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Abstract 

The motivation of this dissertation is to improve understanding of the geometrical 

parameters controlling flow properties and to develop toolkits to assist in this task in order 

to further advance Digital Rock Physics. With digital 2-D or 3-D images we can now 

investigate rock geometry thoroughly. Geometrical parameters such as cross-section 

geometry, tortuosity, pore size distribution, and grain size distribution will be discussed in 

detail in each chapter. Then, combining the knowledge of cross-section geometry and 

tortuosity, I show that the pore size distribution is the missing parameter crucial for 

accurately predicting permeability in porous media and I derive the revised Kozeny-

Carman equation. Furthermore, the growing number of digital microstructures makes data 

analysis via machine learning possible. I will also discuss how to employ Machine 

Learning in Digital Rock Physics on permeability prediction from digital microstructures. 

These various approaches are designed to advance our fundamental understanding of rock 

geometry, and to determine the topological factors that are most relevant to the geophysical 

properties that we wish to simulate. 
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 Chapter 1  

Introduction 

This chapter provides the background and addresses trends and challenges in digital 

rock physics. Then, it discusses the motivation of the dissertation and the overview of the 

dissertation. 
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1.1 BACKGROUND  

As Mavko et al. states, Rock Physics is the study of “the relationships between 

geophysical observations and the underlying physical properties of rocks, such as 

composition, porosity, and pore fluid content”. The foundation of Rock Physics is to 

discover and to understand such physical relations through the combination of theoretical 

models and laboratory measurements.  

Digital Rock Physics utilizes digital 2-D or 3-D images of the complex rock 

microstructures (i.e. porous media) to understand these physical relations, and it has 

emerged as a robust way to simulate physical processes and determine physical properties 

such as effective elastic and transport properties at microscale. Numerical simulations in 

Digital Rock Physics include, for example, finite element, finite difference, and Lattice 

Boltzmann flow simulation (Garboczi, 1998; Arns et al., 2002; Keehm, 2003; Andrä et al., 

2013a). 

Digital 3-D volumes of rock microstructures are acquired from 3-D micro x-ray 

computer tomography (µXCT),  which requires several steps of image filtering and 

segmentation before the final 3-D binary-segmented volumes are obtained (Sezgin and 

Sankur, 2004; Andrä et al., 2013a). Andrä et al. (2013) showed that effective elastic and 

transport properties simulated from the 3-D binary volumes are in good quantitative 

agreement with laboratory measurements, even though the analyses are performed at a 

different scale (cm in laboratory measurements vs. µm to mm in numerical simulations).  

Digital 2-D images of rock microstructures can be scanned from 2-D thin sections 

or obtained from slicing digital 3-D μXCT volumes. A thin section is an approximately 30 

μm-thick slice of rock attached to a glass slide with epoxy. The segmentation of scanned 
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thin sections is challenging since the 2-D thin sections are not truly 2-D as a result of the 

wedge areas being covered by epoxy. Also, we cannot directly predict same physical 

properties that require 3-D geometry such as permeability, without using some transforms. 

Despite these drawbacks of digital 2-D images, they serve a purpose: they are widely 

available and inexpensive and are offering higher resolution and larger field of view than 

the 3-D µXCT volumes. 2-D images from a Scanning Electron Microscope (SEM) is also 

useful to quantify microporosity (Flavio S. Anselmetti, 1998). 

Numerical simulations have several advantages over laboratory measurements. For 

one, the numerical simulations take less time than laboratory measurements. For another, 

they can provide accurate measurements of physical properties without damaging the 

sample, which is inevitable in testing friable sands or oil sands (Dvorkin et al., 2008). They 

also allow us to obtain the “trend” of physical relations from subvolumes (i.e. porosity vs. 

permeability, porosity vs. electrical formation factor, and porosity vs. elastic moduli) 

(Dvorkin et al., 2011). The analysis of the 3-D binary segmented volumes can also be 

enhanced by various analytical techniques such as geometrical measurements, porous 

media construction and alteration, and machine learning. These techniques allow us to 

extract parameters from digital 3-D volumes that cannot be extracted through conventional 

laboratory experiments.  
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1.2 TRENDS AND CHALLENGES 

 Towards understanding the “geometry”  

Before the age of Digital Rock Physics, rock “geometry” often served as a fitting 

parameter in empirical or semi-theoretical relations. Many of the geometric parameters 

cannot be measured directly in the laboratory. For example, there is no practical way 

to measure tortuosity or the number of contacts per grain in the laboratory settings. 

Therefore, rock geometry became a mysterious parameter and was treated as such.   

With digital 2-D or 3-D images we can now investigate rock geometry thoroughly. The 

previously mentioned parameters can now be calculated directly from the digital 

images, and we are moving towards a greater understanding of the role played by rock 

geometry in elastic and transport properties.    

 Towards higher resolution and larger scale digital images 

Digital Rock Physics has rapidly emerged as a robust way to simulate physical 

processes because of the availability of high resolution digital 3-D volumes. The main 

question regarding any research in Digital Rock Physics is whether the digital volumes 

in the study reach the representative elementary volume (REV), the volume necessary 

to ensure that simulated physical properties are accurate. The REV varies from property 

to property. For example, it is easier to reach REV for porosity than to reach it for 

permeability. The REV also varies from microstructure to microstructure. It is easier 

to reach REV for homogenous microstructure than for heterogenous microstructure.  

Apart from the REV for the digital microstructure, it is also important to consider that 

the physical simulations themselves must have a certain minimum required number of 
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voxels for the simulation result to be free from boundary condition effects. For example, 

if we want to measure the grains’ diameters, measuring grain diameter at the boundary 

of the image will distort the distribution. 

Improvements in computational power now enable researchers to simulate physical 

properties on higher resolution and larger scale digital samples. However, larger 

volumes require longer computational time. This raises the question of whether for 

cases in which it is not possible to simulate the physical properties on the REV volume, 

it might be possible to simulate the physical properties on small samples and then 

upscale those samples.  

 Towards Digital images analysis via machine learning  

Machine learning in Digital Rock Physics is another prominent trend. The growing 

number of digital microstructures makes data analysis via machine learning possible. 

For example, machine learning can be used for classification of minerals and rock types 

and prediction of geophysical properties. The machine can be trained to recognize 

specific patterns in 2-D and 3-D images to predict physical properties such as 

permeability.  

 Towards realistic numerical simulations imitating the geological processes. 

As the research in Digital Rock Physics grows, we expect to see more research with 

numerical simulations imitating dynamic geological processes such as deposition, 

compaction, and cementation. However, as the simulations get more complicated, 

computational power has to be increased as well to handle complex and dynamic 

simulations.  
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1.3 MOTIVATIONS 

The main motivation of this dissertation is to improve understanding of the 

geometrical parameters controlling flow properties and to develop toolkits to assist in this 

task in order to further advance Digital Rock Physics. Geometrical parameters such as 

cross-section geometry, tortuosity and pore size distribution will be discussed in detail in 

each chapter. After extracting geometrical parameters, I also discuss how to employ 

Machine Learning in Digital Rock Physics on permeability prediction from digital 

microstructures. These various approaches are designed to advance our fundamental 

understanding of rock geometry, and to determine the topological factors that are most 

relevant to the geophysical properties that we wish to simulate. After presenting the 

understanding of geometrical parameters I gained from digital 3-D volumes, I apply this 

knowledge to predict permeability from digital 2-D images.  

Conventionally, we use digital 2-D images only for obtaining porosity, mineralogy, 

and degree of cementation. To increase the use of digital 2-D images, important questions 

are (1) what geometrical features can we extract from the 2-D images, and (2) do they 

provide relevant information about 3-D effective elastic and transport properties? These 

effective properties largely depend on rock geometry. However, we still lack knowledge 

of the difference between 2-D and 3-D rock geometries, which keeps us from 

understanding how these differences are manifested in 2-D and 3-D simulated results of 

effective elastic and transport properties. 

 

 



7 
 

1.4 PREDICTING 3-D ROCK PROPERTIES FROM 2-D IMAGES 

The use of high-resolution 2-D images for rock property prediction has long been 

a challenge in rock physics since they do not contain the complete rock geometry 

information, such as where the grains are in contact and how the pores are connected to 

form a network. For instance, a 2-D slice of closely packed equal spheres shows mostly 

isolated spheres unless the slice is cut right where the spheres are in contact. Rock 

properties such as bulk modulus, shear modulus, and permeability are therefore difficult to 

predict directly from 2-D images. Conventionally, these properties are obtained from core 

measurements, or alternatively, from numerical simulations on 3-D Micro X-ray Computed 

Tomography (µXCT) images. However, core measurements in the laboratory are time 

consuming and often inflict irreversible changes to the rock matrix. Acquiring 3-D µXCT 

images is also not part of the routine core analysis workflow.  

There are, however, advantages to using 2-D thin sections. They are widely 

available and inexpensive, since they are often produced routinely as a part of the core 

analysis workflow. They also offer higher resolution images and a larger field of view 

compared to the 3-D µXCT images. For example, if the computing limitation is at x voxels, 

the square 2-D image will have a maximum size of √x and the cube 3-D image will have 

a maximum size of ∛x. Similarly, the resolution of microscope imaging is Abbe’s limit – 

half the wavelength of the light source, whereas µXCT images are limited by the resolution 

of the sensor – currently ~1µm. 

Various approaches can be employed to estimate 3-D rock properties. These 

approaches include (1) empirical or theoretical relations by simulating 2-D rock properties 

and then transforming them into 3-D rock properties, (2) reconstructing a 3-D binary image 
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and then simulating 3-D rock properties, and (3) directly predicting 3-D rock properties by 

employing machine learning or using the Revised Kozeny-Carman equation (Figure 1-1).  

 

Figure 1-1: Multiple approaches to predict 3-D rock elastic and flow properties from 2-D images. 

 Empirical or theoretical relations  

For the first approach, Berryman and Blair (1986) presented a method for 

estimating permeability from 2-D thin sections by combining electrical formation factor 

with a form of the Kozeny-Carman equation. Lock et al. (2002) proposed a method to 

predict permeability by measuring areas and perimeters of individual pores from 2-D thin 

sections. The Saxena et al. (2017) method involves two steps: (1) simulating permeability 

of the thin section for flow normal to the face using the Lattice Boltzmann Method (LBM) 

flow or the finite element method, and (2) applying 2D to 3D transform using calibration. 

For elastic properties, Saxena and Mavko (2016) predicted bulk and shear modulus by 

power law transform between the effective moduli obtained from 2-D and 3-D simulations.  
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 Reconstructing a 3-D binary image  

Previous attempts of 3-D images reconstruction can be classified into 2 categories: 

(1) using geostatistics-based method, and (2) using process-based method. Geostatistics-

based reconstruction uses 2-D thin sections directly as inputs, whereas process-based 

reconstruction requires user to estimate input parameters such as porosity, the type and 

amount of cementation, grain size distribution, coefficient of friction, and visual estimation 

of compaction, all from 2-D thin sections. 

