen-filled rock moduli (shown in gray) starting with 

cold bitumen-filled sand rock moduli (shown in black), compared with FEM computed 
hot bitumen-filled sand rock moduli.  

 
 

 
(a) 

 
(b) 

Figure 6.14: Predictions of hot bitumen-filled rock moduli (shown in gray) starting with 
cold bitumen-filled carbonate rock moduli (shown in black), compared with FEM 
computed hot bitumen-filled carbonate rock moduli.  
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6.11. Chapter summary 

For materials whose bulk and/or shear moduli fall on the Hashin-Shtrikman bounds, 

fluid or solid substitution is exact and unique.  For composites that fall between the bounds, 

fluid substitution of the bulk modulus is not unique:  Gassmann’s prediction yields the 

smallest possible change, while the largest possible change is predicted by the Gibiansky 

and Turquato bounds.  Changes in modulus larger than predicted by Gassmann can be 

caused by disconnected pores or unrelaxed pore pressure gradients that can be associated 

with large fluid viscosities and/or high measurement frequencies. 

Solid substitution of bulk moduli can be computed exactly, but not uniquely for points 

between the bounds.  The embedded bound constructions shown in this paper yield exact 

answers, because they are the proper equations for bulk modulus, based on realizable 

materials.  However, every initial bulk modulus can be realized with an infinite number of 

microstructures and therefore transforms to an infinite number of moduli upon substitution 

of the pore fill. 

Our four limiting embedded bound constructions numerically appear to span the range 

of possible transformed bulk moduli.  In the limiting case of pore fluids, two of these 

constructions reduce to the bounds of Gibiansky and Torquato, which illustrates that the 

G&T bounds are optimum.  We also derive the Hashin-Shtrikman equivalent of Marion’s 

Bounding Average Method, HS-BAM. HS-BAM predictions also reveal the 

nonuniqueness of solid and fluid substitution, are easy to implement, but do not span the 

entire range of nonuniqueness revealed by the other methods. 

This work illustrates that fluid substitution and solid substitution cannot be performed 

uniquely without information about the pore space.  If the pore space is well connected 

such that wave-induced pore fluid pressures are equilibrated, then Gassmann’s equations 

are appropriate and are equal to Gibiansky and Torquato’s lower bound, as well as the 

modified bound, 



HSmin


, prediction. 

Disconnected pores, or unequilibrated fluid pressures cause larger changes in modulus 

upon fluid substitution, which are bounded by the 



HSf
, prediction as well as Gibiansky & 



CHAPTER 6: EMBEDDED BOUNDS 152 

Torquato’s upper bound.  As has been shown in previous work (O’Connell and Budiansky, 

1977; Mavko and Jizba, 1991; and Gurevich et al., 2009), the unequilibrated pore pressure 

has a much larger effect on modulus than unequilibrated viscous shear stress. 

Solid substitution is inherently non-unique without detailed knowledge of the pore 

space geometry.  The Ciz and Shapiro approximation assumes that the pore space is stiff 

and homogeneous, and tends to underpredict the change in bulk modulus upon solid 

substitution. The 



HSmin


, prediction in this paper also corresponds to relatively 

homogeneous pore stiffness.  The presence of cracks and soft-grain contacts leads to larger 

changes in bulk modulus upon solid substitution.     

Many effective medium models used in rock physics are geometry-specific.  These 

include sphere-pack models for unconsolidated sediments, ellipsoidal-inclusion models for 

consolidated sediments, contact cement models for early diagenesis, and crack models for 

fractured rocks.  Such models yield useful quantitative predictions that often fit 

observations.   

Geometry-specific models yield unique predictions of modulus change with fluid or 

solid substitution.  However, these predictions can be misleading, since geometry-specific 

models are almost always gross idealizations of actual pore microstructure.  We have 

shown in this paper that a measurement of elastic modulus and porosity can be fit with an 

infinite number of geometric models; each will yield a different prediction of solid (and 

possibly fluid) substitution.  Uncertainty in these predictions can only be improved when 

supported with additional information about the real pore space geometry. 
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6.13. Appendix A: Numerical calculations of constructions 

6.13.1. Equations for substitution of bulk modulus 

Let the bulk and shear moduli of the initial pore-fill solid (or fluid) are given by: bulk 

)1(
fK and shear )1(

fG , and the properties of the final pore-fill solid are given by: bulk )2(
fK

and shear )2(
fG . Also, let the elastic properties of the mineral in rock frame are: bulk minK  

and shear minG , and the rock porosity is given by  .  

6.13.1.1. 

minHS  construction 

To calculate the change in effective bulk modulus upon substitution as predicted by the 



minHS  construction, start by first calculating the parameters Qf  and Q  from the following 

equations  

   
1

1)1(

)1(

3
41
















minminQminQ

Q
minsat

GKfKK
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where QQf   . Expression for )1(
QK is given by 
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Next, from the calculated Qf  and Q  estimate the new modulus using the following 

equations 
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where,  
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6.13.1.2. 

minHS  construction 

The change in effective modulus as predicted by the 

minHS  construction can be calculated 

by equations A-5 to A-10. To estimate this change, start by calculating Qf  and Q  from 

the following equations: 
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where QQf   . The expressions for )1(
QK  and )1(

QG  are given by 
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Next, calculate the new modulus using the following equations 
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where, 
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6.13.1.3. 

fHS  construction 

The change predicted by the 


fHS  construction can be calculated by solving equations A-

11 to A-16. To estimate the substituted modulus start by calculating Pf  and P  from the 

following equations: 
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where PPP ff   1 . The expressions for )1(
PK  and )1(

PG  are given by 
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Next, calculate the new effective modulus using 
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where, 
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6.13.1.4. 

fHS  construction  

The change predicted by the 


fHS  construction can be estimated by solving equations A-

17 to A-20. Start by estimating Pf  and P  from the following equations: 
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where PPP ff   1 . The expression for )1(
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Next, calculate the new effective modulus using 
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6.13.2. Equations for substitution of shear modulus 

6.13.2.1. 

minHS  construction 

To calculate the change in effective shear modulus 
)1(

satG  upon substitution as predicted 

by the 

minHS  construction, start by first calculating the parameters Pf  and Q  from the 

following equations:  
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where Pf  is the volume fraction of material 
)1(P  (mineral point) and  PQ ff  1  is the 

volume fraction of material 
)1(Q , such that QQf   . Since material 

)1(Q  is on HS bounds, 

the exact expressions for )1(
QK and )1(

QG  are given by 
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Next, using the calculated parameters Pf  and Q  estimate the new moduli using the 

equations 
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6.13.2.2. 

minHS  construction 

The predicted change in effective shear modulus using the 

minHS  construction can be 

calculated by equations A-25 to A-30. To estimate this change, start by calculating Pf  and 

Q  from the following equations: 
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where Pf  is the volume fraction of material 
)1(P (mineral point) and  PQ ff  1  is the 

volume fraction of material 
)1(Q , such that QQf   . The expressions for )1(

QK  and )1(
QG  

are given by 
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Next, calculate the new moduli using the following equations 
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6.13.2.3. 

fHS  construction 

The change predicted by the 

fHS  construction can be calculated by equations A-31 to A-

36. To estimate the substituted moduli start by calculating Pf  and Q  from the following 

equations: 
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where Pf  is the volume fraction of material 
)1(P  (pore material) and  PQ ff  1  is the 

volume fraction of material 
)1(Q , such that   QQQ ff   1 . The expressions for )1(

QK  

and )1(
QG  are given by 
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Next, calculate the new effective moduli using 
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6.13.2.4. 

fHS  construction  

The change predicted by the  

fHS  construction can be estimated by solving equations A-

37 to A-40. Start by estimating Qf  and P  from the following equations: 
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where  PQ ff  1  and   QQQ ff   1 . The expressions for )1(
PK  and )1(

PG  are given 

by 
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Next, calculate the new effective moduli using 
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where, 



CHAPTER 6: EMBEDDED BOUNDS 162 

    

















minminmin

minminP
minf

P
minP

GKG

GKGG
GG

3
45

2121)2(

)2(




   .   (A-40) 

6.14. Appendix B: Closed form solutions  

6.14.1. Bulk modulus 

Starting with a solid or fluid saturated rock of original effective bulk modulus 
)1(

satK  

(mineral moduli = minK , minG ; original pore filling moduli = 



K f
(1) , 



G f
(1)), the two embedded 

bounds on the effective bulk modulus upon substitution with a new pore solid or fluid 

(moduli = )2(
fK , )2(

fG )  can be calculated as  
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min)2( HS

satK  is identical to Gassmann or C&S prediction if )1()2(
ff GG  . Explicit expression 
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for 

fHS

satK )2(  is not presented here due to its complicated functional form, readers should 

calculate

fHS

satK )2( using equations A-8 to A-10. Note that the difference between the two 

embedded bounds, 

fHS

satK )2(  and  

fHS

satK )2( , depends on the original effective bulk modulus.  

If one instead starts with a dry or drained rock (effective dry bulk modulus dryK ) then 

the two embedded bounds on the effective bulk modulus upon substitution with a new pore 

solid or fluid (moduli = fK , fG )  are 
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and 
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Starting with a solid or fluid saturated rock (effective bulk modulus satK ) the two embedded 

bounds on the dry or drained bulk modulus are 
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where bcK  in terms of satK  is 
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6.14.2. Shear modulus 

The shear solid-to-solid substitution equation using the 

minHS  construction (which 

seem to predict the smallest change along with the 

minHS  construction) can be simplified 

as 
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where,  
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Chapter 7 

Estimating effects of grain-scale 

mechanisms on seismic velocity 

dispersion (solid-squirt) 
 

 

  

7.1. Abstract 

Laboratory measurements of rocks saturated with high viscosity fluids (such as heavy-

oil, magma, kerogen, etc.) often exhibit considerable dispersion, which is usually under 

estimated by the Biot theory. Over the years, grain-scale dispersion mechanisms such as 

squirt (local-flow) and shear-relaxation have been more successful in explaining the 

measured dispersion. We present a new method to quantify the combined high-frequency 

effects of squirt and shear-dispersion (solid-squirt) on the elastic properties of rocks 

saturated with viscous fluids. Viscous fluid at high-frequencies is idealized as an elastic 
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solid of finite shear modulus, hydraulically locked in stiff and soft pores at high-

frequencies. This method entails performing solid substitution in stiff pores of a dry rock 

frame which is unrelaxed due to solid-filled soft pores. The unrelaxed frame stiffness 

solutions require information on the pressure dependency of the rock stiffness and porosity. 

This method does not have any adjustable parameters and all required inputs can be directly 

measured. With various laboratory and numerical examples, we note that accounting for 

combined effects of squirt and shear-dispersion is necessary to explain laboratory measured 

velocities of rocks saturated with fluids of high viscosity. Predictions of the new method 

are in good agreement with laboratory data. 

7.2. Introduction 

Measured seismic wave velocities in fluid-saturated rocks are often much higher than 

those predicted by the Biot theory (Biot, 1956), which accounts for rock stiffening or 

increase in velocity due to viscous-fluid motion induced by the gradient of the passing 

wave (global flow). To explain this apparent inadequacy of the Biot-dispersion mechanism, 

over the years, various other fluid motion related dispersion mechanisms have been 

proposed and investigated. Mavko and Nur (1975) and O’Connell and Budiansky (1977) 

were the first to study the grain-scale local flow or squirt-flow mechanism - referred as the 

"squirt-dispersion". This mechanism accounts for the rock stiffening due to oscillatory 

movement of viscous-fluid in-and-out of compliant (soft) pores. This grain-scale fluid 

motion was neglected in Biot’s larger scale global flow formulation. In the high-frequency 

limit, the fluid in the soft pores becomes hydraulically disconnected from the stiff pore 

space; thus in this limit rock stiffening due to unrelaxed squirt flow (squirt-dispersion) can 

be modeled as an elastic problem of fluid substitution in a rock with disconnected soft 

pores, for which a rigorous upper bound is given by Gibiansky and Torquato (2000). Biot 

(1962a,b) had also hinted towards inclusion of a similar grain-scale flow mechanism into 

his equations by the invoking the correspondence principle. Over the years, combined 

effects of Biot and squirt-dispersion have been studied; just a few of considerably many 

studies on this topic are: Stoll and Bryan (1970), Mavko and Jizba (1991), Dvorkin and 
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Nur (1993), Dvorkin et al. (1995), Hudson et al. (1996), Endres and Knight (1997), 

Chapman et al. (2002), Gurevich et al., (2009), Jakobsen and Chapman (2009).  

Another dispersion mechanism related to wave-induced fluid motion is the so-called 

"patchy-saturation" mechanism which, much like squirt flow, accounts for rock stiffening 

due to pressure gradients between rock pockets saturated with soft and stiff fluids (Johnson, 

2001; Pride et al., 2004). The patchy-saturation mechanism can also be extended to include 

other so-called "meso-scale" dispersion mechanisms, which account for rock stiffening due 

to viscous-fluid motion induced by any other source of heterogeneity in compliance, such 

as: inter-bedding in sandstone, dual porosity, etc. Meso-scale mechanisms occur at a larger 

spatial scale than the grain-scale effects of squirt-dispersion. We restrict this discussion to 

situations where no meso-scale heterogeneity in compliance exists; this mechanism will 

not be discussed further.  

Walsh (1965) investigated a different grain-scale dispersion mechanism: "shear-

relaxation" or "shear-dispersion", which unlike the mechanism already discussed, is 

associated with rate-dependent shear tractions induced on the pore boundaries. In the high 

frequency limit, this mechanism mimics the behavior of a rock with solid-filled pores. In 

geophysics, the shear-relaxation mechanism has been largely ignored, since shear stresses 

relax too quickly in rocks saturated with low viscosity fluids. Frequencies at which squirt 

( squirtf ) and shear ( shearf ) dispersion begin to take effect can be expressed as (O’Connell 

and Budiansky, 1977, Mavko et al., 2009) 



 3
dry

squirt

K
f  ,





2
min

shear
G

f  .  (7.1) 

In equation 7.1,   is the aspect ratio of soft pores, dryK  is the dry rock bulk modulus and 

minG  is the shear modulus of the mineral in rock frame. For rocks saturated with low 

viscosity fluids (e.g., gas, water, light-oil, etc) effects of shear-dispersion on rock stiffness 

or seismic velocity can be ignored if measurement frequency is less than ~ 10 MHz. As the 

fluid viscosity increases, (e.g., cold heavy-oil, kerogen, glycerol, lava, slush ice, etc) both 

shear and squirt-dispersion mechanisms start to occur at much lower frequencies, while 
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Biot-dispersion typically occurs at a much higher frequency > 1 GHz. Mavko and Jizba 

(1991) proposed a quantitative model to estimate the effect of squirt-dispersion on the 

stiffness of rocks saturated with low viscosity liquids. Assuming a binary pore space 

divided between stiff and soft pores, which are hydraulically disconnected. This model 

predicts the high frequency or the unrelaxed rock frame stiffness: when the stiff pores are 

drained (empty) and the soft pores are undrained (fluid-saturated); Mavko-Jizba named this 

the "unrelaxed frame" stiffness. This prediction is entirely based on usually known 

quantities such as the dry-rock stiffness, porosity, elastic properties of rock constituents, 

and measurable quantities like soft porosity and high-pressure dry rock stiffness. Thus, the 

model does not involve any heuristic adjustable parameters such as pore-aspect ratios, 

which are usually poorly determined and gross idealizations of the pore space. Mukerji and 

Mavko (1994) extended the Mavko-Jizba relations to the case of anisotropic rocks. In this 

paper, we restrict our discussion to isotropic rocks.  