 Adler et al. (1990) reconstructed artificial porous media by using linear and non-

linear filters of Gaussian random fields to match the porosity and correlation functions of 

Fontainebleau sandstone. Yeong and Torquato (1998) attempted to create 3-D 

reconstructed images of Fontainebleau sandstone by using a two-point probability function 

and a lineal-path function. Manwart et al. (2000) added pore size distribution to 

geostatistics-based reconstruction. Recently, a number of authors have proposed to use 

single normal equation simulation (SNESIM) and sequential indicator simulation (SISIM) 

for reconstructing 3-D images (Keehm, 2004; Okabe and Blunt, 2004, 2005; Kainourgiakis 

et al., 2005). The SNESIM technique was introduced in geostatistics to reconstruct field 

scale structures such as channels (Guardiano and Srivastava, 1993; Strebelle, 2002; 

Strebelle et al., 2003). SNESIM and SISIM simulations scan through the training images 

to build the search tree of data events, which can be used later to calculate conditional 

probabilities at each grid node. By storing data events in the tree structure, the size of 

memory required will grow exponentially. The limited size of patterns prevents SNESIM 

from capturing large scale features. Strebelle (2002) introduced multigrids to solve this 

problem, yet, there is still a problem with artifacts (Mariethoz et al., 2010). Direct sampling 
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helps solve the memory issues by directly sampling the training images randomly, yet 

conditioned to the data event. Statistically, direct sampling can be recognized as a Markov 

chain with high number of neighborhood (Mariethoz and Caers, 2014). Similar to direct 

sampling, Wu et al. used a third-order Markov random field to generate 3-D images of the 

pore space from 2-D. (Wu et al., 2006). 

For previous works on process-based reconstruction, Øren and Bakke (2002) 

included physical processes (sedimentation, compaction, and diagenesis) into their 

process-based 3-D reconstructions. From 2-D thin sections, they extract porosity, the type 

and amount of cementation, grain size distribution, and visual estimation of compaction. 

The limitation of this method is that it only considers spherical grains, and the physical 

process is limited to clastic sediments. Jin et al. developed physics-based reconstruction of 

sedimentary rocks based on grain size distribution, porosity, the type and amount of 

cementation, the coefficient of friction, the bound strength parameters, and the grain 

stiffness moduli (Jin et al., 2003, 2008). Sain (2011) implemented granular dynamics to 

construct granular packs and consolidated microstructures based on porosity, coordination 

number and stress state. The physics-based reconstructions can produce stress-strain 

relationship, but many parameters such as coefficient of friction and coordination number 

cannot be obtained from 2-D images. 

 Directly predicting 3-D rock properties 

The third approach is an ongoing research and is a major part of my dissertation. 

Chapter 6 addresses the Revised Kozeny-Carman method and Chapter 7 employs machine 

learning to predict permeability from 2-D/3-D binary segmented images.  
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1.5 DISSERTATION OVERVIEW 

Chapter 2 Tools and Techniques in Digital Rock Physics  

This chapter focuses on the common tools and techniques used in Digital Rock 

Physics such as artificial microstructure construction, microstructure alternation, and 

microstructure geometric measurements.  

Chapter 3 Review of the Kozeny-Carman Equation 

This chapter presents the literature review of the Kozeny-Carman Equation, 

including the derivation and application of the equation. The Kozeny-Carman equation is 

a semi-empirical model relating permeability in single-phase flow to geometric 

measurements such as porosity, specific surface area, tortuosity, and a geometric factor. 

Through the Kozeny-Carman equation, we can better understand how the rock geometry 

relates to permeability.  

Chapter 4 Cross-Section Geometry 

The purpose of this chapter is to understand the effect of cross-section geometry on 

permeability. Therefore, I focus on the single-phase flow through pipes with various cross-

sections including circular pipes, elliptical pipes, triangular pipes, square pipes, n-cusps 

hypotrochoidal pipes, and sinusoidal pipes. The sinusoidal pipes differ from the other pipes 

in having cross-section that varies sinusoidally along the flow direction. In this chapter, I 

also introduce the Apparent Radius, which can be used in place of the hydraulic radius in 

the Kozeny-Carman equation. By mathematical derivation, I show that this form is valid 

for pipes other than a circular pipe as well.  
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Chapter 5 Tortuosity 

Chapter 5 presents a detailed study of hydraulic tortuosity. Hydraulic tortuosity is 

one of the most important parameters in characterizing fluid flow heterogeneity in porous 

media. The most basic definition of tortuosity is the ratio of average flow path length to 

sample length.  Although this definition seems straightforward, the lack of understanding 

and of proper ways to measure tortuosity make tortuosity one of the most abused 

parameters in rock physics. Often, the tortuosity is obtained from laboratory measurements 

of porosity, permeability, and specific surface area by inverting the KC equation. This 

approach has a major pitfall, as it treats tortuosity as a fitting factor, and the inverted 

tortuosity is often un-physically high. In contrast, I obtained the tortuosity from 3-D 

segmented binary images of porous media using streamlines extracted from a local flux, 

the output from the Lattice Boltzmann flow simulation. After obtaining streamlines from 

each sample, I calculated the distribution of tortuosities and flux-weighted average 

tortuosity. 

Chapter 6 The Revised Kozeny-Carman method  

This chapter combines the knowledge of cross-section pore geometry and tortuosity, 

and I show that the pore size distribution is the missing parameter crucial for accurately 

predicting permeability in porous media. Based on this insight, I derive the revised Kozeny-

Carman equation and show that it significantly improves the permeability estimation 

compared to the original equation for isotropic clastic rocks. 

Chapter 7 Machine Learning in Digital Rock Physics 
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This chapter presents machine learning methods for predicting physical properties 

from binary segmented images. Instead of using conventional numerical simulations, I 

developed machine learning methods and showed that it is possible to predict 3-D transport 

properties by using geometrical features from both 2-D and 3-D µXCT binary segmented 

images. Both multilayer neural network (MNN) and convolutional neural network (CNN) 

algorithms were employed to predict permeability. Training was performed through both 

feed-forward and back-propagation with Bayesian Regularization by using a gradient 

descent algorithm. The inputs for MNN can be geometrical parameters such as Minkowski 

Functionals (porosity, specific surface area, integral of mean curvature (for 3-D), and Euler 

number). For CNN, the inputs can be either 2-D or 3-D binary images. 

Chapter 8 Workflow for Grain Size Distribution  

The aim of this chapter is to develop a robust code to digitally measure grain size 

distribution on a 2-D or 3-D image. I also aim to establish the workflow to estimate the 

grain size distribution from 2-D thin sections through Wicksell’s corpuscle modeling on 

the μXCT images. Furthermore, I improved the precision of the method by incorporating 

principal component analysis to find the eigenvector of grain orientation. This method 

enables us to extract more information from the digital image about the grain size 

distribution such as the grain volume, grain surface area, grain principal axis inclination 

and azimuth, and the number of contacts of each grain. 
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Appendix A: Digital Microstructures  

This section describes digital microstructures used in this dissertation including (1) 

pipes with various cross-sections, (2) artificial and physical sphere packs, and (3) natural 

rocks. 

Appendix B: Numerical Simulations  

This section describes different numerical simulations used in digital rock physics 

such as the Lattice Boltzmann flow simulations and finite element method. I will also 

discuss the effective of discretization in different numerical simulations.  

Appendix C: Codes 

This section compiles all the codes I developed for this dissertation. 
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 Chapter 2  

Tools and Techniques in Digital Rock 

Physics 

This chapter describes various common tools and techniques developed for the 

Digital Rock Physics study in this dissertation. For specific tools such as streamlines 

extraction or grain size distribution measurements, the details will be given in the 

methodology section of their own chapters. For the complete list of the MATLAB codes, 

please refer to Appendix C. These digital tools can be divided into three main categories: 

(1) artificial microstructure construction, (2) microstructure alteration, and (3) 

microstructure geometric measurements.  

These tools and techniques are applied on the binary segmented image of a rock. 

Each voxel in the image belongs to one of two phases: solid or pore space. The solid 

element has the value 1 and the pore element has the value 0.  
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2.1 ARTIFICIAL MICROSTRUCTURE CONSTRUCTION  

The construction of artificial microstructures is one of the most important tools in 

Digital Rock Physics as it helps us to understand rock “geometry” better. Throughout this 

dissertation, various simple artificial microstructures are presented ranging from simple 

ones such as pipes with various cross-sections to more complex ones such as granular 

packs. Artificial microstructures serve as a bridge between traditional Rock Physics and 

Digital Rock Physics since most of the traditional Rock Physics theories are based on 

simplified rock geometry. 

 Pipes of various cross-sections  

The following step allows us to create pipes with any cross-sections. First, we mesh 

the grid by specifying the sample size – defined as the number of pixels in the x, y, z 

directions (nx, ny, nz). Note that in order to create an image of size (nx, ny, nz), arguments 

to the meshgrid function in MATLAB must be given in the order ny, nx, nz.  

[x, y, z] = meshgrid(1:ny, 1:nx, 1:nz); 

Once the grid is created, we modify it by using the equation corresponding to the shape we 

want to create. To create a cylinder, for example, we need to provide a radius (r) and a 

center location [ctx, cty, ctz] for the pipe. The code below generates a solid cylindrical 

pipe. 

tempImage   = sqrt((x-ctx).^2 + (z-ctz).^2) < r; 

Then we can invert the solid, creating a pore space, using an absolute function. 

Cylinder    = abs(1-tempImage); 

We can create pipes of varying cross-section by replacing the constant r with a variable r. 

The following codes are available in Appendix C: 
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1) createCylinder.m 

2) createEllipse.m 

3) createEqTriangle.m 

4) createCrescent.m 

5) createRectangle.m 

6) createHypotrochoid.m 

7) createSinusoidalPipes.m 

 Artificial and physical sphere packs 

The steps for creating a spherical pack are similar as those for creating a pipe. In 

this case, we need to know the center (x,y,z) and the radius of each sphere. This may require 

some scaling if the location and size of the spheres are different from those of the output 

image. MATLAB codes in the Appendix C include 

1) createSCP.m 

2) createFCP.m 

3) createSphericalPack.m 

A Finney pack is a physical random close packing of identical spheres (Finney, 

1970). The Finney pack used here consists of 4021 spheres; the location of each sphere 

was digitally rendered in a 3-D Cartesian coordinate system. The Finney pack acts as a 

bridge between artificial packing models and natural rocks, and it is widely used in 

computational experiments (Jin et al., 2009; Richa, 2010; Sain, 2011; Dvorkin et al., 2012). 