The Mavko-Jizba relations were derived using reciprocity and superposition, but 

recently these relations have also been derived independently by Berryman (2007) and 

Gurevich et al. (2009) using discontinuity formalism of Sayers and Kachanov (1995). 

Gurevich et al. (2009) also extended the Mavko-Jizba relations to the case of pore-

saturating gases, which reduce to Mavko-Jizba relations for liquids. The generalized 

Mavko-Jizba relations as derived by Gurevich et al. (2009) are 
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where )(P
ufK and )(P

uf are the unrelaxed frame bulk and shear moduli at confining pressure 

P, respectively; )(P
dryK and )(P

dry  are the corresponding dry rock moduli; )(HP
dryK  is the dry 

rock bulk modulus at the highest available confining pressure, i.e., P = HP, such that all 

soft pores are closed or filled with the frame mineral; soft  is the soft (crack-like) porosity. 

fK  and minK  are bulk moduli of the pore-fluid and the mineral in the rock frame, 

respectively. For rocks with low-viscosity fluids, combining the Mavko-Jizba-Gurevich 

relations (in equations 7.2 and 7.3) with Biot's equations, high-frequency saturated or 

undrained rock stiffness can be predicted, which is found to be in good agreement with 

laboratory data (Mavko and Jizba, 1991; Wulff and Burkhardt, 1997; Adam and Otheim, 

2013). 

For rocks saturated with high viscosity pore fluid, the Mavko-Jizba-Gurevich relations 

fail to predict the high-frequency limit of the unrelaxed frame, since these do not include 

the overall rock stiffening due to shear-dispersion. Such effects can be substantial as we 

will discuss with laboratory data examples in this paper. In this paper, we derive relations 

for unrelaxed frame moduli which account for the combined effects of squirt and shear-

dispersion (solid-squirt). The unrelaxed frame contains soft pores filled with solid or high 

viscosity fluid. As with the Mavko-Jizba-Gurevich relations, we do not assume any specific 

pore shape. In the limit of low-viscosity fluids, predictions of the extended unrelaxed frame 

moduli are identical to those predicted by the Mavko-Jizba-Gurevich method in equations 

7.2 and 7.3. The remaining stiff pores are then filled with our solid substitution relations 

(Mavko and Saxena, 2013; Saxena and Mavko, 2014) to predict the saturated or undrained 

rock bulk and shear moduli.  

7.3. Saturated rock stiffness 

Using the viscoelastic correspondence principle (Fung, 1965) the viscoelastic pore fill 

can be represented as a solid pore fill whose shear modulus is complex. For example, a 

Newtonian viscous fluid of viscosity   can be modeled with a complex shear modulus

 iff 2 ; where i is the imaginary unit number and f is the frequency. Similarly, a 
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Maxwell material has a complex shear modulus    ififf 212  where  is 

the shear modulus at infinite frequency  f .   

Recently we proposed the "embedded bound method" (Mavko and Saxena; 2013; 

Saxena and Mavko, 2014), to predict the change in effective moduli (bulk and shear) upon 

change in pore fill material in a two-phase isotropic composite - i.e., fluid and solid-

substitution. The only inputs required are pore fill volume fraction (or porosity), elastic 

properties of constituents, and the initial effective bulk and shear moduli. This approach is 

rigorous, and the estimates are always realizable, since the method is based on the 

recursive use of Hashin-Shtrkiman (HS) bounds (Hashin and Shtrikman, 1963). Each 

substituted effective modulus prediction is exact and corresponds to a specific load-induced 

pores stress state (Saxena and Mavko, 2014), thus substitution is inherently non-unique - 

unless extra information on rock microstructure apart from just porosity is available. 

Therefore, embedded bounds predict a range of substituted effective moduli. The smallest 

saturated effective bulk modulus predicted by the embedded bound method starting with 

the measured dry rock bulk modulus (referred here as the lower embedded bound for 

effective bulk modulus), can be compactly written as 
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In equations 7.4 and 7.5, minK  and fK  are the bulk moduli of the mineral in the rock frame 

and pore fill material, respectively; min  and f  are the shear moduli of the mineral in the 
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rock frame and pore fill material, respectively; satK  and dryK  are the saturated (solid-filled) 

and dry rock bulk moduli, respectively;   is the porosity.  

Saxena and Mavko (2014) have shown that the relation in equation 7.4 can be described 

as an exact generalization of the original Gassmann's bulk modulus equation (Gassmann, 

1951) to the case of solid-filled rocks for which compression-induced mean stress 

(pressure) in pores is homogeneous. When pores are occupied by an ideal fluid, i.e., 0f , 

equation 7.4 reduces to Gassmann's equation. If the induced mean stress in the pore space 

is heterogeneous, for example due to the presence of soft pores, the true change in effective 

bulk modulus will be larger than that predicted by equations 7.4 and 7.5, capped by an 

upper bound. Detailed expressions can be found in Mavko and Saxena (2013). Similarly, 

the corresponding relation for the smallest change in saturated shear modulus upon 

substitution can be compactly written as (referred as the lower embedded bound for 

effective shear modulus): 
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In equations 7.6 and 7.7, sat  and dry  are the saturated (solid-filled) and dry rock shear 

moduli, respectively. When pores are occupied by an ideal fluid, i.e., 0f , equation 7.6 
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reduces to Gassmann's shear modulus substitution equation which predicts no change upon 

fluid substitution.  

 
 

(a) (b) 

 
Figure 7.1:  Digital composites (a) only stiff pores and no soft pores (b) stiff and soft pores. 

Pores are shown in gray and the mineral is transparent.  

 

With the aid of a numerical simulation, we now show that if a rock has identical stiff 

pores and is devoid of soft pores then our solid substitution relations in equations 7.4-7.8 

provide reasonably accurate effective stiffness estimates, this is so since for such a rock 

induced stresses are relatively homogenous. Consider two digital composites with porosity 

0.38 shown in Figure 7.1. Both composites have identical stiff pores, but the composite in 

Figure 7.1b has some additional flat cracks (soft pores) around the grain contacts (soft 

porosity of 0.006 and aspect ratio   0.05). For both these composites, we use the finite 

element method (FEM) to calculate the dry rock effective bulk and shear moduli, assuming 

quartz ( minK  36 GPa; min  45 GPa) as the frame mineral. Next, starting with the FEM 

calculated dry rock moduli, for a pore fill bulk modulus of 2.25 GPa and a range of pore 

fill shear moduli varying between 10-6 GPa (fluid-case) to 2.5 GPa, we predict the saturated 

moduli using the embedded bounds. These predictions are compared with the FEM 

calculated saturated moduli in Figures 7.2a-7.2b for the composite with no soft pores, and 

in Figures 7.2c-7.2d for the composite with soft pores. We note that the FEM calculated 
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moduli for the composite without soft pores fall very close to the lower embedded bound 

predictions. However, the corresponding moduli for the composite with soft pores are 

much larger when compared to the lower embedded bound prediction, however still capped 

by the upper embedded bound.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.2: Dry and saturated elastic moduli of the composites shown in Figure 7.1, 
calculated using the FEM for a range of pore fill shear moduli  f  and a fixed pore 
fill bulk modulus  fK  of 2.25 GPa. (a) and (b) show bulk and shear moduli of the 
uncracked composite shown in Figure 7.1a, respectively; whereas (c) and (d) show 
bulk and shear moduli of the cracked composite shown in Figure 7.1b, respectively. 
Elastic moduli of the cracked composite deviate from the lower embedded bound 
predictions shown in dashed curves.  
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The above example shows that for composites with a mix of stiff and soft pores, the 

true change in effective moduli will be larger than that predicted by the lower embedded 

bound relations in equations 7.4-7.8. Even though the largest possible change upon fluid 

or solid substitution can be contained by the upper embedded bound, the range predicted 

is quite wide. Also, we must note that if complete details of the pore geometry are available, 

exact substitution can be achieved for both composites (with or without soft pores) using 

the solutions obtained by Saxena and Mavko (2014), for instance, with the aid of FEM 

simulations using digital rock images. However, rock images may not be able to fully 

capture the presence of thin compliant cracks due to imaging or memory limitations (Andrä 

et al., 2013).  

In the next section, we utilize pressure dependency of rock stiffness and porosity, to 

obtain the expressions for the unrelaxed frame stiffness to be used in equations 7.4-7.8 in 

place of the dry rock moduli to obtain better substitution estimates for rocks with a mix of 

stiff and soft pores.  

7.4. Unrelaxed frame stiffness 

To estimate the saturated stiffness of rocks with a mix of stiff and soft pores, a plausible 

approach is to perform substitution in two steps: first, divide the pore-space into soft and 

stiff pores, and estimate the stiffness of the unrelaxed frame with fluid or solid-filled soft 

pores and dry stiff pores; and finally saturate the dry stiff pores using the unrelaxed frame 

stiffness  )()( , P
uf

P
ufK   in equations 7.4-7.8 instead of the dry rock stiffness  drydryK , . A 

schematic of the unrelaxed frame is shown in Figure 7.3. In this section, we derive the 

expressions for the unrelaxed frame stiffness expressed in terms of dry rock stiffness, the 

high-pressure dry rock stiffness  )()( , HP
dry

HP
dryK   and soft porosity  soft . 

Following Gurevich et al. (2009) and using the formalism proposed by Sayers and 

Kachanov (1991, 1995) we represent the effect of solid-filled soft pores on elastic stiffness 

by a system of non-interacting displacement discontinuities which are distributed 

isotropically in the rock frame. We can express the unrelaxed frame stiffnesses as 
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where NB  and TB  are the normal and shear compliance of each plane of discontinuity 

filled with a solid. Symbol s represent surface to volume ratio of all discontinuities.  

 
(a) 

 
(b) 

 
(c) 

Figure 7.3: A schematic of (a) dry rock with stiff and soft pores (b) high-pressure dry rock 
with all soft pores closed (c) unrelaxed frame with soft pores filled with a pore fill 
shown in black. Dry pores and mineral shown in white and gray, respectively.  
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When soft pores are empty equations 7.9 and 7.10 reduce to 
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In equations 7.11 and 7.12, dry
NB  and dry

TB  are the dry normal and shear compliance of each 

discontinuity.  

7.4.1. Derivation of unrelaxed frame bulk modulus 

To express the unrelaxed frame bulk modulus )(P
ufK  in terms of other quantities 

 etc,,, )()(
soft

HP
dry

P
dry KK   we need to relate compliances NsB  and

dry
NsB . We will now relate 

these compliances using our generalized Gassmann result in equation 7.4, which is exact 

if compression-induced pressure (negative of the mean stress) in the pores is homogeneous.  

Consider a rock composed of only isotropically distributed soft pores (of porosity soft ) 

that are completely filled with a solid of bulk and shear moduli fK  and f , respectively. 

The mineral in the rock frame has bulk and shear moduli of minK  and min , respectively. 

Assuming that pressure induced in all soft pores is equal or homogeneous we relate the 

saturated rock bulk modulus 
soft
satK  to the dry rock bulk modulus soft

dryK  as 
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where 
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Since all the pores are crack like, bulk moduli soft
satK  and soft

dryK  can also be related to the 

mineral modulus as  
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Using equations 7.13 to 7.16 we obtain 
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Putting equation 7.17 in equations 7.9 and 7.11 we obtain 
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Equation 7.18 is the generalized unrelaxed frame bulk modulus. If 0f , equation 7.18 

reduces to the unrelaxed frame bulk modulus obtained by Gurevich et al. (2009) in equation 

7.2. If the pore fill shear modulus is equal to mineral shear modulus  minf   , then 

equation 7.18 becomes independent of the dry rock bulk modulus )(P
dryK .  

7.4.2. Derivation of unrelaxed frame shear modulus 

For fluid-saturated soft pores (i.e., 0f ) compliances 52 TsB  and 52 dry
TsB  in 

equations 7.10 and 7.12 will be equal, since an ideal pore fluid does not induce any shear 

tractions at the pore boundary. However, if 0f  then we expect 52 dry
TsB  > 52 TsB  

which is a consequence of Hill's theorem (Hill, 1963). We need to relate 52 TsB  and 

52 dry
TsB  in order to express the unrelaxed frame shear modulus  )(P

uf  in terms of other 

quantities  etc,,, )()(
soft

HP
dry

P
dry  . Similar to our analysis of the bulk modulus problem, we 

will now use the solid substitution relation in equation 7.6 to relate 52 TsB  and 52 dry
TsB . 

We again consider a rock composed of only soft isotropically distributed pores (of porosity 

soft ) completely filled with a solid of bulk and shear moduli fK  and f , respectively; the 

mineral in the rock frame has bulk and shear moduli of minK  and min , respectively. 

Assuming that induced stresses in all soft pores are homogenous we can express the 

saturated rock shear modulus 
soft
sat  in terms of the dry rock shear modulus soft

dry  as 
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where 
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Since if 0f  we obtain soft
dry

soft
sat   , equations 7.19 and 7.20 quantify the effect of non-

zero shear tractions in a cracked media. Therefore we can write  
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Using equations 7.19 to 7.22 we obtain 
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Thus the unrelaxed frame shear modulus is given by 
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where  
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If 0f , equation 7.24 reduces to the unrelaxed frame shear modulus obtained by Mavko 

and Jizba (1991) in equation 7.3. Similar to the bulk modulus solution in equation 7.18, if 

the pore fill shear modulus is equal to mineral shear modulus  minf   , then equation 

7.24 becomes independent of the dry rock shear modulus. 

Equations 7.18 and 7.24 are the main results of this paper. We note if minf KK   and 

minf    then equations 7.18 and 7.24 yield 

)()()()( ; HP
dry

P
uf

HP
dry

P
uf KK     .   (7.26) 

Hence, if the high-pressure stiffnesses are not directly measured the relations in equation 

7.26 can be used to predict the high-pressure stiffnesses if very high-frequency saturated 

moduli are available.  
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7.4.3. Analysis of the result for a weak pore-fill 

For a weak pore-fill material  minminff KK  ,,  , the expression for the unrelaxed 

frame bulk modulus in equation 7.18 can be approximated by retaining only the first order 

terms, this leads to: 

soft

ff

HP
dry

P
dry

HP
dry

P
uf K

KK

KK




3
4

11

111
1

)()(

)()(





















   .  (7.27) 

From equation 7.27, we note that the unrelaxed frame bulk modulus is affected by pore-fill 

and soft porosity when the term    softffK 34 is sufficiently large, this term can also 

be interpreted as the apparent pore-fill stiffness of the solid-fill material saturating the soft 

pores. Similarly, for a weak pore-fill material the unrelaxed frame shear modulus in 

equation 7.24 can be approximated as 
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  , (7.28) 

thus the unrelaxed frame shear modulus increases with increase in its apparent pore-fill 

stiffness given by    softff  34 . From equations 7.27 and 7.28, we note that when 

the pore-fill material is weak, the dependence of the unrelaxed frame moduli on pore-fill 

properties scales by the ratio of pore-fill stiffness and soft porosity.  