The Finney pack can be generated by calling mkfinney2.exe within MATLAB using the 

following code: 

nx = 200; ny = 200; nz = 200; LX = 12; x0 = 0; y0 = 0; z0 = 0; R = 1; 
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! mkfinney2.exe finneytest.dat nx ny nz LX x0 y0 z0 R 

where nx, ny, and nz define the size of the 3-D binary image, LX is the field of view (the 

smaller the number, the larger the field of view; the maximum value accepted is 12), x0, 

y0, z0 describe the locations of the spheres, and R is the radius of the spheres (R=1 equals 

the original size of the spheres in the Finney Pack). The code mkfinney.exe is the in house 

code written in C++. This code also requires the input file Finney.dat, which consists of 

recorded x,y,z locations for 4021 identical spheres. Figure 2-1 shows different realizations 

of the Finney pack created using r = 0.5, 1, 1.5 and LX = 3, 6, 9, 12.  

 

Figure 2-1:Multiple realizations of the Finney pack using r = 0.5, 1, 1.5 and LX = 3, 6, 9, 12. 
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2.2 MICROSTRUCTURE ALTERATION 

The main objective for microstructure alteration is to study how a change in rock 

geometry would affect the rock’s physical properties. Microstructure geometry can be 

altered in different ways. The simplest way is the dilation and erosion of the grain size. 

We can also alter an image so that it contains only the connected pore space, which 

allows the computation of connected (effective) porosity. To find the connected pore space, 

we first label each group of connected pores by (1) selecting an unlabeled voxel, (2) 

labeling it and all the voxels connected to it, and (3) repeating steps 1 and 2 until all voxels 

in the pore space are labeled (Figure 2-2). To determine effective pore space, we find the 

labelled groups of connected pores that exist in all of the outermost 2-D slices from every 

face, which represent the connected pore space. This process is important for finding 

geometrical parameters used in transport properties because only connected pore space 

contributes to fluid and electrical flow. The MATLAB function 

createConnectedPorespace.m takes a digital 3-D binary image as an input.  

 

 

Figure 2-2:(a) Original image of a Berea sandstone, (b) labelled pore space – different colors represent 
separate components in the pore space, (c) connected pore space. 
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2.3 GEOMETRIC MEASUREMENTS 

This section describes mathematical description of the pore space geometry used in 

this dissertation including (a) Minkowski Functionals, (b) 2-D/3-D shape extraction 

through convolution, (c) 2-D/3-D proximity, (d) 2-D/3-D pore size distribution along 

streamlines, and (e) 2-D/3-D grain size distribution. 

 Minkowski Functionals 

Minkowski Functionals describe the standard geometric measurements for a binary 

image (Vogel et al., 2010). For a d-dimensional space, there are d+1 associated Minkowski 

measurements. For example, a 3-D geometry can be defined by 4 Minkowski 

measurements. For a 3-D model, the first functional 𝑀0 is the total volume of pore space, 

with dimensions 𝐿3. Porosity can be calculated by dividing 𝑀0 by the total volume of solid 

and pore space. The second functional 𝑀1 represents the total surface area between solid 

and pore spaces, with dimensions 𝐿2 . We define a specific surface area as 𝑀1 divided by 

the total volume of solid and pore space. Therefore, a specific surface area has dimensions 

𝐿−1.   The third functional 𝑀2 is the integral of mean curvature (mean breadth) on the 

surface, with dimensions 𝐿. This can be defined as 𝑀2(X) =  
1

2
∫ [

1

r1
+

1

r2
] ds

δx
, where r1 

and r2 are the minimum and maximum radii of curvature on the surface element 𝑑𝑠. The 

last Minkowski Functional, 𝑀3, is the (dimensionless) Euler Characteristic, defined as 

(number of vertices) – (number of edges) + (number of faces) – (number of distinct 

objects). The computation of Minkowski Functionals on 2-D and 3-D binary images is 

based on Legland et al. (2007) MATLAB codes (Legland et al., 2007). 

To understand each geometrical parameter in the Minkowski Functionals, we 

generated idealized shapes such as spheres, cylinders, and octahedron for the study. The 
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geometric measurements on the idealized shapes allow for testing the accuracy of the 

Minkowski algorithm on 3-D binary images and help understanding whether the boundary 

of the image has any effect on the geometric measurements. 

Table 2-1: The Minkowski measurements of idealized geometric shapes. The 3-D image size of each shape 
is 1003 voxels. No. 2,4,6,8 are the inverse structures of No. 1,3,5,7, respectively. Examples of the basic 

shapes associated with this table are shown in Figure 2-3. 

No. Shape Porosity 

(𝑀0) 

Specific 

Surface 

Area 

(𝑀1) 

Integral of 

Mean 

Curvature 

(𝑀2) 

Euler 

Number 

(𝑀3) 

1 A Sphere (r = 40 pixels)  0.2677 0.0207 79 1 

2* 

A cube with spherical hole  

(No.1 Inverse) 

0.7323 0.0207 21 2 

3 A Sphere (r = 50.5 pixels) 0.5396 0.0316 100 1 

4* 

A cube with spherical hole  

(No.3 Inverse) 

0.4604 0.0316 80 -4 

5 

8 isolated spheres (r = 20 

pixels) 

0.267 0.0411 312 8 

6* 

A cube with 8 isolated 

spherical holes 

(No.5 Inverse)  

0.733 0.0411 -212 9 

7 

8 isolated spheres (r = 25 

pixels) 

0.797 0.0485 136 -4 

8* 

A cube with 8 isolated 

spherical holes 

(No.7 Inverse) 

0.203 0.0485 508 -27 

9 Cylinder 0.1245 0.0107 59.3333 1 

10 Three cylinders  0.2843 0.0208 100 1 

11 Octahedron 0.0196 0.005 49 1 

12 8 Octahedrons 0.0794 0.0251 312 8 
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The integral of mean curvature for a cube of size 1003 is 100. When swapping grains 

with pores, the porosity becomes 1-porosity while the specific surface area remains the 

same. The integral of mean curvature changes sign from + to – but the algorithm also 

considers the integral of mean curvature for the outer surface of the cube. Therefore, the 

integral of mean curvature for a cube of size 1003 voxels is 100. If the original structure 

has the integral of mean curvature for a cube of size X, then the inverse structure has the 

integral of mean curvature for a cube of size 100 – X (Table 2-1).  

As the Euler number is a direct count of vertices – edges + faces – solid, it is totaled 

when there is more than one isolated object within the mesh grid. For example, if a sphere 

has an Euler number of 1, a cube with 8 spheres has an Euler number of 8. However, the 

Euler number becomes negative when the spheres start contacting each other. According 

to observation, the higher the negative number, the higher the number of holes in the pore 

space. 

We change the radius of the sphere to examine the effect of grain size on 

Minkowski Functionals (Table 2-2). The mesh grid remains the same size, so when the 

radius = 50 (diameter = 100) the sphere touches the boundary of a mesh cube that has the 

size of 1003 voxels. This is also the point with maximum specific surface area. The change 

in size of the grain does not affect the Euler number: it remains 1 as the radius increases. 

The algorithm approximates the integral of mean curvature to be very close to the 

theoretical value of 2r for the sphere.  
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Table 2-2: Minkowski Functionals on a sphere with the change in radius. 

Radius of the 

Sphere 

Porosity 

(𝑀0) 

Specific 

Surface Area 

(𝑀1) 

Integral of 

Mean 

Curvature 

(𝑀2) 

Euler Number 

(𝑀3) 

10 0.0041 0.0013 19 1 

20 0.0334 0.0051 39 1 

30 0.1129 0.0116 59 1 

40 0.2677 0.0207 79 1 

50 0.5232 0.0316 99 1 

60 0.7974 0.0243 100 1 

70 0.9589 0.0096 100 1 

80 0.9979 0.0011 100 1 

90 1 0 100 1 

100 1 0 100 1 
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Figure 2-3: Idealized geometric shapes, from the left, sphere, simple cubic sphere pack, octahedron; 
cylinder, 3-axis cylinder. The properties of these shapes are summarized in Table 2-1. 

We validated two of the Minkowski Functionals (porosity and specific surface area) 

by creating multiple 3-D straight pipes in a solid frame with circular, elliptical, square, and 

triangular cross-sections with porosities ranging from 5% to 40%. Since the porosity and 

specific surface are known exactly for these shapes, we can test the effect of discretization 

in Minkowski Functionals codes. Figure 2-4 shows that a Minkowski Functionals code can 

accurately calculate porosity for straight pipes with various cross-sections, even when 

porosity is very low. The largest difference between exact and calculated specific surface 

area (SSA) is for the square pipe. The codes employ 26-adjacency for polyhedral 

reconstructions of a structure (Legland et al., 2007), and it may be difficult to accurately 

reconstruct a square pipe in the form of polyhedrons having 26-adjacency. However, the 

SSA of a square pipe may be irrelevant for calculations involving realistic pore geometries. 
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Figure 2-4: Comparison of Minkowski geometrical measurements (porosity -phi, specific surface area – 
SSA) to the theoretical values 

The MATLAB code is available in the paper “Computation of Minkowski measures 

on 2D and 3D binary images,” (Legland et al., 2007). We also provide a MATLAB wrapper 

code that accommodates a cell array input of 3-D images in Appendix C called 

computeMinkowski3D.m. The input can be either a 3-D matrix of a single 3-D porous 

image or a cell array containing 3-D matrices of multiple 3-D porous images. The program 

will run multiple simulations if a cell array containing 3-D matrices is an input. 

 2-D/3-D shape extraction through convolution 

We can extract the location and the number of any specific shape in the 2-D/3-D 

binary image using convolution. For example, Figure 2-5 shows how to find the location 
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of a cross shape within a sample image. After convolving, any pixel in the final image that 

has value equal to the number of pixels in the target shape indicates the location of the 

pattern found in the image. The MATLAB commands for this task are  

[outputImage2D] = conv2(image2D, targetShape2D, ‘same’) 

[outputImage3D] = convn(image3D, targetShape3D, ‘same’) 

where image2D is the 2-D binary segmented image of size (nx*ny) and image3D is the 3-

D binary segmented image of size (nx*ny*nz). The syntax ‘same’ returns the central part 

of the convolution that is the same size as image2D/image3D. 

 

 

Figure 2-5: The convolution of a sample image and a pattern. After convolving, any pixel with value 5 (the 
number of pixels in the pattern) indicates the location of the pattern found in the image. 