Similarly, the difference between the new unrelaxed frame moduli and those obtained 

by Mavko-Jizba-Gurevich (MJG; in equations 7.2 and 7.3) for a weak pore-fill can be 

approximated as 
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From equation 7.29 we note that if the term softf  is fairly small then the predicted 

difference in the unrelaxed frame bulk modulus using the present and the Mavko-Jizba-

Gurevich relations will be quite small; this difference will increase with increase in

softf  . The difference in unrelaxed shear modulus using the two methods originates 

partly due to the difference in unrelaxed frame bulk modulus (first term in the RHS of 

equation 7.30) but this term is expected to be small when compared to the second term in 

equation 7.30 which also increases with increase in softf  . As an example, consider a 

hypothetical rock with the following properties: 20)( P
dry GPa, 18)( P

dryK GPa, 

25)( HP
dry GPa, 22)( HP

dryK GPa, and 01.0soft , such that the rock is fully saturated with 

a weak pore-fill of 3fK  GPa and 1.0f  GPa. For this rock, the difference between 

)(1 P
MJGufK   and )(1 P

ufK as calculated from equation 7.29 is 10-4 GPa-1 which is very small in 

comparison to the term 047.01 )( 

P
MJGufK  GPa-1 in equation 7.29, hence for this rock we 

obtain 9.20)()( 

P
uf

P
MJGuf KK GPa. On the contrary, the difference between )(1 P

MJGuf   and 

)(1 P
uf is calculated to be 10-3 GPa-1 which is sufficiently large and cannot be neglected 

since  048.01 )( 

P
MJGuf  GPa-1. This difference leads to 8.20)( 

P
MJGuf  GPa and 

3.21)( 

P
MJGuf  GPa.  
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7.4.4. Unrelaxed frame stiffnesses using other methods 

Estimates for the unrelaxed frame moduli can also be obtained using other theories 

(Kuster and Toksӧz, 1974; Berryman, 1980; Hudson, 1981) as presented in the Appendix 

A.  

The unrelaxed frame bulk modulus in equation A-19 is derived using the Kuster-

Toksӧz theory. This result assumes identical penny shape soft pores without considering 

any specific aspect ratio. Although, this derivation is not as general as the results obtained 

in equations 7.18 and 7.24 where we assume no specific soft pore shape, it can be argued 

that our assumption of homogenous stress in using equations 7.13 and 7.14 may require 

special pore shape. It must be noted however, that in the limit of low viscosity fluids, i.e., 

0f , the Kuster-Toksӧz unrelaxed frame bulk modulus in equation A-19 does not agree 

with the Mavko-Jizba-Gurevich relation in equation 7.2. There are also other previously 

known limitations of using the Kuster-Toksӧz theory for small aspect ratio (or thin) penny 

shape soft pores. For instance, at any finite concentration if soft pores approach disk shape 

(zero aspect ratio), then the non-interaction assumption in the Kuster-Toksӧz theory will 

be violated (Berryman, 1980), regardless of the soft porosity. Therefore, for estimating the 

unrelaxed frame stiffness the Kuster-Toksӧz theory cannot be used legitimately.  

Similarly, analytical solutions to the unrelaxed frame stiffness can also be derived using 

Hudson’s theory for cracked isotropic media (Hudson, 1981). The obtained expression for 

unrelaxed frame bulk modulus is presented in equation A-21. This solution is limited to a 

weak solid pore fill (i.e., minf   ) and does not agree with our unrelaxed frame bulk 

modulus result in equation 7.18, due to a small missing term  minK1  - this inconsistency 

is already known (Gurevich et al., 2009; Hudson et al., 2001).  

7.5. High-frequency laboratory examples 

7.5.1. Westerly granite 

As an example of predicting elastic properties of rocks with soft pores, we predict 

ultrasonic velocities of a Westerly granite sample (Coyner, 1984) saturated with water 
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( 25.2fK  GPa). This modeling example was also previously discussed by Mavko and 

Jizba (1991) and also by Gurevich et al. (2009). For this sample, measurements of soft 

porosity and dry rock moduli were reported as a function of confining pressure; sample 

porosity is about 0.8 % and the reported sample grain density is 2.64 g/cm3. For the mineral 

bulk and shear moduli we use 56 GPa and 60 GPa, respectively. Once )(P
ufK and )(P

uf are 

estimated using equations 7.18 and 7.24, estimates of the unrelaxed fluid-saturated moduli 

are obtained using generalized Gassmann results in equations 7.4 and 7.6, since for such 

low porosity rocks Biot-dispersion is negligible. We also predict the velocities 

corresponding to a more viscous pore-fluid ( 25.2fK  GPa and 1.0f  GPa). 

 
(a) 

 
(b) 

Figure 7.4: P and S-wave velocities for Westerley granite sample as a function of confining 
pressure. Laboratory measurements of dry and water-saturated rock velocities are 
shown in open and filled circles, respectively. Predictions for water-saturated 
velocities using the present method (calculated for 0f ; which are identical to the 
predictions using the Mavko-Jizba-Gurevich relations along with Gassmann) are 
shown in full black curves, whereas predictions for the viscous-fluid saturated rock 
( 1.0f  GPa) are shown in dashed black curves.  

 

In Figures 7.4a we compare the P-wave velocity predictions using the present method 

for the water-saturated granite sample; laboratory measured ultrasonic dry and water-

saturated velocities are also shown with open and filled circles, respectively. Figure 7.4b 

shows the same plot but for S-wave velocity. The predicted ultrasonic velocities are within 

1-3% of the measured velocities. Figures 7.4a-7.4b also show predictions of hypothetical 
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viscous fluid-saturated ultra-sonic velocities, which were not measured by Coyner (1984); 

we note a considerably large change in predicted velocities with increase in fluid shear 

modulus.   

7.5.2. Glycerol-filled Fontainebleau sandstone 

Glycerol has temperature sensitive viscosity, ranging from 108 Pa-s at -80o C to 10-2 

Pa-s at 90o C (Weast, 1967). Dynamic shear moduli of glycerol have also been measured 

for a range of temperatures at various frequencies by Jeong et al. (1986). The calculated 

shear moduli from measurements conducted at 2 MHz are shown in Figure 7.5. For this 

modeling example, we assume that the bulk modulus of glycerol is nearly constant   4.3 

GPa. 

 
Figure 7.5: Dynamic ultrasonic shear modulus of glycerol for a range of temperatures.  

 

Khalatbari et al. (1991) reported ultra-sonic velocities of a Fontainebleau sandstone 

sample saturated with glycerol over a wide range of temperatures. The authors also report 

dry velocities which also vary with temperature. The sample porosity was 5 %, which 

included of some thin cracks. However, pressure dependency of rock stiffness was not 

measured. Therefore, we do not have direct measurements of either the soft porosity or the 

high-pressure moduli, which are needed to predict the glycerol saturated velocities with the 
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new method. The mineral in the rock frame is quite homogeneous ( minK  36 GPa; min  

47 GPa). 

Various Fontainebleau sandstone samples have been extensively studied previously 

(Han, 1986; Carmen, 2009) and it is observed that the high-pressure stiffness (P > 40 MPa) 

of clean samples (clay < 1%) is very well described by a modified upper HS bound (Hashin 

and Shtrikman, 1963) shown in Figure 7.6; and soft porosity varies between 0.1 to 1 %. 

Therefore, to model the measured data we use the predicted high-pressure moduli ( )(HP
dryK  

30 GPa; )(HP
dry  37 GPa) from the modified upper HS bound and consider a variable soft 

porosity between 0.1 and 1 %. 

 

 
(a) 

 
(b) 

Figure 7.6: Dry Fontainebleau sandstone rock moduli measured at high confining 
pressures. Data from Han (1986) are shown in circles and data from Carmen (2009) 
are shown in diamonds. The modified upper HS bound describes the high pressure 
moduli quite well.  

 

Figures 7.7a-7.7b show the laboratory measured ultrasonic dry and saturated P and S-

wave velocities; this Figure 7.7 also shows the model predictions for saturated velocities 

starting with the measured dry velocities, calculated using the present method (equations 

7.4, 7.6, 7.18 and 7.24). To capture the effect of uncertainty in soft porosity, all calculations 

are made for soft  varying between 0.1 and 1 % such that the shaded region in plots shows 
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this uncertainty. Note if we use f 0 (the Mavko-Jizba-Gurevich relations with 

Gassmann) we estimate the unrelaxed velocities which only include the effects of squirt-

dispersion, whereas using 0f  we predict the unrelaxed velocities which include the 

combined effects of squirt and shear-dispersion (solid-squirt). We note that varying the 

crack porosity between 0.1 to 1 % induces little change in the model predictions.  

At relatively high temperature ~ 0o C (glycerol viscosity ~ 10 Pa-s), the measured 

change in P and S wave velocities, from dry to saturated, can be explained by accounting 

only for squirt-flow, i.e., using f 0 in the present method. For temperatures below 0o 

C, accounting for only squirt-dispersion using f 0 in the present method is not sufficient 

to explain the measured dispersion in seismic velocities. Indeed if we use the full solid-

squirt model ( 0f , using equations 7.4, 7.6, 7.18 and 7.24), we obtain a good match 

with the measured velocities. For the temperature range studied, the fluid viscosity is high 

enough to ignore the effect of Biot dispersion on the measured ultrasonic velocities. 

 

 
(a) 

 
(b) 

Figure 7.7: (a) P-wave and (b) S-wave velocities of dry (open circles) and glycerol 
saturated (filled circles) Fontainebleau sandstone sample as a function of temperature. 
Predictions of the present method are shown for a range of soft porosities (between 
0.1 and 1 %) thus show a range shown in dark gray color, referred in plot as - Present 
method. Predictions using the Mavko-Jizba-Gurevich relations with Gassmann 
(identical to the present method with 0f ) are shown in light gray color, referred 
as - Mavko-Jizba-Gurevich. Embedded bound predictions are also shown in dashed 
black curves for comparison.  
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7.5.3. Uvalde heavy-oil rock 

Behura et al. (2007) measured effective shear moduli of a heavy-oil saturated Uvalde 

rock sample for various temperatures and frequencies. The authors also reported shear 

moduli of the saturating heavy oil for various temperature and frequencies, which has API 

of -5. The sample rock frame is predominantly calcite ( minK  60 GPa; min  30 GPa) 

and has porosity of 0.25. The dry rock shear modulus of this rock was not measured directly 

but Makarynska et al. (2010) carefully back calculate it to be 1.45 GPa; thus we assume 

this value and consider dry rock bulk modulus of 1.5 GPa. In Figure 7.8 we plot the 

measured effective shear moduli versus the reported heavy-oil shear moduli for various 

temperatures; we notice that measurements at various temperatures form a tight trend. We 

take heavy oil bulk modulus to be fK 3 GPa. No direct measurements of high-pressure 

stiffness or soft porosity are available. We can back calculate the high-pressure dry rock 

shear modulus using the measured saturated shear modulus at the highest heavy-oil shear 

modulus, using equation 7.26, which yields )(HP
dry 16 GPa; however, since 1f GPa

min  the predicted )(HP
dry  is probably much softer than the true value. Thus for this 

example we use the upper HS bound for the dry rock to calculate )(HP
dry 19 GPa.  

Figure 7.8 shows predictions of the saturated effective shear moduli starting with the 

dry rock modulus, assuming soft porosity of 0.02. The embedded bounds contain the 

measured saturated moduli but the range predicted is quite large. Estimating only the 

squirt-dispersion effects using the Mavko-Jizba-Gurevich relations with Gassmann, 

severely underestimate the measured saturated moduli; thus if we only account for squirt-

flow the measured effective moduli cannot be explained. However, if we account for both 

squirt and shear-dispersion using the present solid-squirt method, then we note a good 

match between predictions and measurements. 
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Figure 7.8: Measured shear moduli of Uvalde heavy oil rock sample as a function of heavy-

oil shear moduli. Measurements at various temperatures are shown with different 
symbols. Predictions of the present method are shown in the solid black curve, referred 
in plot as - Present method. Predictions using the Mavko-Jizba-Gurevich relations 
along with Gassmann ( 0f ) are shown in dashed gray curve. Embedded bound 
predictions are also shown in dashed black curves for comparison.  

 

7.6. Chapter summary 

We present relations for estimating the combined high-frequency effects of squirt and 

shear-dispersion on effective bulk and shear moduli for rocks saturated with a viscous-

fluid. The main results of this paper are presented in equations 7.18 and 7.24. Rock 

stiffening due to squirt and shear-dispersion (solid-squirt) effects is included by replacing 

the unrelaxed frame moduli in place of the dry rock moduli in our solid substitution 

relations in equations 7.4 and 7.6. 

The expressions for the unrelaxed frame moduli (in equations 7.18 and 7.24) do not 

have any adjustable parameters and require information on elastic properties of rock 

constituents, rock moduli measurements at high-pressure and soft porosity. Thus all 

required inputs can be directly measured. These relations are extensions of the Mavko-

Jizba-Gurevich relations to the case of high viscosity fluid saturated soft pores; and in the 
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limiting case of low-viscosity fluids (liquids or gasses), the new relations exactly reduce to 

the Mavko-Jizba-Gurevich relations.  

In various data examples of rocks saturated with viscous fluids, we note that accounting 

for only squirt-dispersion is not sufficient to explain the measured saturated rock stiffness 

or velocities at high frequencies, measurements can be better explained if effects of both 

squirt and shear-dispersion are estimated with the new solid-squirt method. The model 

predicted velocities are in good agreement with laboratory measurements.  
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7.8. Appendix A 

7.8.1. Unrelaxed frame stiffness using other methods 

7.8.1.1. Using Kuster-Toksӧz estimates 

Consider a monomineralic rock such that the mineral in the rock frame has bulk 

modulus minK  and shear modulus min ; pores are completely saturated with a material 

(fluid or solid) of bulk modulus fK  and shear modulus f . The pore space is divided into 

stiff and soft pores of respective volume fraction (or porosity) stif f  and soft . For such a 

rock, the scattering theory based Kuster-Toksӧz estimates (Kuster and Toksӧz, 1974; 

Berryman, 1980) for effective saturated bulk  KTK and shear  KT  moduli can be written 

as 

    softfmin
minfsoft

stifffmin
minfstiffKT PKKPKKX   ,,    , (A-1) 
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    softfmin
minfsoft

stifffmin
minfstiffKT QQY   ,,    , (A-2) 

where X  and Y are related to the effective rock moduli by 
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 )(    .  (A-4) 

In equations A-1 and A-2, stif ffminP , , stifffminQ , and softfminP , , softfminQ ,  are shape 

coefficients for stiff and soft pores, respectively; these depend on the pore shape, and 

elastic properties of rock constituents, expressions for various ellipsoidal shapes can be 

found in Mavko et al. (2009). When all pores are empty, expressions in equations A-1 and 

A-2 reduce to 

    softmin
minsoft

stiffmin
minstiffdry PKPKX   0,0,     , (A-5) 

    softmin
minsoft

stiffmin
minstiffdry QQY   0,0,    , (A-6) 

where superscripts 0-stiff and 0-soft denote dry stiff and soft pores; dryX  and dryY  are 

related to dry rock bulk  dryK  and shear  dry  moduli by equations A-3 and A-4.  

Similarly, if the soft pores are completely filled with the frame mineral and the stiff 

pores are empty, we obtain the expressions for the high-pressure dry rock moduli 

 )()( , HP
dry

HP
dryK  , and if soft pores are saturated with pore fill material but stiff pores are dry 

we obtain expressions for the unrelaxed rock frame moduli  ufufK , . These expressions 

are  

  stiffmin
minstiff

HP
dry PKX  0,)(    ,  (A-7) 

  stiffmin
minstiff

HP
dry QY  0,)(    ,  (A-8) 
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    softfmin
minfsoft

stiffmin
minstiffuf PKKPKX   ,0,     , (A-9) 

    softfmin
minfsoft

stiffmin
minstiffuf QQY   ,0,    .  (A-10) 

Regardless of the shape coefficients or the volume fraction of the stiff pores, from 

equations A-7 to A-10, we obtain the following relations: 
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P
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Next, idealizing all soft pores as penny shape cracks of arbitrary but identical aspect ratio 

  we obtain 
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minsoftmin

B
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0,   .  (A-16) 

Replacing aspect ratio in equations A-15 and A-16, we relate shape coefficients 
softfminP ,

  

and 
softminP 0,

 as 
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Note that the relation in equation A-17 does not depend on the aspect ratio of soft pores, 

but just requires all soft pores to be identical. Using equations A-11, A-13 and A-17, we 

obtain 
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Equations A-3 and A-18 relate the unrelaxed frame bulk modulus to the dry-rock bulk 

modulus and the high-pressure dry rock bulk modulus. Similarly, expressing shape 

coefficients softminQ 0,  as a function of softfminQ ,  we can obtain a relation between the 

unrelaxed frame shear modulus, dry-rock shear modulus and the high-pressure dry rock 

shear modulus. The obtained unrelaxed bulk modulus is given by 
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where 
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  (A-20) 

The above expressions assume identical soft pores of penny shape but do not assume any 

specific aspect ratio.   