 2-D/3-D proximity 

Proximity is the Euclidean distance from each 0 pixel/voxel (pore) to the nearest 1 

pixel/voxel (solid) (Figure 2-6). The size of the 2-D/3-D proximity output matrix is the 

same as the size of an input image.  

For 2-D proximity, we slice a 3-D binary image into 2-D images perpendicular to 

the Z-direction. For each pore pixel, we find the Euclidean distance from that pixel to the 

nearest solid pixel in the plane. 2-D proximity is analogous to the radius of the largest 

inscribed circle centered at the pixel that will fit within the pore space. The 2-D Euclidean 

distance (D) between pixel (𝑥1, 𝑦1) and pixel (𝑥2, 𝑦2) is  
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𝐷 = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2. 

In 3-D proximity, we find the Euclidean distance between each pore voxel and the 

nearest solid voxel. The Euclidean distance (D) between voxel (𝑥1, 𝑦1, 𝑧1 ) and voxel 

(𝑥2, 𝑦2, 𝑧2) is  

𝐷 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2. 

According to this definition, the 3-D proximity for each solid voxel equals zero. 

Finding the 3-D proximity of each voxel is analogous to fitting the largest possible 

inscribed sphere centered at the voxel within the open pore space. The output matrix of 2-

D/3-D proximity can then be used to further analyze pore throats along streamlines.  

 

Figure 2-6: (a) original image of Berea sandstone, (b) contoured 2-D proximity, (c) contoured 3-D 
proximity. 

The MATLAB function that calculates 2-D/3-D proximity is 

compute2D3DProximity.m. This code takes a 3-D image as an input.  

 2-D/3-D pore size distribution along streamlines 

2-D/3-D Proximity can be combined with streamlines to extract 2-D/3-D pore size 

distribution along the streamlines. This process is achieved by using the xyz coordinates of 

streamlines to extract 2-D/3-D proximity along the streamlines. The 2-D/3-D proximity is 

equivalent to fitting a maximum inscribed circle/sphere, and hence some of the proximity 

along the streamlines can represent the pore throat. 
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The MATLAB function that calculates 2-D/3-D pore throat distribution along streamlines 

is compute2D3DProximity.m. This code takes a 3-D images as an input. The image3D 

input can be either a 3-D matrix of a single 3-D porous image or a cell array containing 3-

D matrices of multiple 3-D porous images. The program will run multiple simulations if a 

cell array containing 3-D matrices is the input. 

 

 

Figure 2-7: (Top) 2-D proximity along the streamlines in simple cubic pack (SCP) and (Bottom) 3-D 
proximity along the streamlines in simple cubic pack (SCP). 
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2.4 CONCLUSION 

  With digital 2D and 3-D images it is now possible to investigate rock geometry 

thoroughly. We can now measure geometric parameters that cannot be measured directly 

in the laboratory. The knowledge we gained from these algorithms will be discussed in the 

following chapter.  
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 Chapter 3  

Review of the Kozeny-Carman 

Equation 

This chapter presents the literature review and the derivation of the Kozeny-Carman 

Equation. The Kozeny-Carman equation is a semi-empirical model relating permeability 

in single-phase flow to geometric measurements such as porosity, specific surface area, 

tortuosity, and a geometric factor. Through the Kozeny-Carman equation, we can better 

understand how the rock geometry relates to permeability, but using the equation can create 

problems, which are addressed below.  
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3.1 INTRODUCTION 

The Kozeny-Carman (KC) equation is a well-known semi-empirical equation for 

permeability prediction. It relates single-phase flow permeability ( 𝜅 ) to other rock 

geometric properties such as porosity (ϕ), specific surface area (S), hydraulic tortuosity (τ), 

and a geometric factor (B). The original Kozeny-Carman equation was derived in 1956, 

but the equation is still being used nowadays in the literatures (Carrier, 2003; Gomez et al., 

2010; Ozgumus et al., 2014).  

The Kozeny-Carman equation is derived from the exact solution for laminar flow 

in a straight pipe with circular cross-section, the Hagen-Poiseuille equation, and Darcy’s 

law. Based on the Hagen-Poiseuille equation, the exact solution of volumetric flow rate (𝑞) 

in a round pipe of radius 𝑅, length 𝑙, pressure loss 𝛥𝑃, and viscosity 𝜂 is 

𝑞 = −
𝜋𝑅4

8𝜂

𝛥𝑃

𝑙
. 

 (1) 

The volumetric flow rate can also be calculated using Darcy’s law, which describes 

volumetric flow rate (𝑞) through a porous medium with permeability 𝜅, cross-sectional 

area 𝐴, and length 𝐿:  

𝑞 = −𝜅
𝐴

𝜂

𝛥𝑃

𝐿
 

. (2) 

By equating the Hagen-Poiseuille equation (Equation 1) and Darcy’s Law (Equation 2), 

we can derive the original Kozeny-Carman equation as 

−
𝜋𝑅4

8𝜂

𝛥𝑃

𝑙
= −𝜅

𝐴

𝜂

𝛥𝑃

𝐿
 

, (3) 
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𝜅 =
𝜋𝑅4

8𝐴𝜏
  

, (4) 

where tortuosity 𝜏 equals the ratio of a length of a round pipe 𝑙 to the length of a permeable 

frame 𝐿. The Kozeny-Carman equation can be expressed in terms of porosity (𝜙) and 

specific surface area (S) by relating these two variables to radius 𝑅 based on the assumption 

of a round pipe: 

𝜙 =
𝜋𝑅2𝑙

𝐴𝐿
=

𝜋𝑅2𝜏

𝐴
 

, (5) 

𝑆 =  
2𝜋𝑅𝑙

𝐴𝐿
=

2𝜋𝑅𝜏

𝐴
=

2

𝑅

𝜋𝑅2𝜏

𝐴
=

2𝜙

𝑅
 

. (6) 

By plugging Equations 5 and 6 into Equation 4, the Kozeny-Carman equation can be 

expressed in a more familiar form: 

𝜅 =
1

2

𝜙3

𝑆2𝜏2
   𝑜𝑟    𝜅 = 𝐵

𝜙3

𝑆2𝜏2
 

, (7) 

where 𝐵 is a geometric factor. For the estimation of permeability in a granular medium 

consisting of identical spheres with diameter d, we can express the specific surface area as  

𝑆 =
6(1 − 𝜙)

𝑑
 

. (8) 

Plugging 𝑆 into Equation 7, we get   

𝜅 =
1

72

𝜙3

(1 − 𝜙)2𝜏2
𝑑2 

. (9) 
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3.2 THE KOZENY-CARMAN EQUATION IN DIGITAL ROCK PHYSICS 

In the Kozeny-Carman equation, the porosity and specific surface area can either 

be measured directly from a laboratory experiment or calculated from a 3-D segmented 

binary image of the porous medium under investigation. Previously, the specific surface 

area was difficult to measure and very sensitive to the scale of the images (Keehm et al., 

2001), but now the codes from Minkowski functionals discussed in Chapter 2 can yield 

more accurate specific surface areas (Legland et al., 2007). The tortuosity has often been 

treated merely as a fitting factor due to a lack of understanding of the parameter. From a 

recent study using a database of ordered sphere packs, random sphere packs, and natural 

rocks, we computed the flux-weighted tortuosity directly from streamlines extracted from 

a local flux velocity, which is the output from the Lattice Boltzmann (LB) flow simulation 

(Srisutthiyakorn and Mavko, 2017). The results show that the hydraulic tortuosities are 

mostly in the small range of 1.2-1.6, unlike the typical value used in the literature of 1.5 to 

2.5 (Gomez et al., 2010). Another commonly used fitting factor is the geometric factor, B, 

which describes the effect of pipe cross-sectional shape, and typically also has a small 

range. For example, B is 0.5 in a round pipe, 0.562 in a square pipe, and 0.6 in an equilateral 

triangle pipe (Mavko et al., 2009a).  

With known parameters and without a fitting factor, the Kozeny-Carman equation 

predicts permeability higher by one to two orders of magnitude than that predicted by the 

LB flow simulation. In a recent paper (Srisutthiyakorn and Mavko, 2017), we also searched 

for a missing parameter by exploring the computation of porosity and specific surface area 

using only connected pore space. We found that the connected pore space does not 

contribute to the large difference between the original Kozeny-Carman permeability and 
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LB permeability. Therefore, in order to use the original Kozeny-Carman equation 

effectively, one or two fitting parameters (i.e. tortuosity, geometric factor, and the exponent 

of porosity) are required for most data sets. For example, Bourbié et al. (1987) suggested 

making the exponent of porosity a variable. Mavko and Nur (1997) recommended 

modifying the porosity by subtracting the percolation threshold porosity from the total 

porosity, and using n values, from the derived value of 3 to values of 7-8 at very low 

porosity.  
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 Chapter 4  

Cross-Section Geometry 

This chapter discusses the effect of cross-section pore geometry on permeability. I 

focus on single-phase flow through pipes with various cross-sections including circular 

pipes, elliptical pipes, triangular pipes, square pipes, n-cusps hypotrochoidal pipes, and 

sinusoidal pipes. The sinusoidal pipes differ from the other pipes in having circular cross-

section with diameter that varies sinusoidally along the pipe axis. I also introduce the 

Apparent Radius, which can be used in place of the hydraulic radius in the Kozeny-Carman 

equation to better capture the pipe shape. I will be discussing the flow in complicated rock 

geometries in Chapter 6: The Revised Kozeny-Carman Equation. 
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4.1 INTRODUCTION 

This chapter discusses single-phase flow through pipes with various cross-sections 

and shows that for the Kozeny-Carman form of 𝜙3

𝑆2𝜏2 , porosity (𝜙) and specific surface area 

(𝑆) are not uniquely related to permeability. For pipes with various cross-sections, 𝜙 and 

𝑆 do not determine the radius of a pipe or the size of pore throats, which is critical for 

permeability. This fact can be illustrated by a pipe with a thin throat in the middle. While 

the porosity and the specific surface area of such a pipe are very similar to those of a pipe 

without a throat, the permeability of a pipe with a throat can be orders of magnitude smaller.  

For previous works that studied the flow on pipe models, Mason and Morrow (1991) 

explained the capillary behavior of a perfectly wetting liquid in an irregular triangular 

cross-section pipe since he claimed it offers greater versatility than a circular pipe in 

studying capillary behavior in multiphase flow. Patzek and Kristensen (2001) explained 

the conduit geometry using a Mason-Morrow shape and measured the shape factor from 

corner half angle. Yet, using this method, it is not possible to determine the shape factor 

from a convex cross-section shape where the angles at the corners are not constant. White 

(1974) related the hydraulic radius approximation (the ratio of perimeter to area of 2-D 

cross-section of a pipe) to hydraulic conductivity. Sisavath et al. (2000) made a detailed 

study of the effect of laminar flow on irregular cross-sectional shape.  