CHAPTER 7: SOLID SQUIRT 197 

7.8.1.2. Unrelaxed frame stiffness using Hudson 

Following a similar procedure as discussed above but instead using Hudson’s theory 

(Hudson, 1981) we obtain the following solution for the unrelaxed frame bulk modulus 
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Expressions for unrelaxed frame shear modulus can also be obtained, using both Kuster-

Toksӧz and Hudson, but these are not presented here due to their complicated nature.  
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Chapter 8 

Estimating effects of change in rock 

microstructure on seismic velocities 
 

 

  

8.1. Abstract 

Naturally occurring rocks are multiphase composites of minerals and fluids with 

varying elastic properties. Predicting the effects of removal/alteration or substitution of one 

or more phases on seismic velocities is of practical interest in Geophysics. We present 

exact relations for replacing one or more phases (fluid or solid) in a multimineralic 

isotropic rock, these new solutions are also equivalent to relaxing the assumption of 

unchanging rock microstructure upon substitution, which is a fundamental assumption in 

conventional substitution theories such as those proposed by Gassmann, Brown and 

Korringa, Ciz and Shapiro, Saxena and Mavko, etc. Both pore-filling phase and rock 

microstructure can change due to digenesis, dissolution, precipitation, partial freezing or 
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melting, etc., and these situations can be modeled using the new formulation. Approximate 

bounds for the change in effective rock stiffness upon change in pore geometry are 

developed which are in good agreement with laboratory and numerical examples; these 

bounds depend only on initial effective stiffness, and elastic properties and volume 

fractions of constituents.   

8.2. Introduction 

Rock-physics aims to link seismic attributes (Vp/Vs, acoustic impedance, rock 

stiffness, etc) to properties of the subsurface (pore-fluid, mineralogy, pore geometry, etc). 

Rock-physics models can also be used to address what if scenarios which are of interest in 

hydrocarbon exploration. One of the most successful rock physics models is Gassmann's 

fluid substitution theory (Gassmann, 1951), which predicts the change in low-frequency 

seismic velocities or rock stiffness upon change in pore-fluid. In part, the success of 

Gassmann's theory is due to the fact that all required inputs are either usually known or 

directly measured, with no adjustable parameters; these relations can be written as 
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and 

dryud     ,  (8.2) 

where udK  and dryK  are un-drained (fluid saturated) and dry rock bulk moduli, 

respectively; ud  and dry  are the corresponding shear moduli; 
fK  and 

BK  are bulk 

moduli of the pore-fluid and the mineral in rock frame;   is the volume fraction of pores 

(porosity).  Equations 8.1 and 8.2 are exact if 

i. rock frame is monomineralic (i.e., single mineral) 
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ii. initial and final pores are fully saturated with ideal elastic fluids 

iii. load-induced pore-pressure under quasi-static deformation is homogeneous  

iv. upon substitution there is no change to rock microstructure  

v. only the pore phase is substituted.  

Brown and Korringa (1975) extended Gassmann’s equations to the case of 

multimineralic rock frame (of mixed mineralogy) thus relaxing assumption (i). Ciz and 

Shapiro (2007) further generalized Brown and Korringa’s results to rocks with solid-filled 

pores, thus further relaxing assumptions (ii) and (iii). Still, these extensions are 

fundamentally limited to situations where only one phase is substituted and there is no 

change in the pore geometry. There are many problems for which we need to further relax 

assumptions (iv) and (v). Pore geometry can change due to a variety of geological 

processes: digenesis, sorting, partial melting/freezing, mineral precipitation, etc. For such 

problems, inclusion based effective medium models (Wu, 1966; O'Connell and Budiansky, 

1974; Kuster and Toksӧz, 1974; Berryman, 1980; Cleary et al., 1995), can provide 

insightful approximate predictions since these loosely relax assumptions (i)-(v), however, 

these models idealize rock microstructure with ellipsoids and require adjustable parameters 

such as aspect ratios, which are also poorly determined.  

In this chapter, we further relax assumptions (i)-(v) and obtain exact solutions for 

arbitrary pore shape and mixed mineralogy, such that pore geometry can change and more 

than one phase can be substituted simultaneously.  

Digenetic trends are usually modeled (Avseth et al., 2010; Dvorkin and Nur, 1996) by 

mixing the high-porosity cemented sand-point with the mineral-point using the upper 

Hashin-Shtrikman (HS) bound (Hashin and Shtrkiman, 1963). Similarly, sorting trends are 

modeled with the lower HS bound. Although such heuristic approaches have been fairly 

successful (Avseth et al., 2005) we note that if assumptions (i)-(v) are relaxed, change in 

rock stiffness due to digenesis, sorting and other geologic processes, can be rigorously 

modeled and predicted.  

Change in pore geometry can also occur due to dissolution/precipitation which 

typically leads to partial replacement of existing and/or formation of new phases (Hoefiner 
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and Fogler, 1988; Guen et al., 2007; Vanorio et al., 2011; Vialle and Vanorio, 2011; Bemer 

et al., 2013). In such situations, since modeling fluid or solid substitution is also 

accompanied by changes in pore geometry, traditional fluid or solid substitution 

approaches cannot be employed. For example, assumption (iv) in Gassmann's fluid 

substitution theory will be violated when modeling time-lapse seismic signatures of 

subsurface movement of chemically reactive CO2 due to possible changes in the rock frame 

(Lumley, 2010).  

Additionally, there are also situations where more than one phase in a multimineralic 

rock needs to be substituted; fundamentally this is equivalent to the problem of predicting 

rock stiffness change due to changing pore geometry. Examples of such problems include 

only partially substituting a pore-fill phase in a multimineralic rock - a situation 

encountered while modeling effects of steam injection in heavy oil reservoirs (Schmitt, 

1999; Bianco et al., 2008; Chopra et al., 2010). Similar situations occur when modeling 

rock stiffness change due to partial melting (Duputel et al., 2009) or due to partial pore-

fluid freezing in permafrost (Timur, 1968; Kurfurst, 1976; King, 1977; Zimmerman and 

King, 1986; King et al., 1988; Jacoby et al., 1996; Sondergeld and Rai, 2007).   

The sections of this chapter are organized as follows. In the next section we present our 

main result and discuss the implication of our exact solutions in the context of past work. 

Details of derivation are not discussed in the main body and are instead presented in 

Appendix A. In the subsequent sections, we discuss special cases of our exact solutions.  

8.3. Main results 

Consider an isotropic composite (rock) with N elastic phases, such that each phase q (q 

 N) has volume fraction q  with its bulk and shear moduli given by 
1qK  and 1q , 

respectively. Upon substitution, moduli of all but one of these phases change to 
2qK  and 

2q ; for convenience, we name the un-changing phase as B (B   N). Then, the exact bulk 

modulus equation for substitution of N-1 phases in a N phase composite is: 
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  (8.3) 

where 
)1(

udK  and 
)2(

udK  are initial and substituted effective bulk moduli, respectively. In 

equation 8.3, r is a dummy index which sums over all phases except for phase B. In 

equation 8.3, qP is the bulk compression-induced pressure (mean-stress) in any phase q, 

related to the induced Cauchy stress tensor q
ij  as 

q
ijij

qq
ij P    ,  (8.4) 

where q
ij
 
are the bulk compression-induced deviatoric stresses in any phase q. For each 

phase stresses are related to strains by Hooke’s law 

qqq eKP   ,  (8.5) 

q
ij

qq
ij  2  .  (8.6) 

In equations 8.5 and 8.6, 
qe  and q

ij  are the mean and deviatoric parts of strain induced in 

any phase q, respectively. Here we use standard summation convention over repeated 

indices and symbol ij  is the Kronecker delta function. Symbol 
q  denotes the volume 

average of any quantity 
q  (over the volume of phase q).  The parameters q

1  and q
2  for 

each substituted phase q are defined as 
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Similarly, the exact substitution equation for shear modulus is 
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  (8.8) 

where
)1(

ud  and 
)2(

ud are initial and substituted effective shear moduli; qP  and q
ij

 
are shear 

field-induced pressure and deviatoric stresses. The parameters q
1  and q

2  for each phase 

q are defined as 
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    . (8.9) 

Parameter q
1  describes the heterogeneity of compression-induced pressure in any phase 

q; whereas parameter q
2  describes the contribution of compression-induced deviatoric 

stresses in any phase q. Similarly, parameter q
1  describes the heterogeneity of shear field-

induced deviatoric stresses and the parameter q
2  describes the contribution of shear field-

induced pressure. Derivation of equations 8.3 and 8.8 is presented in Appendix A.  

Under the assumptions (i)-(v), equations 8.3 and 8.8 reduce to Gassmann's equations 

(8.1 and 8.2) which can be easily checked. Relaxing only the first assumption (i) but still 

assuming (ii)-(v), for shear modulus we recover Gassmann's result in equation 8.2, and for 

bulk modulus we obtain an algebraically different but fundamentally identical equation 

than that previously derived by Brown and Korringa. This new result is  
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Equation 8.10 features two additional stiffnesses given by  
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where, 
fe and 

dryfe 
 are compression induced fluid-saturated and dry pore volumetric 

strains, respectively; re and dryre   are the induced volumetric strains (volume averaged) in 

phase r (r  N), when pores are fluid-saturated and dry, respectively. Note that dryMK   is 

a "dry" rock property, thus is independent of fluid modulus, whereas MK  depends on the 

fluid modulus. Further relaxing assumptions (ii) and (iii) we can obtain the solid 

substitution solutions discussed in chapter 2 (Saxena and Mavko, 2014).  

Equations 8.3 and 8.8, also relax assumptions (iv) and (v). This is so since these 

relations allow for substitution of all but one phase in an isotropic multimineralic rock, 

which also allows for modeling change in rock microstructure. For example, consider a 

two-phase monomineralic dry rock; we can divide, albeit virtually, this two-phase 

composite into a three-phase system: two phases of the (same) mineral in the frame (of 

identical elastic stiffness) and one phase of dry pores; therefore one of the mineral phases 

can be substituted thus changing the rock pore geometry.  

 

 
(a) 

 
(b) 

Figure 8.1: (a) 2D slide of a digital 3D Fontainebleau sandstone sample (Andrä et al., 
2013), composed of quartz grains (in gray) and brine saturated pores (in blue), dashed 
black lines show imaginary cuts. (b) Digitally altered sandstone sample with the region 
between pore boundaries and imaginary cuts (in Figure 8.1a) replaced with clay (in 
red).  
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As an illustration of the exact solution in equations 8.3 and 8.8, we now consider a 3D 

digital Fontainebleau sandstone sample (porosity 0.15; Andrä et al., 2013). Mineral frame 

of a Fontainebleau sandstone is typically composed of quartz grains (bulk modulus 36 GPa 

and shear modulus 45 GPa), but in this exercise we digitally alter a part of quartz grains 

and replace them with a pore-lining clay phase (bulk modulus 21 GPa and shear modulus 

15 GPa). Such that the total volume fraction of clay is 0.27. 2D slices of the original 3D 

and the digitally altered samples are shown in Figures 8.1a and 8.1b, respectively. We 

assume that the pores are occupied (for both cases) with brine (bulk modulus 3 GPa and 

shear modulus 0 GPa). Using the FEM, we calculate the effective bulk moduli of the 

original and clay sandstone to be 25.6 GPa and 21.7 GPa, respectively. For the FEM 

calculation we apply bulk strain of magnitude 0.003; Figure 8.2 shows the induced pressure 

(negative of mean stress) in each phase.  

 

 
(a) 

 
(b) 

Figure 8.2: (a) induced pressure upon compression in the original sandstone. (b) Induced 
pressure in clay sandstone. Color scale is normalized with the same maximum value 
for both (a) and (b) for direct comparison.  

 

Now we will compare the FEM computed effective bulk modulus of the original rock 

(with all quartz grains), with that predicted by equation 8.3 starting with the FEM computed 

bulk modulus of the clay sandstone. The required parameters are: the ratio of volume 

averaged pressure induced in brine and clay phases in the clay sandstone which is equal to 
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0.4 (from the FEM), and the ratio of volume averaged pressure induced in brine and quartz 

(for only the part which has replaced clay) which is equal to 0.22. Also needed are 

parameters 1  and 2  corresponding to the substituted phase (clay to quartz); for these 

parameters the FEM computed values are 13.11  and 16.02  . Using these inputs, 

equation 8.3 predicts the bulk modulus of the original sandstone to be 25.6 GPa, which 

matches the FEM computed value. In the next sections, we discuss how equations 8.3 and 

8.8 can be used in practice.     

8.4. Substitution of two phases in a three phase composite 

8.4.1. Exact solutions 

For the limiting case of substitution of two phases in a three phase multimineralic 

isotropic rock, such that fluid/solid phases f1 and m1 (volume fractions f  and  m ) are to 

be replaced with new phases  f2 and m2, respectively, our exact results in equations 8.3 and 

8.8 reduce to 
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8.4.2. Approximate bounds for weak contrast in substituted phases 

Assuming relatively homogeneous load induced stresses yields: 1,
1 mf  and 1,

1 mf . 

For composites with homogeneous induced stresses, we (Saxena and Mavko, 2014) have 

shown that 21    and 21   , thus if 
21 ff KK   and 21 ff   we can neglect the 

terms corresponding to parameters mf ,
2  and mf ,

2  in equations 8.12 and 8.13, which is 

equivalent to assuming 0,
2 mf  and 0,

2 mf . Under these assumptions, both equations 

8.12 and 8.13 can be compactly written as 















































B
ud

B
ud

udud

MMMM

MM

1111

11

)2()1(

)2()1(

    (8.14) 























































22
22

11
11

21
2211

21

11111111

1111

fm
BmBf

fm
BmBff

mm
fmfm

m

f
ff

MMMMMMMM

MMMM








  , 



CHAPTER 8: EFFECTS OF CHANGE IN ROCK MICROSTRUCTURE 211 

In equation 8.14, if we replace M with K  and mf  with    f
f

m
m PP   we obtain the 

equation for bulk modulus, whereas if we replace M  with   and mf  and    f
f

m
m 1212   

we obtain the equation for shear modulus. Parameters mf describe the averaged stress ratio 

in phases f and m. We will now explore the limiting values for parameters mf  and put 

approximate bounds on the problem. Approximating a mix of phases m and f as a two-

phase composite we can write the effective stiffness (Hashin, 1962) as 
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   ,  (8.15) 

where mixfmM 
 is the effective stiffness of the two-phase composite. More details on the 

derivation of equation 8.15 can be found in the Appendix A (this equation is a special case 

of equations A-5 and A-12 for a two phase composite). Using the Hashin-Shtrikman (HS) 

bounds (Hashin and Shtrikman, 1963) on the effective stiffness mixfmM 
 we obtain the 

following inequalities: 
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   , (8.16) 

where, 



HS
mixfmM  and 



HS
mixfmM  are upper and lower HS bounds on effective modulus for a 

mix of phases m and f, respectively (expressions for HS bounds are presented in the 

Appendix B). Equations 8.14 and 8.16 together describe approximate bounds on change in 

bulk and shear moduli upon substitution. We refer to these as the HS- and HS+ 

approximations corresponding to 



HS
mixfmM  and 



HS
mixfmM  moduli, respectively. These can be 

easily extended to model substitution of more than two phases in an N phase multimineralic 

isotropic rock.  
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8.4.3. FEM example of a heavy-oil rock 

As an example of substitution of two phases in a three phase multimineralic rock using 

equations 8.14 and 8.16, we now discuss a numerical example of substitution in a digital 

bituminous sand sample. This digital sample was imaged, processed and later segmented 

using a commercially available software. This 3D sample is shown in Figure 8.3.  

 
Figure 8.3: Original bituminous sand sample digital cube of size 1.6 mm; sub-cube of size 

0.8 mm is also shown.  

 

Imaging revealed grain size roughly between 0.1 mm-0.25 mm (assumed to be quartz; 

volume fraction 0.56) and some air-saturated pores (volume fraction of about 0.07) in 

addition to bitumen-filled pores (volume fraction 0.37).  The spatial resolution of this 

segmented digital rock is 0.004 mm (in x, y and z) and the cube length is 1.6 mm. We 

populate the digital sample with the following elastic properties: quartz grains of 36 GPa 

bulk modulus and 45 GPa shear modulus, air as an ideal fluid of bulk modulus 0.005 GPa 

and bitumen as a soft elastic solid of 4 GPa bulk modulus and 0.5 GPa shear modulus. 

Next, we numerically compute the effective moduli of subsamples of the digital rock using 

the finite element method (FEM). We also re-calculate the effective moduli after digitally 

replacing both the air-saturated and bitumen-saturated pores with cold bitumen (bulk 
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modulus: 4 GPa; shear modulus 1 GPa). Using the HS+ and HS- approximations (equations 

8.14 and 8.16) we predict the change in effective moduli upon substitution of both air-

saturated and bitumen-saturated pores with cold bitumen, starting with the initial FEM 

computed moduli. These predictions are shown in Figures 8.4a and 8.4b for bulk and shear 

moduli, respectively. Comparing these predictions with the FEM computations, we note 

that most FEM computations, for both bulk and shear, are closer to predictions of the HS+ 

approximation which, in this example, predicts the least change. The range predicted by 

the HS+ and HS- approximations is fairly narrow and contains the FEM computations.  

 
(a) 

 
(b) 

Figure 8.4: Predicted bulk (a) and shear (b) moduli of bituminous sand with cold bitumen, 
starting with the FEM computed moduli of bituminous sand with air and bitumen 
saturated pores. The range predicted by the Hashin-Shtrikman bounds are shown in 
gray region. 

 

8.4.4. Laboratory example of permafrost 

Figures 8.5a and 8.5b show laboratory measured ultrasonic velocities of unconsolidated 

sand (of porosity around 0.4) as reported by Zimmerman and King (1986). The measured 

velocities are plotted as a function of ice filled porosity (bulk: 8.4 GPa; shear: 3.7 GPa), 

such that the remaining pores are saturated with water (bulk: 2.2 GPa). Assuming quartz 

(bulk: 36 GPa; shear: 45 GPa) as the predominant mineral in the rock frame, starting with 

the fully frozen sand sample velocities (i.e., all pores filled with ice), we predict the 
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velocities corresponding to the partially frozen sand samples, using the approximate 

bounds in equations 8.14 and 8.16. We note that the approximate bounds contain these 

measured velocities. The HS+ approximation predicts the least change upon substitution, 

and the measurements are relatively closer to the HS+ approximation when compared to 

HS- approximation. The range predicted by HS+ and HS- approximations describes the 

uncertainty of not knowing in which part of the pore space, ice was being replaced with 

water. Note that for this problem since the contrast between the elastic properties of quartz 

and ice is quite large our assumption of 1,
1 mf  , 1,

1 mf .  0,
2 mf  and 0,

2 mf  may 

not be justified.  

 
(a) 

 
(b) 

Figure 8.5: Predicted P-wave (a) and S-wave (b) velocities of sand samples with partially 
ice-filled pores, starting with the measured velocities of a sand sample fully filled with 
ice.   

 

8.5. Modeling effects of dissolution or precipitation 

8.5.1. Exact solutions 

Consider a rock of porosity f  such that the pores are fully filled with a fluid or solid 

(denoted by superscript f, of bulk modulus 
fK  and shear modulus f ), and the frame is 

composed of a single mineral/solid (denoted by superscript B, of bulk modulus 
BK  and 

shear modulus B ). For this rock, let's say that the measured/known bulk and shear moduli 
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are given by 
)1(

udK  and 
)1(

ud . Next, suppose we dissolve away a part of the frame mineral 

such that the newly created pores are also now occupied by the original pore material f; the 

modified porosity is given by mf   , where m  is the volume fraction of the rock 

mineral now replaced by the pore material. Also, let's assume that the modified (and as yet 

unknown) bulk and shear moduli are given by 
)2(

udK  and 
)2(

ud . A conceptual diagram is 

shown in Figure 8.6.  

 

 
(a) 

 
(b) 

Figure 8.6: Conceptual diagram of before (a) and after dissolution (b). Frame solid is shown 
in gray and pore solid is shown in white. Solid curves represent pore boundaries 
whereas dashed curves represent imaginary cuts. 

 

For this situation, equations 8.3 and 8.8 reduce to the following exact relations 
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and 
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In equations 8.17 and 8.18, parameters m
1 , m

2 , m
1  and m

2   are given by 
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Note that parameters 2  and 2   in equations 8.19 and 8.20 are modified versions of 

parameters 2  and 2  (in equations 8.7 and 8.9) expressed in terms of induced strains 

instead of stresses. In the above equations, the original pores before dissolution are denoted 

as phase f1, whereas phase m1 denotes the part of the frame mineral (before dissolution) 

which is to be replaced by the pore material. Phase f2 denotes the original pores but after 

dissolution and phase m2 denotes the newly formed pores post dissolution (initially a part 

of the frame mineral). Thus, 
fff KKK  21

,
Bm KK 1

, fm KK 2 , and similarly for the 

shear modulus, fff   21 , Bm  1 , fm  2 .  

8.5.2. Approximate bounds for weak contrast in substituted phases 

To predict the modified effective bulk and shear moduli, we need to know parameters 

m
1 , m

2  , m
1 , m

2  , and strain ratio parameters 
mf ee /  and mf

1212 /  . These parameters 

depend on the detail of initial and final rock microstructure. Parameters 
mf ee /  and 

mf
1212 /   denote the ratio of volume averaged strains in the initial pores and material 

occupying the newly made pores. Similar to our discussion in the previous section, we 

explore the limiting values for these parameters and put approximate bounds on the 

problem.  
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Approximating a mix of phases m1 and f1 as a two-phase composite, using HS bounds 

we obtain the following approximate inequalities:  
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where, 



HS
mixfmK  and 



HS
mixfm  are upper/lower HS bounds for bulk and shear moduli for a mix 

of phases m1 and f1, respectively. Approximate inequalities in equations 8.21 and 8.22 are 

conceptually identical to those discussed in equation 8.16.  

Assuming homogenous induced stress/strains along with a weak elastic contrast 

between materials f and B, we can approximate 11 m , 02 m , 11 m  and 02 m . 

For the above case, both phases f2 and m2 are occupied by material f, thus we can 

approximate 22 mf ee  and 2
12

2
12

mf   . Under these assumptions, using the upper HS 

bound we obtain the HS+ approximations 

 
  

 
   mf

BBBf
f

fB
m

ud
B

ud
B

udud

KKK
K

KKKK
KK














34
34

)2()1(

)1()2(

  , (8.23) 

and 
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Similarly, using the lower HS bound, we obtain the HS- approximations 
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and 
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)1()2(
udud     .  (8.26) 

The HS+ (equations 8.23 and 8.24) and HS- (equations 8.25 and 8.26) approximations are 

approximate bounds which predict the largest and smallest change in rock stiffness upon 

dissolution, respectively. After calculating change in rock moduli upon change in rock 

microstructure, pore-fluid can also be replaced using Gassmann’s equations 8.1 and 8.2.  

 

 
(a) 

 
(b) 

Figure 8.7: Predictions of change in elastic moduli upon dissolution for dry carbonate 
samples from Vialle and Vanorio (2011). Open and filled symbols show measurements 
before and after dissolutions, respectively. Different symbols show different samples. 

 

 

 

 

Figures 8.7a and 8.7b show laboratory measured change in dry rock elastic stiffness of 

carbonate core samples induced due to dissolution upon injection of carbonated water, reported 

by Vialle and Vanorio (2011). Since change in volume fraction or porosity was also 

reported, all inputs needed for the approximate bounds (in equations 8.23-8.26) are 

available. We compare the range predicted by these approximate bounds with the post-

dissolution stiffness measurements. These predictions are also shown in Figures 8.7a and 

8.7b. For all samples, we note that approximate bounds in equations 8.23-8.26 fairly 

contain the laboratory measured change; even though elastic contrast between dry pores 
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and quartz is quite large for which our assumption of 11 m , 02 m , 11 m  and 

02 m  may not be justified. Figures 8.8a and 8.8b show the same results as in Figures 

8.7a and 8.7b but for water-saturated samples, also for these samples the effect of change 

in rock microstructure on stiffness is well contained by the approximate bounds.  

 

 
(a) 

 
(b) 

Figure 8.8: Predictions of change in elastic moduli upon dissolution for water-saturated 
carbonate samples from Vialle and Vanorio (2011). Open and filled symbols show 
measurements before and after dissolutions, respectively. Different symbols show 
different samples. 

 

We note that for most samples, measured change in elastic stiffness is closer to the HS- 

approximation when compared to the HS+ approximation. However, to predict the true 

change more information on the change in pore geometry is needed, in addition to a 

measure of change in porosity. We also note that the measured stiffness change of these 

carbonate core samples, give only an average change in stiffness at the core-scale, but the 

local changes in stiffness in the core plug can be lower or higher, depending on the local 

pore geometry, the local flow velocities, the reactive surface area and the local chemistry 

of the circulating fluid.  

Also such dissolution experiments are quite poorly constrained since the final pore 

structure depends on both local pore fluid velocities and chemical kinetics (Guen et al., 

2007, Smith et al., 2013 and Vialle et al., 2014). Dissolution can affect all kind of pores 
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equally or can occur preferentially in the main flow paths; moreover even precipitation can 

occur in the surrounding “stagnant zones” (Vialle et al., 2013). Therefore, the measured 

macroscopic change emerges from complex local processes and thus due to heterogeneities 

between the rock samples, the changes at the pore scale may not be the same from one rock 

to another. The approximate bounds (in equations 8.23-8.26) only describe a plausible 

range, and also highlight the uncertainty in estimating the true change in elastic stiffness 

of a rock upon dissolution.  

 

8.6. Chapter summary 

Equations 8.3 and 8.8 are the main results of this chapter; these are the exact fluid/solid 

substitution relations for substitution of one or more phases in a N  1  phase isotropic 

multimineralic rocks (but substitution of no more than N - 1 phases). Since these exact 

equations allow for replacing one or more phases, the rock microstructure does not have to 

remain invariant upon substitution, as assumed by Brown and Korringa. In addition to the 

usually known parameters, like volume fractions, properties of rock constituents, etc., these 

equations depend on parameters which are usually not known unless detailed information 

on rock microstructure is available; however these parameters have a clear physical 

interpretation and are directly linked to the ratios of volume averaged stresses/strains 

induced in rock constituents. Due to a number of required parameters, modeling the change 

in rock stiffness upon substitution or mineral dissolution is inherently non-unique unless 

detailed information on pore geometry is available. Therefore, the required parameters 

must be approximated on the case by case basis. 

In equations 8.14 and 8.16, we discuss approximate bounds for substitution of one or 

more phases simultaneously; these predictions are in good agreement with the examples 

discussed in this chapter. Similarly, approximate bounds are also developed for predicting 

change in rock stiffness upon dissolution in equations 8.23-8.26. These predictions fairly 

contain laboratory measured change in rock stiffness. The range predicted by these 
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approximate bounds highlights the uncertainty associated with not knowing the details of 

the rock microstructure. 
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8.8. Appendix A: Derivation of the main results 

8.8.1. Bulk Modulus  

Let the outer surface of an isotropic composite sample with N elastic phases be subjected 

to compressive surface tractions as 

ii PnT     (i = 1, 2, 3)  ,  (A-1) 

where iT
 
are traction components, in are the components of an outward-pointing normal 

vector to the outer surface, and P is constant. Let the spatially variable stress induced in 

any phase q (q   1 to N; of volume fraction q ) be given by q
ij , which can be decomposed 

into isotropic and deviatoric parts as 

q
ijij

qq
ij P     ,  (A-2) 

where qP  is the pressure (negative of mean stress,

 

3/q
kk ), and 

q
ij

 
are deviatoric 

stresses. Here we use standard summation convention over repeated indices. Now using 

Betti-Rayleigh reciprocity theorem (Saxena and Mavko, 2014), we can write the change in 

elastic energy ( 12E ) upon substitution of N - 1 phases as 
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Now if in equation A-3 we choose Bq KK 2  and Bq  2 , then the composite upon 

substitution becomes homogeneous, i.e., 
B

ud KK )2(
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this also guarantees PP B   and 0B
ij  everywhere in the composite. Hence, equation A-

4 further reduces to
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Similarly, if we choose Bq KK 1  and Bq  1 we get  
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Next, rearranging terms from equation A-3 we get 

  












































































N

Bq
q

q
ij

q
ij

udud

qq
qq

udud

qq

q

KK

PP

KK

KKP
1

21

)2()1(

21
21

)2()1(

21
2

11

11

2
1

11

11




   . (A-7) 

Multiplying equations A-5 and A-6 we get 
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From equations A-7 and A-8, we obtain bulk modulus substitution equation 8.3.  

8.8.2. Shear Modulus 

Similar to the effective bulk modulus derivation we consider the following surface shear 

tractions (referred in this chapter as shear field) at the outer surface  


















































3

2

1

3

2

1

000
00
00

n
n
n

T
T
T





  .  (A-9) 

For this case, using reciprocity, we can write the change in elastic energy ( 12E ) upon 

substitution of N - 1 phases (except for phase B) as 
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Now if in equation A-10 we choose Bq KK 2  and Bq  2 , then the composite upon 

substitution becomes homogeneous, i.e., B
ud  )2(  and 
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Also if all phases are filled with solid B, then 0BP , 01323332211  BBBBB   and 

  BB
2112  everywhere, this results in 
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Similarly, if we choose Bq KK 1  and Bq  1 , then we get 
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From equations A-10, A-12 and A-13 we get the shear modulus substitution equation 8.6.  

8.9. Appendix B: Hashin-Shtrikman bounds 

The expressions for HS bounds on elastic bulk and shear moduli of an isotropic two-

phase composite are given by 
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where the superscripts (1) and (2) refer to the properties of the two phases.  Equations B-1 

and B-2 yield the upper bound when 
)1(K  and )1(  are the maximum bulk and shear 

moduli of the individual phases, and the lower bounds when 
)1(K  and )1(  are the 

minimum bulk and shear moduli of the phases. Superscripts HS+ and HS- designate upper 

and lower HS bounds, respectively. 
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Chapter 9 

Modeling infinitesimal strain creep in 

organic-rich shale 
 

 

  

9.1. Abstract 

We present an approach to model effective elastic properties and infinitesimal strain 

creep functions (or stress relaxation functions) in organic-rich shales. Creeping kerogen is 

mixed with anisotropic elastic mineral using the anisotropic effective field theory. Elastic 

properties of isotropic kerogen and elastic mineral are based on laboratory measurements. 