In this chapter, we focus on the original form of the Kozeny-Carman equation:  

𝜅 =
𝜋𝑅4

8𝐴𝜏
  

,  
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where 𝜏 is tortuosity, which is the length of flow path (𝑙) divided by the length of the 

permeable frame (𝐿) . Because the original equation always assumes circular pipe 

geometry and uses hydraulic radius directly in 𝑅4, it is guaranteed to underestimate the 

permeability. We solved  this shortcoming by applying the Kozeny-Carman equation in the 

form of 𝑅4 to pipes of any cross-sections, and replacing 𝑅, the radius of the pipe, with the 

“apparent radius”  𝑅𝐴  (the geometric mean between the hydraulic radius  𝑅𝐻   and the 

radius of a circular pipe  𝑅𝐶𝑖𝑟𝑐 that has the same porosity as the pipe under consideration). 

This improved version of Kozeny-Carman equation will require less calibration when it is 

used to fit data.  

Although results obtained using this method still need to be corrected using the 

geometric factor 𝐵, which is determined from the flux in the pipe, they give us a better 

estimation of permeability than the original Kozeny-Carman equation does. Furthermore, 

the geometric factor 𝐵  has a minimal effect on permeability prediction; its value is 

typically assumed to be 0.5 for all complex geometries.  

The Kozeny-Carman equation for non-circular pipes is derived in the same way, by 

relating specific surface area to porosity (Dvorkin, 2009). Table 4-1 summarizes analytical 

solutions for permeability for pipes of various cross-sections. 
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Table 4-1: Analytical solutions for permeability (κ) for pipes with various cross-sectional geometries. The 
parameter n is the number of pipes, l is the length of a pipe, ϕ is porosity, S is specific surface area, τ is 

tortuosity, R is the radius of a circular pipe, a is semi-major axis and b is semi-minor axis for an ellipse, t is 
the side of an equilateral triangle, and s is the side of a square. A is the cross sectional area and L is the 

length of permeable frame. 

Cross-section porosity (ϕ) specific surface area (S ) Kozeny-Carman 
equation 

B 
(Geometric 

Factor) 
Circular 

𝜙 = 𝑛 ∙
𝜋𝑅2𝑙

𝐴𝐿
 𝑆 = 𝑛 ∙  

2𝜋𝑅𝑙

𝐴𝐿
 𝜅 = 𝑛 ∙

1

2

𝜙3

𝑆2𝜏2
 

0.5 

Elliptical 
𝜙 = 𝑛 ∙

𝜋𝑎𝑏𝑙

𝐴𝐿
 𝑆 = 𝑛 ∙  

𝜋√2(𝑎2 + 𝑏2)𝑙

𝐴𝐿
 𝜅 = 𝑛 ∙

1

2

𝜙3

𝑆2𝜏2
 

0.5 

Square 
𝜙 = 𝑛 ∙

𝑠2𝑙

𝐴𝐿
 𝑆 = 𝑛 ∙  

4𝑠𝑙

𝐴𝐿
 𝜅 = 𝑛 ∙ 0.562

𝜙3

𝑆2𝜏2
 

0.562 

Equilateral 
Triangular 𝜙 = 𝑛 ∙

𝑡2 √3
4

𝑙

𝐴𝐿
 

𝑆 =  𝑛 ∙
3𝑡𝑙

𝐴𝐿
 𝜅 = 𝑛 ∙ 0.6

𝜙3

𝑆2𝜏2
 

0.6 

 

 

Figure 4-1: 3-D digital representations of a circular pipe, an elliptical pipe with aspect ratio 0.7, a square 
pipe, and an equilateral triangular pipe. 
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4.2 APPARENT RADIUS 

For pipes with various cross-sections, we propose to use the original form of the 

Kozeny-Carman equation 𝜅 =
𝜋𝑅4

8𝐴𝜏
 to estimate the effective permeability. The only change 

in the equation is that, 𝑅, the radius of a circular pipe, is replaced with 𝑅𝐴 or apparent 

radius (defined below). The Kozeny-Carman can then be expressed as  

𝜅 =
𝐵

𝐵𝐶𝑖𝑟𝑐

𝜋𝑅𝐴
4

8𝐴𝜏
=  

𝜋𝑅𝐴
4

8𝐴𝜏
 (𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐵 = 𝐵𝐶𝑖𝑟𝑐 = 0.5) , (1) 

where A is the cross-sectional area of the permeable frame and 𝜏 is tortuosity.  

We define the apparent radius for any cross-section pipe as the geometric mean 

between hydraulic radius  𝑅𝐻  and the radius of a circular pipe  𝑅𝐶𝑖𝑟𝑐 that has the same 

porosity as the pipe under consideration. 

𝑅𝐴 = 𝜎 ∙ 𝑅𝐶𝑖𝑟𝑐 = (√
𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
)𝑅𝐶𝑖𝑟𝑐 = √𝑅𝐻 ∙ 𝑅𝐶𝑖𝑟𝑐 . (2) 

The hydraulic radius  𝑅𝐻 (Tchelepi, 2015) is defined as two times the porosity (𝜙) divided 

by the specific surface area (𝑆): 

𝑅𝐻 =
2𝜙

𝑆
 . (3) 

In equation 2, 𝜎 can be defined as a shape constant that is always less than or equal 

to 1. Using the shape constant 𝜎, we can describe the permeability reduction resulting from 

changing a circular cross-section to other cross-sections. The only case where 𝜎 is equal to 

1 is 𝑅𝐻 = 𝑅𝐶𝑖𝑟𝑐, which is valid only in a circular pipe since, in that case, the hydraulic 

radius equals the radius of the pipe itself.  
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𝑅𝐻 = 2
𝜋𝑅2 ∙ 𝑙/𝐴𝐿

2𝜋𝑅 ∙ 𝑙/𝐴𝐿
= 𝑅,            𝜎 = √

𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
= 1 . (4) 

𝑅𝐴 for a circular pipe is the largest radius compared to the radii of all non-circular pipes 

with the same porosity. This can be proven using isoperimetric quotient theory. For any 

closed shape, the isoperimetric quotient 𝑄 relates area 𝐴 and perimeter 𝑝 of a closed area 

in a plane (Osserman, 1987) as follows: 

𝑄 =
4𝜋𝐴

𝑝2
≤ 1 . (5) 

The isoperimetric quotient is 1 only if the closed shape is a circle, indicating that 

of all closed shapes with the same area, the circle has the shortest perimeter. In other words, 

a circular pipe has the least specific surface area and thus the highest porosity to specific 

surface area ratio. Since we are treating permeability as a function of 𝑅𝐴
4, for any cross-

section pipe with the same porosity, a circular pipe will have the highest permeability. 

(Figure 4-2).  
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Figure 4-2: For all pipes with the same porosity, a circular pipe has the highest permeability. The ratio of the 
permeability of any cross-section to that of a circular cross-section can be found using the apparent radius 
concept. In this case, the permeability is calculated using Lattice-Boltzman flow simulation. 

Figure 4-3: Cross-section of a square pipe of side s. The hydraulic radius is s/2 which is exactly the radius 
of a circle inscribed in the square. 

 

Using hydraulic radius alone as the radius of a circular pipe in Equation (1) would 

underestimate the permeability even in a simple cross-section pipe. Take a square cross-

section pipe, for example, which has the hydraulic radius: 

 

𝑅𝐻 = 2
𝑠2 ∙ 𝑙/𝐴𝐿

4𝑠 ∙ 𝑙/𝐴𝐿
= 𝑠/2 . (6) 

 

s/2 
s 
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If we use the hydraulic radius of a square as the radius of a circular pipe to find the 

effective permeability, the permeability of a circular pipe (𝐾𝑐𝑖𝑟𝑐𝑅𝐻) of radius s/2 will be 

less than the permeability of a square pipe (𝐾𝑠𝑞) of side s. This is because of porosity 

reduction by neglecting the flow in the corners of the square Figure 4-3. The proof is as 

follows: 

The permeability of the square pipe is 

𝜅𝑠𝑞 = 0.562
𝜙3

𝑆2𝜏2
= 0.562

(𝑠2 ∙
𝑙

𝐴𝐿)
3

(4𝑠 ∙
𝑙

𝐴𝐿)
2

𝜏2

=
0.562

16
∙ 𝑠4 ∙

𝑙

𝐴𝐿
,           

𝜏2 = 1. 

 (7) 

The permeability of a circular pipe with hydraulic radius 𝑅𝐻 =
𝑠

2
 is 

𝜅𝑐𝑖𝑟𝑐𝑅𝐻 = 0.5
𝜙3

𝑆2𝜏2
= 0.5

(𝜋𝑟2 ∙
𝑙

𝐴𝐿)3

(2𝜋𝑟 ∙
𝑙

𝐴𝐿)2𝜏2
= 0.5

(𝜋(𝑠/2)2 ∙
𝑙

𝐴𝐿)3

(2𝜋(𝑠/2) ∙
𝑙

𝐴𝐿)2𝜏2

=
0.5

16
∙
𝜋

4
∙ 𝑠4 ∙

𝑙

𝐴𝐿
,          𝜏2 = 1. 

 (8) 

Therefore, 𝜅𝑐𝑖𝑟𝑐𝑅𝐻 =
0.5

0.562
∙
𝜋

4
𝜅𝑠𝑞 = 0.6987 ∙ 𝜅𝑠𝑞 . As we have seen, finding the 

permeability using hydraulic radius instead of the apparent radius yields a prediction 

approximately 30% less than the theoretical value. 

To demonstrate the utility of the concept of apparent radius, we compared analytical 

solutions developed by Dvorkin (2008) for flow in pipes with the analytical solution 

derived using the apparent radius. The ratio of the permeability of any pipe to the 

permeability of a circular pipe that has the same porosity is constant, based on how surface 
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area changes compared to porosity. The permeability also depends on the geometric factor 

B in a form of the Kozeny-Carman equation that expresses the permeability as κ = B
ϕ3

S2τ2. 

The coefficient B is derived by equating the flux equation to Darcy’s equation. For example, 

B is 0.5 in circular and elliptical pipes, 0.562 in a square pipe, and 0.6 in an equilateral 

triangular pipe. For natural rocks where B is unknown, it is typical to assume that B is equal 

to 0.5. We will demonstrate the utility of the apparent radius by looking at three specific 

examples – elliptical, square, and equilateral triangular pipes – in more detail.  

 An Elliptical Pipe  

For a circular pipe of radius r and an elliptical pipe with semi axes a and b of the 

same cross-sectional area, the equation describing the porosity of both shapes is 

𝜋𝑟2 = 𝜋𝑎𝑏 = 𝜋𝑎2𝛼 , (9) 

𝑎 =
𝑟

√𝛼
 . (10) 

The aspect ratio (𝛼) is the ratio of the semi-minor axis to the semi-major axis          (𝛼 =
𝑏

𝑎
). 

The specific surface area (𝑆) of an elliptical pipe can be expressed in terms of the radius of 

a circular pipe of length 𝑙 within a frame of cross-sectional area A and length 𝐿, 

𝑆 =
𝜋√2(𝑎2 + 𝑏2)𝑙

𝐴𝐿
=

𝜋𝑎√2(1 + 𝛼2)𝑙

𝐴𝐿
=

𝑟

√𝛼
∙
𝜋√2(1 + 𝛼2)𝑙

𝐴𝐿

=
1

√2
(√𝛼 +

1

𝛼
) ∙

2𝜋𝑟𝑙

𝐴𝐿
 

. 

(11) 

Given a constant porosity, the ratio of the permeability of an elliptical pipe to that of a 

circular pipe will be constant and is a function of the aspect ratio:  
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𝐾𝑒𝑙𝑙

𝐾𝑐𝑖𝑟𝑐
=

0.5
𝜙3

𝑆2𝜏2

0.5
𝜙3

𝑆2𝜏2

=

0.5
1

(
1

√2
(√𝛼 +

1
𝛼) ∙

2𝜋𝑟𝑙
𝐴𝐿 )

2

0.5
1

(
2𝜋𝑟𝑙
𝐴𝐿 )

2

=
2

(𝛼 +
1
𝛼)

 . 

(12) 

We can also use the apparent radius to find this ratio. For a circular pipe with the same 

porosity as an elliptical pipe,  

𝜋𝑅𝐶𝑖𝑟𝑐
2 = 𝜋𝑎𝑏 = 𝜋𝑎2𝛼 =

𝜋𝑏2

𝛼
 

. (13) 

𝑅𝐻 =
2𝜙

𝑆
=

2 (𝜋𝑎𝑏 ∙
𝑙

𝐴𝐿)

𝜋√2(𝑎2 + 𝑏2)𝑙
𝐴𝐿

=
2 (𝜋𝑎𝑏 ∙

𝑙
𝐴𝐿)

𝜋𝑎√2(1 + 𝛼2)𝑙
𝐴𝐿

= 𝑏√
2

(1 + 𝛼2)
 

, (14) 

𝑅𝐴 = 𝜎 ∙ 𝑅𝐶𝑖𝑟𝑐 = √
𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
𝑅𝐶𝑖𝑟𝑐 = √

𝑏√
2

(1 + 𝛼2)

𝑏

√𝛼

𝑅𝐶𝑖𝑟𝑐 = √√
2

(𝛼 +
1
𝛼)

𝑅𝐶𝑖𝑟𝑐 

. (15) 

 

Since the effective permeability is proportional to 𝑅4, and the geometric constant 𝐵 of both 

an ellipse and a circular pipe is 0.5, 

𝐾𝑒𝑙𝑙

𝐾𝑐𝑖𝑟𝑐
=

𝐵𝑒𝑙𝑙

𝐵𝑐𝑖𝑟𝑐
∙

2

(𝛼 +
1
𝛼)

=
2

(𝛼 +
1
𝛼)

 . 
(16) 

Hence using the apparent radius yields the correct ratio. 
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 A Square Pipe 

For a circular pipe of radius 𝑟 and a square pipe with side 𝑠 with the same cross-

sectional area, the equation describing the porosity of both shapes is, 

𝜋𝑟2 = 𝑠2 . (17) 

The specific surface area of a square pipe can be expressed in terms of the radius of a 

circular pipe of length 𝑙 within a frame of cross-sectional area A and length 𝐿: 

𝑆 =
4𝑠𝑙

𝐴𝐿
=

4(√𝜋𝑟2)𝑙

𝐴𝐿
=

2

√𝜋
∙
2𝜋𝑟𝑙

𝐴𝐿
 . (18) 

The ratio between the permeability of a square pipe and that of a circular pipe is 

𝐾𝑠𝑞

𝐾𝑐𝑖𝑟𝑐
=

0.562
𝜙3

𝑆2𝜏2

0.5
𝜙3

𝑆2𝜏2

=

0.562
1

(
2

√𝜋
∙
2𝜋𝑟𝑙
𝐴𝐿 )

2

0.5
1

(
2𝜋𝑟𝑙
𝐴𝐿 )

2

=
0.562

0.5
∙
𝜋

4
 . (19) 

Alternatively, using the apparent radius concept, 

𝜋𝑅𝐶𝑖𝑟𝑐
2 = 𝑠2 , (20) 

𝑅𝐻 =
2𝜙

𝑆
=

2 (𝑠2 ∙
𝑙

𝐴𝐿)

4𝑠𝑙
𝐴𝐿

=
𝑠

2
=

𝑅𝐶𝑖𝑟𝑐√𝜋

2
 , (21) 

𝑅𝐴 = 𝜎 ∙ 𝑅𝐶𝑖𝑟𝑐 = √
𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
𝑅𝐶𝑖𝑟𝑐 = √√𝜋

2
𝑅𝐶𝑖𝑟𝑐 . (22) 

Since effective permeability is proportional to 𝑅4, and the geometric constant 𝐵  for a 

square pipe is 0.562 and the geometric constant of a circular pipe is 0.5, 
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𝐾𝑠𝑞

𝐾𝑐𝑖𝑟𝑐
=

𝐵𝑠𝑞

𝐵𝑐𝑖𝑟𝑐
∙ (√√𝜋

2
)

4

=
0.562

0.5
∙
𝜋

4
 . (23) 

 An Equilateral Triangular Pipe 

For a circular pipe of radius r and an equilateral triangular pipe with side t of the 

same cross-sectional area, the equation describing the porosity of both shapes is 

𝜋𝑟2 = 𝑡2 √3

4
 . 

(24) 

Hence,   

𝑡 = √
4𝜋𝑟2

√3
 . 

(25) 

The specific surface area of an equilateral triangular pipe can then be expressed in terms 

of radius of a circular pipe of length 𝑙 within a frame of cross-sectional area A and length 

𝐿: 

𝑆 =
3𝑡𝑙

𝐴𝐿
=

3𝑙

𝐴𝐿
√

4𝜋𝑟2

√3
= (

3

√𝜋√3
)

2𝜋𝑟𝑙

𝐴𝐿
 . 

(26) 

The ratio between the permeability of a square pipe and that of a circular pipe is 

𝐾𝑡𝑟𝑖

𝐾𝑐𝑖𝑟𝑐
=

0.6
𝜙3

𝑆2𝜏2

0.5
𝜙3

𝑆2𝜏2

=

0.6
1

((
3

√𝜋√3
)

2𝜋𝑟𝑙
𝐴𝐿 )

2

0.5
1

(
2𝜋𝑟𝑙
𝐴𝐿 )

2

=
0.6

0.5
∙
√3𝜋

9
 

. 

(27) 

Alternatively, using the apparent radius concept, 
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𝜋𝑅𝐶𝑖𝑟𝑐
2 = 𝑡2 √3

4
 , 

(28) 

𝑅𝐻 =
2𝜙

𝑆
=

2(𝑡2 √3
4 ∙

𝑙
𝐴𝐿)

3𝑡𝑙
𝐴𝐿

=
𝑡

2√3
=

𝑅𝐶𝑖𝑟𝑐√𝜋

√3√3
 

, 

(29) 

𝑅𝐴 = 𝜎 ∙ 𝑅𝐶𝑖𝑟𝑐 = √
𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
𝑅𝐶𝑖𝑟𝑐 = √

√𝜋

√3√3
𝑅𝐶𝑖𝑟𝑐 

. 

(30) 

Since effective permeability is proportional to 𝑅4, and the geometric constant 𝐵 for an 

equilateral triangular pipe is 0.6 and the geometric constant of a circular pipe is 0.5: 

𝐾𝑡𝑟𝑖

𝐾𝑐𝑖𝑟𝑐
=

𝐵𝑡𝑟𝑖

𝐵𝑐𝑖𝑟𝑐
∙
√3𝜋

9
=

0.6

0.5
∙
√3𝜋

9
 . (31) 
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4.3 APPARENT RADIUS IN A PIPE WITH A THROAT  

Consider two circular cross-section pipes of radius R. The pipes are identical with 

the exception of the second one having a throat at the middle of the pipe (Figure 4-4). There 

are insignificant differences in porosity and specific surface areas between these two pipes. 

In addition, since both pipes are straight, both have a tortuosity of 1. Then we might expect 

both permeabilities to be more or less the same. In reality, the permeability obtained using 

Lattice-Boltzmann simulations are different by multiple orders of magnitude. Using the 

Lattice-Boltzmann simulations, we can numerically solve for an effective permeability. 

Assume that the circular pipe has the radius of 0.072 mm, the throat has the radius of 0.002 

mm, and the frame has the size 0.4x0.2x0.2 mm. This means that in the digital 

representation, the circular pipe has the radius of 36 pixels, the throat has the radius of 4 

pixels, and the frame has the size 200x100x100 voxel with dx = 0.002 mm. The 

permeability is 267293 mD for the pipe without a throat, and 1585 mD for the pipe 

containing the throat, a difference of more than two orders of magnitude.    

This example also shows that permeability is not uniquely related to porosity and 

specific surface area. In actual rock geometries, we can think of the throat effect as 

analogous a reduction of the size of the pore throats, resulting, for example, from 

cementation.  
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  This problem can be solved by using the Kozeny-Carman equation with apparent 

radius. To get the approximate apparent radius, we run the permeability calculation using 

the Lattice-Boltzmann simulation and then use the Kozeny-Carman equation to solve for 

R. We can model the apparent radius in a pipe with a throat by using the harmonic mean 

of the radius of a throat 𝑅𝐵 and the radius of the pipe 𝑅𝐶𝑖𝑟𝑐, in which the weights 𝐶1 and 

𝐶2 are such that 𝐶1 + 𝐶2 = 1:  

1

𝑅𝐴
= 𝐶1 ∙

1

𝑅𝐵
+ 𝐶2 ∙

1

𝑅𝐶𝑖𝑟𝑐
 

 (41) 

In our numerical simulations, we increase the size of the throat from 4 pixels to 36 

pixels. The radius of the circular pipe is fixed at 36 pixels. The apparent radius model fits 

the result from numerical simulations if 𝐶1= ¼ and 𝐶2= ¾. 