Two choices exist while mixing kerogen and elastic mineral: aligned inclusions of kerogen 

in elastic mineral or aligned inclusions of elastic mineral in kerogen. The creep and 

relaxation functions are calculated using the correspondence principle and the effective 

field solution. Although mixing inclusions of elastic mineral in kerogen background seem 

to better match the laboratory measured elastic moduli, there is uncertainty with regards to 
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which mixing choice describes the laboratory measurements better. However, the 

calculated corresponding creep and relaxation functions using the two mixing choices are 

well separated and thus can aid in deciding the mixing scheme. For Haynsville, Bakken, 

and Barnett shales the model predictions corresponding to kerogen background fit both 

static and dynamic measurements relatively better when compared to mineral background. 

   

9.2. Introduction 

Organic-rich shales represent a vast energy reserve. Organic rich shales are commonly 

categorized as unconventional reservoirs and display complexity in composition, flow 

characteristics, distribution of organic matter and pore size, etc. Shales are often found to 

be strongly anisotropic, due to clay mineral alignment, bedding-parallel distribution of 

organic matter and possible cracks (Vernik and Nur, 1992; Vernik and Landis, 1996; 

Sondergeld et al., 2000). Understanding the dependence of mechanical properties of shale 

on composition is important for various applications such as detection of organic rich shale 

from seismic, hydraulic fracturing to boost production, designing safe and cost effective 

drilling approach, etc.  

Both dynamic (Vernik and Landis, 1996; Vernik and Liu, 1997) and static properties 

(Sone, 2012) for various shale rocks have been measured. To model dynamic properties of 

shales, various approaches have been proposed (Vernik and Nur, 1992; Vernik and 

Kachanov, 2010); these models are driven by experimental observations and thus have 

been fairly successful in describing laboratory or well log data (Vernik and Milovac, 2011; 

Khadeeva and Vernik, 2013). Various other attempts (Bandyopadhyay, 2009; Ruiz and 

Azizov, 2011) have been made to model the dynamic properties of these complicated rocks 

using effective medium theories such as the self-consistent (O’Connell and Budiansky, 

1974; Berryman, 1980) and differential medium schemes (Cleary et al., 1980; Mukerji et 

al., 1995). Sayers (2013) used the effective field method of Sevostianov et al. (2005) to 

model organic-rich shales; this method solves for effective elastic stiffness by placing a 

representative inclusion in an effective stress field. Sayers (2013) showed that dynamic 
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measurements of Vernik and Liu (1997) are consistent with mixing elastic mineral 

inclusions in a kerogen background.  

In this chapter, we solve for both effective elastic and creep properties of organic-rich 

shale rocks, using the effective field theory of Sevostianov et al. (2005). Kerogen is 

modeled as a power-law viscoelastic material embedded in vertical transversely isotropic 

elastic mineral. Both dynamic and static properties are calculated for the same 

microstructure composed using two mixing schemes: inclusions of kerogen in elastic 

mineral background and inclusions of elastic mineral in a kerogen background. We find 

that the two schemes show higher separation in static domain when compared to their 

separation in the dynamic domain. Mixing scheme with kerogen as the background 

material fits both laboratory measured dynamic and statics measurements relatively better.  

 

9.3. Constitutive relations for VTI media 

Transversely isotropic (TI) material with rotational vertical symmetry axis ( 3x ) are 

also commonly refereed as vertical transverse isotropic or simply VTI. The elastic stiffness 

(C ) of a VTI material has five independent elastic stiffness coefficients which can be 

expressed in Voigt matrix notation as 
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Equation 9.1 is the constitutive relation for a linear elastic VTI material, where   and   

denote stresses and strains, respectively. For convenience, we now adopt the following 

notation for stresses and strains:  
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For weakly anisotropic VTI materials, stiffness can also be described in terms of 

Thomsen’s anisotropic parameters  ,   and   (Thomsen, 1986), along with stiffness 

components 33C  (vertical P-wave modulus) and 44C  (vertical S-wave modulus). 

Thomsen’s parameters are given by 

33

3311

2C
CC 

   ,  (9.3) 

44
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   ,  (9.4) 

and 
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Similarly the elastic compliance (
effS ) in Voigt matrix notation can be written as 
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Compliance coefficients in equation 9.6 are related to the stiffness coefficients in equation 

9.1 as 

 
   12111313121133

33
11 2

1
42 CCCCCCC
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   , (9.7) 
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1
C

S    . 

Alternatively, constitutive relations in equations 9.1 and 9.6 can also be written as 





6

1i
iikk C    ,  (9.8) 

and  





6

1i
iikk S    .  (9.9) 

Similarly, for a linear viscoelastic material the constitutive relations can be written using 

the convolution operator as 
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1
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i

t

iikk d
d
dtGt 


   ,  (9.10) 

and  
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   .  (9.11) 
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In equations 9.10 and 9.11,  tGij  and  tJ ij  are the so-called relaxation and creep 

functions, respectively. Taking Laplace transform of equations 9.10 and 9.11, with 

transform variable s results in 

     ssss
i

iikk 



6

1
εGσ   ,  (9.12) 

and  

     ssss
i

iikk 



6

1
σJε   .  (9.13) 

The constitutive linear viscoelasticity relations in equation 9.12 and 9.13 in the Laplace 

domain resemble the time-independent linear elastic constitutive relations in equations 9.8 

and 9.9. These relations show that if the solution to the linear elastic constitutive relation 

is known then the solution to the corresponding viscoelastic constitutive relation in Laplace 

domain can be obtained by replacing all elastic stiffness (or compliance) coefficients with 

transform argument (s) times the Laplace transform of the time dependent relaxation 

(creep) coefficients. The time domain solution is obtained by transforming back to the time 

domain (Lakes, 2009). This property is also known as the correspondence principle.  

9.4. Effective field method for estimation of effective stiffness 

To estimate the effective elastic coefficients ijC and ijS  for a two phase VTI composite 

we now use the effective field theory of Sevostianov et al. (2005). This method predicts 

elastic coefficients by utilizing the one-particle solution for a VTI inclusion in a VTI 

background. The interaction between inclusions is accounted for by placing a 

representative inclusion into an average stress/strain field. This approach is distinct from 

the effective medium theories such as those proposed by O’Connell and Budiansky (1974), 

Mura (1982), Jakobsen et al. (2000), Nishizawa (2001). Recently, Sayers (2013) discussed 

applications of the effective field method of Sevostianov et al. (2005) and investigated the 

effects of kerogen on dynamic and geomechanical properties of organic-rich shales. Sayers 
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(2013) also provide detailed expressions for calculating the effective elastic coefficients 

ijC using the effective field method for the special case of symmetry axis 3x  coinciding 

with the material axis of symmetry for both background and inclusion materials, which 

themselves can be VTI. The predicted effective elastic coefficients eff
ijC  can be expressed 

as a function of the elastic coefficients B
ijC  of the background (or matrix) material and the 

elastic coefficients I
ijC of the inclusion material, given by 

   
1

,, 11
















 ijI

ij
B
ij

B
ijiCiC

eff
ij Pp

CC
pCC I

j
B
j    , (9.14) 

where p and   are the volume fraction and aspect ratio of inclusions, respectively. 

Coefficient ijP  further depends on material properties and inclusion aspect ratio; detailed 

expressions can be found in Sayers (2013), thus not repeated here. In this study, we model 

inclusions as horizontally aligned oblate spheroids with aspect ratio   given by 

13 aa   ,  (9.15) 

where ia  is length of an spheroidal inclusion along the 
thi axis.  

9.5. Modeling dynamic properties 

Following Vernik and Landis (1996) and Sayers (2013), elastic mineral is 

approximated as a VTI material, whereas kerogen is assumed to be isotropic. Extrapolating 

experimental results of Vernik and Landis (1996) for organic-rich black shale samples 

(with moderate clay content) to 100 % elastic mineral and 100 % kerogen, the authors 

obtain the following stiffness coefficients for kerogen: kgC11 kgC22 kgC33 9.8 GPa, kgC44

kgC55 kgC66 3.2 GPa; and the following stiffness coefficients for elastic mineral shC11

shC22 85.6 GPa, shC33 65.5 GPa, shC44 24.6 GPa, shC66 29.7 GPa.  
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Figure 9.1: Mixing schemes. Left: scheme 1, isotropic kerogen inclusions in elastic mineral 

background. Right: scheme 2, mineral inclusions in a kerogen background.  
 

 

Note that since Vernik and Landis did not directly measure 13C  we approximate shC13

21.1 GPa assuming  5.0  (Sayers, 2013). Next, we calculate effective stiffness for a 

mixture of elastic mineral and kerogen using the effective field method of Sevostianov et 

al. (2005) for two mixing schemes: scheme 1 with kerogen inclusions in an elastic mineral 

background, and scheme 2 with elastic mineral inclusions in a kerogen background. 
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Figure 9.2: Effective stiffness coefficients for a range of kerogen volume fraction. The 

dashed green curves correspond to inclusions of elastic mineral in kerogen 
background; aspect ratios are also shown on the plots. The full red curves correspond 
to inclusions of kerogen in mineral background.   
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Figure 9.3: Thomsen’s parameters for a range of kerogen volume fraction. The dashed 

green curves correspond to inclusions of elastic mineral in kerogen background; aspect 
ratios are also shown on the plots. The full red curves correspond to inclusions of 
kerogen in mineral background.   

 

Figure 9.2 shows the predicted effective stiffness coefficients eff
ijC  as a function of 

kerogen volume fraction. Model predictions for kerogen inclusions in an elastic mineral 

background (scheme 1, Figure 9.1a) are shown with full red lines for aspect ratios varying 

between 0 (laminated) to 0.4, color darkness also indicates increasing aspect ratio value. 

Figure 9.2 also show the predictions for the case where inclusions of elastic mineral are 

floating in a background of kerogen (scheme 2, Figure 9.1b), shown in dashed green 

curves. Various set of laboratory measured data are compared with these model curves: 

Bakken shale data from Vernik and Liu (1997), Haynesville and Barnett shale data (two 

for each) from Sone and Zoback (2013) for which samples 1 has higher clay content than 
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samples 2. Also compared are some additional data reported by Sone (2012) for 

Haynseville shale. Figure 9.3 shows the plots for Thomsen’s parameters ,   and  , 

respectively. Figure 9.4 shows the calculated values for the effective compliance 

coefficients eff
ijS . 

We note the model curves corresponding to elastic mineral inclusions floating in 

kerogen background, i.e., scheme 2, better fit the laboratory data, which is consistent with 

the findings of Sayers (2013). This also supports the hypothesis of Vernik and Liu (1997) 

that laminated clay floats in kerogen background. However, it must be noted that model 

predictions of stiffness coefficients for schemes 1 and 2 are not separated enough to make 

the above statement with confidence. Therefore, although scheme 2 does seem to fit better 

with the dynamic laboratory measurements, there is still uncertainty with regards to which 

scheme should be used to address the “what if” scenarios. For example, vertical sonic well 

logs only yield direct measurements of effective stiffness coefficients 33C  (vertical P-wave 

modulus) and 44C  (vertical S-wave modulus) but to perform further geomechanical 

analysis estimates of 13C , 11C  and 66C  are typically required, but these predictions can 

vary substantially depending on the selected scheme.  
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Figure 9.4: Effective compliance coefficients for a range of kerogen volume fraction. The 

dashed green curves correspond to inclusions of elastic mineral in kerogen 
background; aspect ratios are also shown on the plots. The full red curves correspond 
to inclusions of kerogen in mineral background.   
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9.6. Modeling creep and relaxation functions 

We now assume isotropic kerogen to be a power law creeping material obeying the 

following creep function 

   kgnkgkg tBtJ 33   ,  (9.16) 

where kgB is the creep intercept and kgn  is the time exponent. Due to assumed isotropy we 

must have      tJtJtJ kgkgkg
111133  . Taking Laplace transform of the creep function with 

respect to transform variable s, we obtain 

     1
33 1 

 kgn
kg

kgkg snBsJ   ,  (9.17) 

Using the property     sss kgkg EJ 2
33 1  the corresponding relaxation function in Laplace 

domain is given by 

 
  kgn

kg
kg

kg

snB
s




 11
1

E   .  (9.18) 

Relaxation function  skgE  has dimensions of Young’s modulus. Assuming elastic 

kerogen bulk modulus 
kgK  we obtain the following relaxation functions in Laplace domain 

     
  

 sK
sKKsss kg

kgkgkg
kgkgkg

E

E
GGG






9
33

112233   , (9.18) 

     
 
 sK
sKsss kgkg

kgkg
kgkgkg

E

E
GGG




9
3

665544   , (9.19) 

               ssssssss kgkgkgkgkgkgkgkg
4411322331132112 2GGGGGGGG    . (9.20) 

Next, using the effective field method (equation 9.14) we calculate the effective relaxation 

and creep functions in time domain for scheme 1 by solving the following equations 
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    ssCCLtG kg
ij
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ij
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ij ,,1 G   ,  (9.21) 

     ssCCLtJ ij
kg
ij

sh
ij

effeff
ij

11 ,,  G   ,  (9.22) 

where 1L  is the inverse Laplace transform operator. In equation 9.22, the term in the 

square brackets represent inverse of the matrix 
effC . Similarly, relaxation and creep 

functions for scheme 2 can be obtained by solving 

    sCsCLtG sh
ij

kg
ij

eff
ij

eff
ij ,,1 G   ,  (9.23) 

     sCsCLtJ
ij

sh
ij

kg
ij

effeff
ij

11 ,,  G   .  (9.24) 

To solve equations 9.21-9.24 we use the Talbot algorithm (Abate and Whitt, 2006). For 

simplicity, we assume that all relaxation and creep functions retain power law behavior 

similar to the input creep function of kerogen but do not necessarily have the same intercept 

or exponent as of kerogen. Thus the effective relaxation and creep functions can be 

expressed as 

  ijm
ij

eff
ij tAtG    ,  (9.25) 

  ijn
ij

eff
ij tBtJ    .   (9.26) 

At time t = 1, we can approximate 

  eff
ijij

eff
ij CAG 1   ,  (9.27) 

  eff
ijij

eff
ij SBJ 1   ,  (9.28) 

where eff
ijC  and eff

ijS are effective stiffness and compliance coefficients calculated for a mix 

of kerogen and elastic mineral for the choice of mixing scheme (1 or 2), such that Young’s 

modulus and bulk modulus of kerogen is given by kgB1  and 
kgK , respectively.  
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Figure 9.5: Exponents mij for a range of kerogen volume fraction. The dashed green curves 

correspond to inclusions of elastic mineral in kerogen background; aspect ratios are 
also shown on the plots. The full red curves correspond to inclusions of kerogen in 
mineral background.   
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Figure 9.6: Exponents nij for a range of kerogen volume fraction. The dashed green curves 

correspond to inclusions of elastic mineral in kerogen background; aspect ratios are 
also shown on the plots. The full red curves correspond to inclusions of kerogen in 
mineral background.   
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Figure 9.5 show the calculated values of exponents ijm  normalized by 25.0kgn . 

Similarly, Figure 9.6 show calculations for ijn  normalized by kgn . From Figures 9.5 and 

9.6 we note that the model curves corresponding to kerogen background predict relatively 

larger time exponents (for a range of inclusion aspect ratio: 0 to 0.4) when compared to the 

model curves corresponding to mineral background. Note that the two sets of curves are 

relatively better separated for calculation of time exponents when compared to their 

separation for calculation of elastic coefficients eff
ijC  and eff

ijS . The two sets of model curves 

contain the laboratory measured time exponents.  