Figure 4-4: 3-D digital representation of a normal circular pipe and a circular pipe with a throat in the 
middle. 
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Figure 4-5: Comparison of the apparent radius calculated from Lattice Boltzmann simulations to that from 
the apparent radius model. The x axis represents the radius of the throat, which ranges from 4 to 36 pixels. 
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4.4 CONCLUSION 

The concept of apparent radius helps us understand the effect of geometry on 

permeability for non-circular pipes. Of all the pipe shapes with the same porosity, the 

circular pipe has the highest permeability. This is because it has the highest ratio of porosity 

to specific surface area. Any deviation from a circular cross-section results in reduced 

permeability. Apparent radius also helps us use the Kozeny-Carman equation in a form that 

relates permeability to 𝑅4. Although this method of using  𝑅𝐴 still needs to be corrected 

using geometric factor 𝐵, 𝐵 has minimal effect on permeability prediction, and its value is 

typically assumed to be 0.5 for all complex geometries. Our improved version of the 

Kozeny-Carman equation will require less calibration when it is used to fit the data.  
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 Chapter 5  

Tortuosity 

Chapter 5 presents the detailed study of hydraulic tortuosity. The hydraulic 

tortuosity is one of the most important parameters in characterizing the heterogeneity of 

fluid flow in porous media. The most basic definition of tortuosity is the ratio of average 

flow path length to sample length.  Although this definition seems straightforward, the lack 

of understanding and of proper ways to measure tortuosity make it one of the most abused 

parameters in rock physics. Often, the tortuosity is obtained from laboratory measurements 

of porosity, permeability, and specific surface area by inverting the Kozeny-Carman 

equation. This approach has a major pitfall, as it treats tortuosity as a fitting factor, and the 

inverted tortuosity is often un-physically high. In contrast, I obtained the tortuosity from 

3-D segmented binary images of porous media using streamlines extracted from a local 

flux, the output from the Lattice Boltzmann flow simulation. After obtaining streamlines 

from each sample, I calculated the distribution of tortuosities and flux-weighted average 

tortuosity. With the tortuosity measurement from streamlines, every parameter in the KC 

equation can be measured accurately from 3-D segmented binary images. I found, however, 

that the KC equation is still missing some important geometric information needed to 
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predict permeability. With known parameters and without a fitting factor, the KC equation 

predicts permeability higher by one to two orders of magnitude than that predicted by the 

LBM. I searched for a missing parameter by exploring various concepts such as connected 

pore space and pore throat distribution. I found that the connected pore space does not 

contribute to the difference between the KC permeability and LBM permeability, whereas, 

as I illustrate with sinusoidal pipe examples, the pore throat distribution captures what is 

missing from the Kozeny-Carman equation. 
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5.1 INTRODUCTION 

Hydraulic tortuosity was first introduced by Carman in the Kozeny-Carman 

equation to account for the tortuous character of flow through a granular bed (Carman, 

1937). The tortuosity (𝜏) is defined as 𝑙/𝐿 where 𝑙 is the length of a sinuous track and 𝐿 is 

the length of a sample. The Kozeny-Carman equation can be expressed in terms of porosity 

(𝜙), specific surface area (S), geometric factor (𝐵), and tortuosity (𝜏):  

𝜅 =
1

2

𝜙3

𝑆2𝜏2
   𝑜𝑟    𝜅 = 𝐵

𝜙3

𝑆2𝜏2
 . (1) 

The derivation of this equation is in chapter 3. This is the most frequently used and 

therefore most familiar form of the Kozeny-Carman equation, since porosity and specific 

surface area can be easily obtained in laboratory measurements. However, although the 

definition of tortuosity is straightforward, in practice, tortuosity is difficult to measure, 

especially in laboratory settings. The estimation of tortuosity requires visualization or an 

exact tracing of the flow paths, something that is difficult to achieve in natural rocks 

without destroying the samples. It is therefore a common practice to obtain the tortuosity 

by inverting the above equation with known porosity, specific surface area, and 

permeability from laboratory measurements: 

𝜏𝑖𝑛𝑣 = √𝐵
𝜙3

𝑆2𝜅
 . (2) 

This practice often leads to an unphysically high value of the tortuosity. For 

example, Gomez (2010) reported a tortuosity of 2.5 on Fontainebleau sandstones, whereas 

the tortuosity from our streamlines approach is 1.46 (Gomez et al., 2010).  
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There are numerous literatures that focus on tortuosity. For example,  Ghanbarian 

et al. (2013) provided an insightful review on tortuosity. Some researchers defined 

tortuosity as the shortest part through porous media (Arch and Maltman, 1990; Shepard, 

1993; Clennell, 1997). Dullien (1991) described hydraulic tortuosity as the square of the 

flux-weighted average flow path to the sample length. Tortuosity is also often empirically 

related to porosity (Pech, 1984; Du Plessis and Masliyah, 1991; Koponen et al., 1997; 

Mauret and Renaud, 1997; Mota et al., 2001; Ahmadi et al., 2011)   

We developed a new approach to finding tortuosity, conducting the numerical 

simulations of single phase flow using the Lattice Boltzmann (LB) simulation on 3-D 

segmented binary images (computeStreamlines.m). The LB simulation models the Navier-

Stokes flow through the collisions of imaginary particles at a microscopic scale to solve 

for absolute permeability (Fredrich et al., 1999; Keehm, 2003; Andrä et al., 2013b). The 

output of LBM simulation is a local flux velocity field (ux, uy, uz), from which we can 

find the mean flux and permeability from Darcy’s equation. For each sample, we extracted 

streamlines from its local flux field and calculated the flux-weighted average tortuosity. 

The method is described in detail in the methodology section. 

Once we acquired the flux-weighted average tortuosity, we could measure every 

variable in the Kozeny-Carman equation (Equation 1) except a geometric factor (B), which 

is typically assumed to be 0.5. As late as 2001, the specific surface area was difficult to 

measure and very sensitive to the scale of the images (Keehm et al., 2001), but now the 

codes from Minkowski functionals can yield accurate specific surface areas (Legland et al., 

2007). We found, however, that the Kozeny-Carman equation still lacks a parameter 

needed to accurately predict permeability. In order to find this parameter, we are currently 
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investigating multiple options, such as connected pore space and pore throat distribution 

from streamlines. We found that porosity and specific surface area from connected pore 

space images do not affect the permeability calculation from the Kozeny-Carman equation 

and that we can illustrate with sinusoidal pipe examples that the pore throat distribution 

captures what is missing from the Kozeny-Carman equation.  

Our data consist of over 400 segmented binary 3-D image cubes containing (1) 

pipes of various cross-sections, (2) artificial and physical sphere packs, including simple 

cubic packs (SCP), face-centered cubic packs, and Finney packs, and (3) natural rocks 

including Fontainebleau sandstone, Bituminous sands, Berea sandstones, and Grosmont 

carbonates. The details of these microstructures are given in the Appendix A. We found 

that for most samples, the flux-weighted average tortuosity ranges from 1.2 to 1.6, except 

for straight pipes, for which the tortuosity is 1.  

We subsampled all microstructures of natural rocks to the size 200x200x200 voxels 

to gain more samples and to test the variability of the tortuosity. Using subsamples may 

raise the concern that the sample volume is not at the representative elementary volume 

(REV). Generally, REV is defined as the smallest sample volume that can be representative 

of the whole rock for a given attribute (Bear, 1988). Therefore, REV is different for 

different physical properties. The Finney packs at large radii (LX = 3 and LX = 6) may not 

have reached the REV needed for simulating permeability since they have a small aspect 

ratio of cell size to grain diameter. However, we decided to include the results of these two 

volumes in the analysis since they have tortuosities similar to those of the Finney packs at 

small radii (LX = 9 and LX = 12). This also indicates that we can calculate the tortuosity 
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from subsamples as well, and that the tortuosity requires even less REV than the 

permeability. 

Due to our limitation in computational power at the time of the study, we mitigated 

this REV problem by also running the simulation on the entire volume of Berea sandstone 

with reduced resolution (from a resolution of 0.74 μm to one of 3.788 μm to reduce the 

voxels from 1024x1024x1024 to 200x200x200). The flux-weighted average tortuosity 

from the entire volume of Berea sandstone is 1.41, which is slightly higher than the average 

of flux-weighted average tortuosity of 1.38 from the subsamples of Berea sandstones. 
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5.2 DATA AND METHODOLOGY 

We developed a method to extract streamline-based hydraulic tortuosity from local 

flux matrix output (Figure 5-1 and Figure 5-2). This method allows us to directly calculate 

tortuosity from its basic definition, the ratio of average flow path length to sample length.  

 

Figure 5-1: Streamlines in sinusoidal pore channels show laminar flow behavior (low Reynolds number). 

 

 

For extracting streamlines, the first step is to run a Lattice Boltzmann (LB) 

simulation on a 3-D segmented binary image. The LB simulation approximates Navier-

Stokes flow through the collisions of imaginary particles at a microscopic scale to solve 

for absolute permeability (Fredrich et al., 1999; Keehm, 2003; Andrä et al., 2013b). The 

Figure 5-2: Streamlines with 3-D segmented binary images in light grey color in the background. From 
left to right: Finney pack, Berea sandstone, Grosmont carbonate. 
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output of the LB simulation is a local flux vector (ux, uy, uz) at each grid point, from which 

we can find the mean flux and permeability using Darcy’s equation. More details of the 

LB simulation can be found in Appendix B.  

For 3-D porous media, the local flux matrix comprises flux in the x, y, z directions 

for each voxel location. Since the mean flow is along the x-direction, we initialized a 

streamline for each pixel in a y-z cross-section. The streamlines step in the x-direction one 

pixel at a time, with the displacement vector determined from the ux, uy, uz local flux. 

Since after the first time step, the streamlines are unlikely to be on a grid, we interpolated 

the ux, uy, uz local flux using bilinear interpolation to obtain accurate velocity at a given 

location. We employed a no-flow boundary condition by eliminating any streamlines that 

touched the boundary of a sample. Only completed flow paths were used in the tortuosity 

calculation. After generating streamlines, we extracted the following information for each 

streamline:  

1. XYZ coordinate 

A matrix (nx, 3) containing x,y,z coordinate locations along each streamline. 

2. Absolute flux along streamlines 

A vector (nx, 1) containing absolute flux along each streamline  (𝐴 =

√𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2). 

3. Total distance  

A scalar containing total Euclidean distance along a streamline. 

4. Total time 
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A scalar containing total Euclidean distance divided by Darcy’s velocity. 

5. Total flux 

A scalar containing total absolute flux along a streamline. 

6. Individual streamline tortuosity 

A scalar containing total distance divided by sample length. 

Since there are multiple streamlines for each sample, the tortuosity is a distribution. For 

each sample, we then calculated the tortuosity as follows: 

1. Flux-weighted average tortuosity (𝜏𝐹𝑙𝑢𝑥𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑)  

The ratio of average streamline length, weighted by total flux of each streamline, 

to the length of a sample. 