We note the laboratory measured time exponents for Haynesville samples (Sone and 

Zoback, 2013) are difficult to explain with model curves corresponding to mineral 

background, and can be better explained using model curves of kerogen background. For 

the laboratory measurements of time exponents for Eagle Ford and Barnett samples, it is 

not clear which of the two mixing scheme fits the data better. However, model curves 

corresponding to kerogen background generally seem to better fit the laboratory 

measurements of both time exponents and stiffness coefficients.  

 

9.7. Discussion 

9.7.1. Which mixing scheme to use? 

In Figures 9.2-9.4 we note that the predictions of the two mixing schemes (in Figure 

9.1) roughly span the range of laboratory measurements. As discussed in the previous 

section, model curves corresponding to elastic mineral inclusions in kerogen background 

seem to relatively better fit both static and dynamic laboratory data. Since the model curves 

corresponding to the two mixing schemes are relatively better separated for calculation of 

time exponents ( ijn or ijm ) when compared to effective elastic coefficients ( eff
ijC  or eff

ijS ), 

we note that laboratory measurements of creep exponents can aid in deciding which mixing 

scheme better describes the mechanical properties of organic-rich shale rock.  
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9.7.2. Can we predict creep exponents from seismic? 

Figure 9.7a shows cross plot between Vp/Vs (ratio of vertical P and S-wave velocities) 

and AI (P-wave acoustic impedance), similarly Figure 9.7b shows a cross plot between GI 

(S-wave acoustic impedance), and AI. We will now analyze these cross plots since it is 

often possible to invert for AI and GI from seismic data.  

From Figure 9.7a we note that predictions of Vp/Vs decrease with increase in inclusion 

aspect ratio for both mixing schemes. However, some time exponents, for example 33n , 

increase or decrease with increase in aspect ratio depending on the underlying mixing 

scheme (Figure 9.6), thus it will be difficult to establish any unique relation between Vp/Vs 

and some of the time exponents. Of course, if we fix restrict this analysis to a mixing 

scheme, it may be possible to relate Vp/Vs (or GI) to time exponents.  

Also, due to the contrast between elastic properties of kerogen and elastic mineral, AI 

can yield an estimate of volume fraction, which may be further related to time exponents.  

 

  
Figure 9.7: Exponents nij for a range of kerogen volume fraction. The dashed green curves 

correspond to inclusions of elastic mineral in kerogen background; aspect ratios are 
also shown on the plots. The full red curves correspond to inclusions of kerogen in 
mineral background.   
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9.7.3. Predicting other creep exponents with n33? 

Figures 8 and 9 show cross-plots between normalized 33n  and other effective exponents 

( ijn  and ijm ). These plots highlight the anisotropic nature of the time exponents, and also 

suggest that the time exponents strongly depend on the boundary conditions of rock 

deformation. From these plots we obtain the following first order fits for kerogen inclusions 

in elastic mineral background 

3311 26.0 nm    ,  (9.29) 

333333 05.015.0 nnm    ,   

3313 1.0 nm    ,   

3344 2.1 nm    ,   

  33
2

3366 1.04.4 nnm    ,   

  33
2

3311 2.02.3 nnn    ,  (9.30) 

3313 5.1 nn    ,   

3344 3.1 nn    ,   

  33
2

3366 25.02.3 nnn    ,   

 

and the following empirical fit for inclusions of elastic mineral in kerogen background 

 

  33
2

3311 7.08.0 nnm    ,  (9.31) 

333333 05.013.0 nnm    ,   
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333313 05.01.0 nnm    ,   

3344 6.1 nm    ,   

3366 1.1 nm    ,   

3311 nn    ,  (9.32) 

3313 9.1 nn    ,   

3344 1.2 nn    ,   

3366 1.1 nn    .   

Often it is not possible to directly measure all time exponents due to limitations of the 

experimental setup. It is however relatively easier to measure the time exponent 33n . The 

time exponent correlations in equations 9.29-9.32 can be used in such situations to obtain 

a crude estimate of the other time exponents if an estimate of at least of the time exponent 

is available.  
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Figure 9.8: Exponents mij versus n33. The dashed green curves correspond to inclusions of 

elastic mineral in kerogen background; aspect ratios are also shown on the plots. The 
full red curves correspond to inclusions of kerogen in mineral background.   
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Figure 9.9: Exponents nij versus n33. The dashed green curves correspond to inclusions of 

elastic mineral in kerogen background; aspect ratios are also shown on the plots. The 
full red curves correspond to inclusions of kerogen in mineral background.   

 

 

9.8. Chapter summary 

We present a modeling recipe to compute and analyze effective elastic properties and 

creep functions in organic rich shale. We note that model curves of elastic mineral 

inclusions in kerogen background generally fits both dynamic and static data better when 

compared to model predictions of kerogen inclusions in elastic mineral. This observation 

is consistent with Vernik and Liu (1997) and Sayers (2013). The two mixing schemes 

predict very different time exponent coefficients, thus we conclude that static 
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measurements can be of help in deciding the mixing scheme that better describes dynamic 

properties for a particular shale rock.  

For VTI rocks such as organic rich shales, the creep time exponents will be anisotropic 

and will also depend on the boundary conditions of rock deformation. Often it is not 

possible to directly measure all time exponents, thus we present a simple set of empirical 

relations which can yield crude estimates of unmeasured time exponents starting with those 

measured directly.  
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Chapter 10 

Unsolved problems with half-baked 

solutions 
 

 

10.1.  Simulate physics at grain contacts 

10.1.1. Overview 

Contact mechanics play a crucial role for determining the elastic stiffness of 

unconsolidated or poorly consolidated sediments. The deformation in the vicinity of a grain 

contact and the corresponding repulsive forces are successfully described by the Hertzian 

contact model and effective-medium theory. Laboratory measurements, however, show 

significant deviations from the theoretical predictions of effective elastic moduli, in 

particular for the effective shear modulus. These deviations are due to stress heterogeneity 

associated with stress chain formation in random grain packs, or due to contact 

heterogeneity and surface roughness at the scale of the single grain contact. Contact 

behavior is also altered by the presence of elastic cement at grain contacts. By incorporating 
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a contact boundary condition into the numerical simulation, we accurately predict the non-

linear elastic behavior of a sphere contact and capture well the effects of contact 

cementation. All our numerical benchmark simulations are in agreement with theoretical 

predictions, provided that the numerical resolution is fine enough to accurately resolve the 

stress fields close to the contact surface.  

10.1.2. Introduction 

The deformation of elastic bodies that are in contact with one another is a classical 

problem of continuum mechanics and subject of several textbooks (e. g. Johnson, 1985). 

Stress and deformation of an elastic contact are typically confined within an area that is 

small with respect to the dimension of the body. The fact that the contact area changes in 

size as a function of applied forces gives rise to non-linear elastic behavior. An important 

consequence of contact non-linearity is the pressure-dependence of granular materials such 

as unconsolidated sediments. Mechanically, those sediments can be described as grain 

packs, where the interactions of grains with one another are governed by friction and 

contact laws (e.g. Duffy and Mindlin, 1957; Digby, 1981; Dvorkin et al., 1991; Goddard, 

1990; Sain, 2010).  

All the above mentioned effective-medium models for granular materials are based on 

the solution of a single point contact. An analytical solution for the normal forces arising 

in the contact of curved surfaces was first given by Hertz (1882) under the assumption of 

small strains and by neglecting surface friction. Hertz found that the contact stiffness k 

between two elastic bodies is proportional to the radius a of the circular contact area: k ∝

a. Knowing the contact radius of a sphere a = √Rδ, it follows that the contact stiffness 

grows as k ∝ √δ, where R denotes the sphere radius and δ the relative displacement of the 

center of the sphere with respect to the contact surface. Note that contact radius and 

displacement should not be confused with the terms virtual overlap ξ = 2δ and virtual 

contact radius b = √2 a, both of which are depicted in Figure 10.1.  
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Figure 10.1: Deformed Hertz contact between two equal spheres of radius R with 

definitions of contact radius a, displacement δ, overlap ξ = 2δ and virtual contact 
radius b = √2a . Red dashed lines represent two overlapping spheres with the radius 
R each. 

 

Hertz’s solution for the reaction force between two bodies is  

  3*

3
4

 REdkF  
    

 (10.1) 

that is, F ∝ δ3/2. Here, 

 2
*

1 


EE
    

 (10.2) 

is an effective Young’s modulus. Isotropic elastic properties are Young’s modulus E and 

Poisson ratio ν. Many non-Hertzian contact laws are reported in the literature, including 

cylindrical and conical contact points, as well as rough surfaces (for an overview, see 

Johnson, 1985). Mindlin (1949) considered tangential forces between two bodies that are 

transmitted through surface friction. Analytical solutions, however, are based on 

simplifications and on idealized contact geometries. Effective-medium theories that 

calculate effective properties based on Hertz-Mindlin theory have quite a few 

shortcomings. They show significant deviations from laboratory measurements. Sain 

(2010) showed that these deviations primarily arise since the current effective medium 

models do not account for heterogeneous strain field and stress relaxation at the grain 

contacts. This disagreement can also arise due to contact roughness (Goddard, 1990; 



CHAPTER 10: UNSOLVED PROBLEMS 256 

Bachrach and Avseth, 2008). In addition to these, contact cements often play a significant 

role for the behavior of sedimentary rocks (Dvorkin et al., 1991). 

The finite-element method offers a possibility to simulate mechanical contact problems 

with arbitrary geometry efficiently and with high accuracy. The effects of contact cement 

are easily accounted for by introducing additional material phases to the grain-contact 

model. Numerical simulations also allow incorporating anisotropic or anelastic material 

behavior, thus integrating contact mechanics with a more general elastic description. We 

make use of the commercial software package COMSOL Multiphysics, which offers a 

potential to couple contact mechanics with other physics problems, such as heat 

conduction, electrical currents, and magnetic flux in the contact area. 

In this section, we compute the stress fields associated with a contact between two 

spherical grains of equal size. A classical Hertz contact problem is used to benchmark the 

simulation approach, and we compare the simulation of the Hertz contact with the elastic 

case of two grains with cement close to the contact point (Figure 10.2). 

  

 

Figure 10.2: Geometries of contact simulations. In the undeformed configuration, two 
spheres share a contact point (a), while in the case of a cemented contact (b), a cement 
radius c is defined. We make use of the problem symmetry to minimize the 
computational domain Ω. 
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10.1.3. Finite-element simulations of sphere contacts 

For our numerical investigations, we assume static loading with no friction at the 

smooth contact boundary. We solve an elastic sphere contact problem with COMSOL 4.1 

Multiphysics. Our numerical model takes advantage of axial symmetry in the geometry as 

shown in Figure 10.2. Second, we make use of the symmetries at the grain-grain interface 

and at the sphere equator plane. Strain is imposed on the system by prescribing vertical 

displacement uz at the equator plane at z = R, while horizontal motion ux is unconstrained. 

At the outer sphere surface we apply traction-free boundary conditions. For our 

simulations, we choose a Young’s modulus E = 70 GPa and a Poisson ratio ν = 0.33, 

corresponding to a shear modulus of 26.3 GPa and an effective Young’s modulus E∗ of 

78.6 GPa.  

The contact itself is implemented in the COMSOL package by the definition of contact 

pairs. The elastic solver automatically computes relative distances between the nodes 

within both pairs and adds an internal repulsive force to the solution in order to ensure that 

no overlap between the elastic bodies occurs. The solution is obtained using an iterative 

solver. 

An inherent numerical challenge in the field of contact problems is caused by the large 

difference between the scale of the contact area and the size of the spherical body. The 

stress and strain fields are very concentrated in the proximity of the contact point, while 

the stress field is relatively homogeneous within the largest part of the simulation domain. 

An accurate numerical solution for a point contact requires a fine meshing in the vicinity 

of the sphere contact, while at a certain distance from the contact point, a coarser mesh is 

acceptable. We achieve a suitable meshing by using adaptive mesh refinement. This 

significantly improves the accuracy of solutions for the point-contact case if compared to 

a homogeneous mesh distribution as depicted in Figure 10.3. 

In addition to the sphere contact simulation, we perform an analogous numerical 

experiment after adding a linearly elastic cement filling at the contact as depicted in Figure 

10.2b. Cemented geometries are commonly encountered in rocks which have undergone 

diagenesis, and it is known that small amounts of cement are able to significantly stiffen 
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the contacts of poorly consolidated sediments (e.g. Dvorkin and Nur, 1991). This 

simulation allows us to study the influence of the amount of cement on the elastic stiffness 

of the contact area. We control the amount of cement by changing the radius of the 

cemented domain c, thus creating a contact surface with a finite radius, analogous to the 

Hertz contact radius a under a given stress. The radius c is varied between 0.01R and 0.04R. 

For the cement material, the same material is used as for the spherical grains (E = 70 GPa 

and ν = 0.33). 

 

Figure 10.3: Finite-element mesh before (left) and after adaptive mesh refinement (right). 

10.1.4. Numerical results 

10.1.4.1. Hertz contact 

We numerically explore a contact problem between two spheres of equal size that are 

in contact with one another. Hertz’s theory predicts that the stiffness of the contact grows 

with the deformation as δ1/2, such that the reaction force is proportional to δ3/2. As the 

theoretical solution is known, this case serves us as a benchmark test of our finite-element 

contact mechanics simulations. 

We calculate the force for a range of normal displacement δ by integrating the normal 

component of the traction along the sphere equator plane as follows: 

Axis of Symmetry Axis of Symmetry

Coarse Mesh Adaptively Refined Mesh

Fixed boundary conditionFixed boundary condition

Contact Pair Contact Pair
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We compare the analytical solution given in equation 10.Error! Reference source not 

found. with the numerically obtained reaction force F, and we find an excellent match with 

Hertz theory; see Figure 10.4. 

The numerical solution allows determining the contact radius in the deformed 

configuration, by analyzing the surface traction along the sphere grain boundary. 

According to the imposed free-boundary condition, the traction is zero outside the contact 

area, while inside the area of contact the normal stress is finite. For a normal displacement 

of δ/R = 16 × 104, the numerically obtained contact radius a/R = 0.04 is in agreement 

with the theoretical prediction of a = √Rδ. 

 

 

Figure 10.4: Comparison of theoretical prediction and numerical simulation of a Hertz 

contact. 

10.1.4.2. Convergence behavior of the non-linear solver 

If the two spheres are not in contact before a confining stress is applied, the solver has 

difficulty converging. If the compression is imposed by prescribing a displacement of the 
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sphere quadrant, the solver succeeds in finding a solution for small displacements. The 2-

D axial symmetric elasticity solver does not allow applying a point force at the symmetry 

axis. We find better convergence for the case of displacement-driven boundary conditions 

if compared to stress-driven boundary conditions. Imposing a displacement is therefore 

preferred to applying a force in order to deform the model.  

10.1.4.3. Stress distributions at sphere contacts 

It is a well-known result from contact theory that the stress distribution within a circular 

contact area depends on the contact interface conditions. Analytical solutions for the 

traction distribution p(r) are generally available in the form a power law (Johnson, 1985): 

 
n
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0 1   .  (10.4) 

where n = 1/2 and  
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Ep
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0
2

   .  (10.5) 

for a classical Hertz contact. In our simulations with contact cement, the cement and the 

grain are in welded contact. The case of the contact cement is therefore approximated by 

the solution of an elastic cylindrical punch in an elastic half-space, which is represented by 

n = −1/2 and a pressure p0 at the symmetry axis: 


 c
Ep

*

0    .  (10.6) 

where c is the radius of the cemented area, corresponding to the contact radius a in the 

Hertz solution. 

In Figure 10.5, we show the mean stress field p in the vicinity of the contact for the two 

cases under consideration, the Hertz model and the cemented model. In both simulations, 

the contact radius a is 0.04R and the displacement δ is 1.6 × 10−3 R. In both models, the 
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mean stress has a maximum at the contact and shows fast decay further away from it. The 

cemented model features a clear stress concentration at the outer tip of the cemented area.  

 

 

Figure 10.5: Mean stress fields simulated for a sphere contact (left) and a contact with 
cement (right).  

 

The simulated stress component normal to the contact plane is shown in Figure 10.6 as 

a function of radial distance r. Our numerical solution shows that the stress distribution is 

very well described by the contact law given in equation 10.4. The main characteristic of 

the Hertz contact solution is a maximum at the symmetry axis, while the solution of the 

cement model shows a dominant stress singularity at the tip of the cemented surface. 

 

 

Figure 10.6: Simulated surface traction for the case of a Hertz contact and for a cemented 
contact. In both simulations, a normal displacement of δ/R = 1.6 × 10−3 is imposed. 
The contact radius or the radius of the cemented contact, respectively, is in both cases 
0.04R. 
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If the reaction forces are known, computing the contact stiffness k is straightforward. 

According the definition of a stiffness constant, k(δ) = −dF/dδ, it follows that k = 2E∗a 

for the case of a Hertz contact and k = 2/3 E∗c for the cemented contact. This shows that 

in both cases, the contact stiffness is proportional to the contact radius a or c, respectively. 

Using a series of contact simulations with different strains 0 < δ/R < 0.0016, or different 

radii of cement 0 < c/R < 0.04, respectively, we confirm that this proportionality holds 

at small deformations under consideration (results not shown). 

10.1.5. Future outlook 

The classical problem of computing the reaction forces between elastic bodies in 

contact with one another has theoretical significance for the description of grain packs and 

unconsolidated granular materials. The contact laws are the basis for both analytical 

effective medium models and computer simulation of granular dynamics. We show here 

that finite-element simulations are able to accurately compute the non-linear elastic 

response associated with contact problems. We confirmed this by carefully benchmarking 

our numerical results against known analytical solutions of contact mechanics.  

We point out that this study is a first step towards addressing more complex grain-

contact problems. These may include investigating contact surfaces of non-spherical 

grains, tangential friction or grain rotation. In general, the assumption of axial symmetry 

and symmetry with respect to the contact plane is not applicable, but 3-D simulation is 

necessary. The benchmark tests presented here show that a fine resolution of contact area 

is crucial for an accurate prediction of contact pressures and reaction forces. The 

consideration of grain interaction at the scale of a grain ensemble (or grain pack) is 

currently unfeasible using finite-elements with contact boundary conditions due to high 

resolution requirements. The solutions obtained on the scale of a single contact may, 

however be used as an input for theoretical models or granular-dynamics simulations on 

the scale of a grain pack. 

In the future, simulations on the sub-micro scale—i.e. on the scale of the grain 

contacts—may provide a valuable tool for further investigating the elastic response of grain 
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contacts, where the flexibility of the finite-element approach in principal allows taking into 

account complexities that make an analytical treatment unfeasible. Of particular interest 

are the behavior of irregularly shaped grains, the influence of stiffness and strength of the 

cement material, and the influence of coupled fluid flow in the pore space on elastic 

relaxation behavior. This feasibility study may therefore pave the way to addressing a 

broad range of rock-physics research questions. 

 

10.2. Range for substitution parameters 

In chapter 2, we discussed exact solutions to the problem of substitution which depend 

on parameters 2,1  and 2,1 . These non-negative substitution parameters have clear 

mathematical definitions and thus can be easily calculated for various microstructures 

using the FEM. The possible range of these parameters is still to be established and requires 

further investigation.  

10.3. Anisotropic solid substitution relations  

Anisotropic versions of our exact solutions in chapter 2, 4 and 8 can be easily obtained 

by defining the energy density function in terms of full stiffness tensor. In this thesis, we 

only obtain solutions for isotropic case. The practical challenge for such an extension will 

be to constrain the range of the required substitution parameters.  

 

10.4. Strict bounds on substitution and coupled bounds 

In chapter 5, we conjecture that the embedded bounds are strict bounds on solid 

substitution, this is yet to be proven. Also, our embedded bounds are uncoupled in the sense 

that initial effective bulk modulus measurement does not affect the effective shear modulus 

substitution calculation, and vice versa. It is still to be established if bulk and shear 

calculations can be further restricted.   
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10.5. Numerically simulate poromechanical behavior of rocks 

saturated with high-viscosity fluid 

10.5.1. Overview 

Using the method of volume averaging (Whitaker, 1999; de la Cruz et al., 1985; Sahay 

et al., 2001; Sahay, 2008) set of macroscopic equations of wave motion for heterogeneous 

porous media are derived. The porous medium considered consists of an elastic solid frame 

and interconnected pores filled with a viscous Newtonian fluid. This macroscopic 

description improves on Biot theory (1956) and is fit for modeling rocks saturated with 

high viscosity fluids, such as heavy-oil. The description is also consistent from a 

thermodynamic view point (de la Cruz et al., 1993). The resulting set of equations include 

dynamic porosity and fluid strain rate - absent in Biot theory.  

10.5.2. Introduction 

Biot (1956, 1962) published a series of papers discussing an effective medium 

poromechanics model that allows for spatially varying porosity. This model is well 

accepted but assumes static porosity, which means the volume fractions of elastic solid and 

fluid are not changed by a passing acoustic wave. Various authors have pointed out this 

inconsistency from a thermodynamic viewpoint (de la Cruz et al., 1985; Sahay et al., 2001; 

Sahay, 2008). Another significant problem with the very starting point of Biot theory is his 

assumption of the elastic potential function to obtain stress tensors using variational 

methods (de la Cruz et al., 1993). Such an elastic potential function will not be conserved 

for viscous fluids because of the strain-rate dependence. Therefore, strictly speaking, Biot 

theory cannot be used to model rocks saturated with Newtonian or non-Newtonian fluids, 

examples of such fluids include heavy oil, magma, kerogen, etc.  

In this section, we first describe the pore-scale physics equations for a porocontinuum. 

We then derive macroscopic poromechanics equations for mass balance, momentum 

balance, stresses and interfacial forces, using the method of volume averaging (discussed 
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in chapter 3; Whitaker, 1999). Throughout this section, the elastic solid making up the rock 

frame is denoted by superscript “s” whereas the pore saturating Newtonian fluid is denoted 

by superscript “f”.   

10.5.3. Microscopic description 

The standard linearized equations of motion at the pore scale for an elastic solid and 

Newtonian viscous fluid are as follows: 

10.5.3.1. Continuity equations 
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Here, s
ju  and f

jv  are the pore-scale solid displacement and fluid velocity components; s

and f are the solid and fluid densities, respectively. The subscript 0 indicates the 

unperturbed value. 

10.5.3.2. Momentum conservation and stress equations 
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Here, s
jk  and f

jk are the grain-scale stress tensors. We ignore body forces such as gravity. 
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Here, s
lnjkC and f

lnjkC are standard fourth-rank stiffness tensors: 
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sK and
s are the bulk and shear moduli of the elastic solid, and 

f is the shear viscosity 

of the Newtonian fluid. In this analysis, we ignore bulk viscosity, which can also be 

included in equation 10.14. The strain tensors in equations 10.11-10.12 are 
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10.5.3.3. Pore-scale fluid pressure equation  
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where fK is the bulk modulus of compression of the fluid. Fluid pressure is denoted by
fP . 
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10.5.3.4. Boundary conditions 

We impose a no-slip condition at pore interfaces and continuity of traction: 

,f
j

s
j v

t
u





   (10.18) 

.k
f
jkk

s
jk nn      (10.19) 

where kn is the normal vector to the solid-fluid interface. 

 

10.5.4. Macroscopic description 

The method of volume averaging links the averages of derivatives to derivatives of 

averages with the following two averaging theorems: 
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Here A is any quantity associated with the species A, and is defined to be zero everywhere 

outside species A. The symbol ABS refers to the interface between species A and B within 

the averaging volume V; the unit normal jn̂  points from A to B, and A
jv is the velocity of 

the interface between A and B. To denote phasic average, we use an overbar  A ; we use 

a hat symbol  Â  for the average over volume V 
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The volume fraction of species A is denoted by A . Using equations 10.22 and 10.23, we 

can write 
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Both theorems (equations 10.20 and 10.21) can be applied to all species in a multi-phase 

system; for convenience we choose two phases A and B. Theorem 1 represents a three-

dimensional version of the Leibniz rule for interchanging differentiation and integration. It 

has been derived by various authors (Marle, 1967; Slattery, 1967; Whitaker, 1967). 

Theorem 2 is the general transport equation needed to complete the averaging process, 

because the dependence of volume V on time requires special analysis of time derivatives. 

The derivation of both theorems is straightforward using first principles of transport 

equations in the spatial domain. Extensive discussion on this subject can be found in 

Whitaker (1999). 

Using the above volume-averaging theorems (de la Cruz et al., 1985; Sahay et al., 2001; 

Whitaker, 1999; also see chapter 3) we can volume-average microscopic physics equations 

to obtain a macroscopic description as follows: 

10.5.4.1. Macroscopic continuity equations 

Volume-averaging the fluid and solid continuity equations, we get 
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Applying the averaging theorems, we can simplify equation 10.25 as 
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or 
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where  is the porosity. At the interface fsS  (surface between fluid and solid) fA vv  , 

hence the two area integrals cancel each other. Keeping only the first-order terms, we get 
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Simplifying equation 10.26 for an elastic solid results in  
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The quantity dSn̂u j
s
j is the volume swept out by the solid displacement s

ju at the pore 

interfaces; hence the area integral in equation 10.30 is actually the change in volume 

fraction of the solid and is equal to  0 . Therefore, equation 10.30 reduces to 
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10.5.4.2. Macroscopic equations of motion 

Volume-averaging the equations of momentum conservation for the elastic solid and 

for the Newtonian pore fluid we get 

    ,01
 














V

f
jkk

f
j

f dVv
tV

   (10.32) 

and 

 



CHAPTER 10: UNSOLVED PROBLEMS 270 

  .01 dVu
ttV V

s
jkk

s
j

s
 

























   (10.33) 

Equations 10.32 and 10.33 reduce to the following 
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Tensors f
jk0 and   s

jk01 are the macroscopic stresses for the averaging volume V. 

The surface integrals in equations 10.34 and 10.35 are related to each other through the 

boundary condition (equation 10.19) as 
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We will refer to these area integrals as jI , which is the effective body force per unit 

averaging volume V exerted by one phase on the other, arising from the interactions across 

the solid-fluid interfaces. 

10.5.4.3. Macroscopic stress equations 

Volume averaging the pore-scale stress tensors and using the boundary conditions. we 

get  

  ,
2
1

000 













t
vvCP lnf

nl
f

ln
f
jklnjkf

f
jk


  (10.37) 

and 

     ,1
2
11 00 








 ln

f
nl

f
ln

s
jkln

s
jk uuC   (10.38) 



CHAPTER 10: UNSOLVED PROBLEMS 271 

where  
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We can separate the dilatational part of ln from its deviatoric part in the following way:  
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It is convenient to refer to the area integral in equation 10.40 as lnD , i.e. 
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These macroscopic stress equations for the isotropic and homogeneous case reduce to the 

following 
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10.5.4.4. Macroscopic fluid pressure equation 

Volume averaging of the fluid pressure equation yields the following equation 
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which reduces to 
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Further simplification leads to 
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Assuming equilibrated fluid pore-pressure  ff PP   within the averaging volume V, 

equation 10.46 reduces to  
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Equation 10.47 has been reported by various authors (de la Cruz et al., 1985; Sahay et. al., 

2001). We find that for the case of un-equilibrated pore pressure  ff PP  , equation 

10.46 assumes the following form 
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It is not always correct to assume equilibrated fluid pore pressure. For example, naturally 

occurring porous materials such as rocks usually have compliant pores such as cracks or 

broken grain boundaries that often form when an in-situ rock is brought to the surface. In 

fact, such deformations are almost always present in laboratory rock samples (Pride et al., 

2003). Local fluid pressure gradients can create oscillatory fluid flow in and out of thin 

compliant cracks; this mechanism is commonly known as the squirt mechanism (Mavko 

and Nur, 1975; Mavko and Jizba, 1991). The area integral in equation 10.48 quantifies 

squirt flow. We simplify equation 10.48 in the effective porosity section.  
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10.5.4.5. Interfacial body force equation 

The interfacial interaction force term jI  is just the sum of forces exerted by the solid 

component on the fluid in a unit volume of the porous medium. In the macroscopic sense, 

this force results in the relative velocity and the relative acceleration between solid and 

fluid component. Furthermore, in the presence of gravity there will be an induced buoyancy 

force acting on the solid from the fluid. Sahay et al., (2001) point out that this force can be 

simulated by an accelerating porocontinuum. The interfacial interaction force term jI  can 

be written in the following form 

,m
k

b
jk

f
k

s
ka

jk
f

k

s
ka

jkj vv
t

u
t

v
t

uI  






























  (10.49) 

where tensorial parameters a
jk  and a

jk  relate interfacial force linearly to the macroscopic 

motions and are commonly referred to the drag and additional mass parameters, 

respectively. The coefficient b
jk  relates interfacial force to m

jv which is the poro-

continuum acceleration defined as 
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where,  

  .1 00000
fsm     (10.51) 

Additional mass a
jk  in equation 10.51 is same as the 12  coupling parameter discussed 

by Biot (1956). For pipe-like pores, this coupling coefficient can be assumed to be equal 

to   f/ 031 (Bredford et al., 1984). The drag parameter is related to the Darcy law 

permeability ijK  by 
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Due to the dynamic nature of both the drag and additional mass parameters, there are no 

direct methods of making laboratory measurements of these parameters.  

10.5.4.6. Porosity and deviatoric strain equation 

To complete the set of macroscopic equations, we need to define two macroscopic 

constitutive relations that bring micro-scale physics to macroscopic description. Taking the 

case of a homogeneous isotropic medium, we can define these relations as 
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Equation 10.53 relates the change in volume fraction of the fluid to the macroscopic 

divergence of displacements in the solid and fluid components. Parameters
s and f  are 

functions of pore geometry and mechanical properties of the poro-continuum constituents. 

Using equation 10.53 we can obtain the fluid pressure equation of the following form 
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which is essentially same as the classical Biot fluid pressure equation (Biot, 1962; equation 

3.5 in his paper). Similarly, equation 10.54 relates the tensor jkD  to the macroscopic 

deviatoric strain tensor with the parameter  . 
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10.5.5. Summary of macroscopic equations  

Macroscopic continuity equations 
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Macroscopic equations of motion 
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Macroscopic stress equations 
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Macroscopic fluid pressure equations  
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Interfacial body force equation 
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Porosity equation 
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Parameters in terms of effective moduli 

 

Parameters
f , 

s  and 
  can be obtained as discussed in chapter 3 
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where lowfsatK   and lowfsatK   are low-frequency fluid saturated bulk and shear moduli 

respectively. These can be further related to “dry” rock properties using equations 7.4 and 

7.6.  
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10.5.6. Future outlook 

Heavy-oil reservoir compaction can be simulated by solving the macroscopic equations 

(10.56-10.68). It is still to be established the differences between the predictions of the 

shear-rate corrected macroscopic equations and Biot theory.  
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