2. Mean tortuosity (𝜏𝑀𝑒𝑎𝑛)  

The ratio of average streamline length to the length of a sample.  

3. Minimum tortuosity (𝜏𝑀𝑖𝑛) 

The ratio of shortest streamline length to the length of a sample. 

4. Maximum tortuosity (𝜏𝑀𝑎𝑥) 

The ratio of longest streamline length to the length of a sample. 

5. Inverted tortuosity from Kozeny-Carman equation (𝜏𝐾𝐶)  

The inverted Kozeny-Carman equation given the known permeability, specific 

surface area, porosity, and a geometrical factor of 0.5 (Equation 2). 
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5.3 HYDRAULIC TORTUOSITY 

Figure 5-3 shows examples for the distributions of individual streamline tortuosity. 

The black lines are flux-weighted average tortuosity and the red lines are inverted tortuosity 

from the Kozeny-Carman equation. We selected one sample of each of the following rocks: 

simple cubic pack (SCP), face-centered cubic pack (FCP), Finney pack, Fontainbleau 

sandstone, Bituminous sand, Berea sandstone, and Grosmont carbonate. From the 

distributions of individual streamline tortuosity, we calculated the minimum tortuosity, 

maximum tortuosity, mean tortuosity, and flux-weighted average tortuosity to represent 

the tortuosity of each sample. In this graph, the inverted tortuosities are all larger than the 

flux-weighted average tortuosities. We plot the inverted tortuosity vs. flux-weighted 

average tortuosity in Figure 5-4. The grey line represents a 1:1 reference line. Figure 5-4 

helps to confirm that for most samples, the inverted tortuosity is larger than flux-weighted 

tortuosity, since the data lie to the right of the reference line. For all samples, excluding 

straight pipes, the flux-weighted tortuosity has quantiles P10 of 1.02, P50 of 1.34, and P90 

of 1.49. In contrast, the inverted tortuosity has P10 of 1.63, P50 of 2.85, and P90 of 11.71. 

We advise against the latter method of calculating tortuosity since it treats tortuosity as a 

fitting factor in the Kozeny-Carman equation, and the Kozeny-Carman equation almost 

always yields unphysically high tortuosity compared to the flux-weighted tortuosity, even 

in the case of artificial sphere packs. 
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Figure 5-4: Inverted tortuosity from the Kozeny-Carman equation (assuming that the geometric factor B is 
0.5) vs. flux-weighted tortuosity in sphere packs and natural rocks. For the Berea sandstone and Grosmont 
carbonate, we selected the subsets of the result from one of every five samples for the representation. The 

black line is a 1:1 reference line. This graph shows that the inverted tortuosity is higher than the flux-
weighted tortuosity in most cases. 

Figure 5-3: Individual streamline tortuosity from simple cubic pack (SCP), face-centered cubic 
pack (FCP), Finney pack, Fontainebleau sandstone, Bituminous sand, Berea sandstone, and 

Grosmont carbonate. The black lines show flux-weighted tortuosity and the grey lines show the 
inverted tortuosity from the Kozeny-Carman equation. 
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For representing the tortuosity of a sample, we chose flux-weighted tortuosity, 

which assigns higher weight to streamlines with higher flux value since streamlines with 

high flux are the ones that govern most of the flow. There is no significant difference 

between flux-weighted average tortuosity and mean tortuosity as observed from the cross-

plot between these two quantities (Table 5-1).  

In Figure 5-5, the flux-weighted average tortuosity is plotted against porosity. The 

face-centered cubic packs and Finney packs show a trend of increasing flux-weighted 

tortuosity when porosity decreases. The porosity reduction caused by grain dilation results 

in closing some of the flow paths and therefore in increased tortuosity. For SCP, the grain 

dilation barely affects tortuosity since the streamlines in SCP are mostly straight. For 

subsamples of natural rocks including Fontainebleau sandstone, Bituminous sand, Berea 

sandstone and Grosmont carbonate, we do not observe any significant relationship between 

porosity and tortuosity. 

In Table 5-1, we report averages of flux-weighted average tortuosity, mean 

tortuosity, minimum tortuosity, and maximum tortuosity for artificial packs and natural 

rocks. In determining the average of the different types of tortuosity, we excluded 0, Inf, 

and NaN values. For artificial packs (labeled with an asterisk), we report only the tortuosity 

from an original image without any grain dilation. Note that the inverted tortuosity from 

the Kozeny-Carman equation is larger than the flux-weighted tortuosity in every case.  
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Figure 5-5: Porosity vs. flux-weighted tortuosity in sphere packs and natural rocks. For the Berea sandstone 
and Grosmont carbonate, we selected the subsets of result from one of every five samples for the 

representation. Finney packs and face-centered cubic packs with dashed lines show a clear trend of 
increasing flux-weighted tortuosity for an increase in grain/sphere boundary. 

Table 5-1: The average of flux-weighted average tortuosity, mean tortuosity, minimum tortuosity and 
maximum tortuosity, and inverted tortuosity from the Kozeny-Carman equation. For artificial packs (with 

an asterisk), we report only tortuosities from an original image without any grain dilation.   
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𝜏𝐹𝑙𝑢𝑥𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 1.01 1.35 1.20 1.25 1.23 1.24 1.46 1.23 1.38 1.38 

𝜏𝑀𝑒𝑎𝑛 1.02 1.35 1.21 1.26 1.23 1.25 1.46 1.24 1.37 1.37 

𝜏𝑀𝑖𝑛 1.00 1.20 1.06 1.07 1.08 1.10 1.27 1.09 1.13 1.17 

𝜏𝑀𝑎𝑥 1.63 2.00 1.75 1.96 1.85 1.86 1.89 2.03 2.25 2.20 

𝜏𝐾𝐶 1.56 1.82 2.54 1.78 1.77 1.83 2.90 1.78 2.55 7.85 
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5.4 APPLYING LB TORTUOSITY TO THE KOZENY-CARMAN EQUATION 

Once we acquire the flux-weighted average tortuosity, we can measure every 

variable in the Kozeny-Carman equation (Equation 1) except a geometric factor (B), which 

is typically assumed to be 0.5 for natural rocks. Figure 5-6 shows the comparison between 

Lattice Boltzmann (LB) permeability and the Kozeny-Carman (KC) predicted permeability 

using flux-weighted average tortuosity and a geometric factor (B) of 0.5. Note that the 

permeability on the y-axis is on the log10 scale, and, therefore, these two permeabilities 

differ by one to two orders of magnitude. The graph also shows that the Kozeny-Carman 

equation can be misleading especially in the case of sinusoidal pipes (i.e., pipes whose 

radius varies along the direction of flow). As porosity increases and pore throat size 

decreases in sinusoidal pipes, LB permeability decreases while KC permeability increases 

(Figure 5-7). LB permeability vs. KC permeability is plotted in Figure 5-8, which clearly 

shows that for most samples, KC permeability is always equal to or greater, even by orders 

of magnitude, than LB permeability. Our ultimate goal is to find a physical parameter to 

shift data to a 1:1 reference line. Figure 5-8 also confirms that the Kozeny-Carman equation 

works well in the sphere packs. Since the differences between LB and KC permeability are 

mostly parallel to the 1:1 reference line, we require for sphere packs only a constant shift 

to fit the Kozeny-Carman equation. However, this is not the case for natural rocks since 

the differences between LB and KC permeability are highly scattered. 
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Figure 5-7: Lattice Boltzmann (LB) permeability vs. Kozeny-Carman (KC) predicted permeability using 
flux-weighted average tortuosity and a geometric factor (B) of 0.5 for sinusoidal pipes. Note that both axes 

are on a linear scale. The black line is a 1:1 reference line. 

Figure 5-6: Porosity vs. Lattice Boltzmann (LB) permeability and Kozeny-Carman (KC) predicted 
permeability using flux-weighted average tortuosity and a geometric factor (B) of 0.5. The permeability is on 
the log10 scale. The sinusoidal pipes (red circles) show that the Kozeny-Carman equation can be misleading. 
As porosity increases and pore throat size decreases in sinusoidal pipes, LB permeability decreases, whereas 

KC permeability increases. 
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Figure 5-8: Lattice Boltzmann (LB) permeability vs. the Kozeny-Carman (KC) predicted permeability 
using flux-weighted average tortuosity and a geometric factor (B) of 0.5. For most samples, KC 

permeability overpredicts permeability by orders of magnitude. Note that both axes are on the log10 scale. 
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5.5 SEARCHING FOR THE MISSING PARAMETER 

The difference between LB and KC permeability varies by orders of magnitude for 

different rocks and within the same rock. For example, Figure 5-8 shows that for Grosmont 

carbonate the difference can be anywhere from 0.3 order of magnitude to two orders of 

magnitude. If the difference were from the geometric factor (B), we would expect the 

geometric factor to be more or less the same within the same rock. B accounts for the 

variation in the cross-sectional shape of the pipes and typically has a small range. For 

example, B is 0.5 in a round pipe, 0.562 in a square pipe, and 0.6 in an equilateral triangle 

pipe (Mavko et al., 2009b). Since the difference between LB and KC permeability is large, 

the difference must result not from a geometric factor but from either the computation of 

parameters from 3-D segmented binary images or from the missing parameter in the 

Kozeny-Carman equation. 

We first investigated the computation of porosity and specific surface area. For the 

flow within porous media, only the connected pore space contributes to fluid flow. 

However, when we calculate porosity and specific surface area, the calculation includes 

isolated pores (pores not connected to other pores) and therefore yields total porosity and 

total specific surface area. We, therefore, developed a workflow to obtain 3-D segmented 

binary images that have only the connected pore space. In order to find the connected pore 

space, we first label each group of connected pores by (1) selecting an unlabeled voxel, (2) 

labeling it and all the voxels connected to it, and (3) repeating steps 1 and 2 until all voxels 

in the pore space are labeled. To determine effective pore space, we find the labeled groups 

of connected pores that exist in all of the outermost 2-D slices from every face, which 

represent the connected pore space. The connected porosity and the connected specific 
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surface area are always less than or equal to the total porosity and the total specific surface 

area. But, when we used both the connected porosity and the connected specific surface 

area in the calculation, we did not observe any significant change in the KC permeability 

(Figure 5-9). Therefore, this is not the cause of the difference between the KC and LB 

permeabilities. 

 

Figure 5-9: Comparison between porosity, specific surface area, and KC permeability of original images vs 
those of connected pore space images. The right plot shows that even though the connected porosity and 

the connected specific surface area are always less than the original ones, their effects cancel out when we 
calculate permeability from the KC equation. 

Another possible cause of the difference is that the Kozeny-Carman equation lacks 

an important parameter governing the flow, and this can be illustrated with sinusoidal pipe 

examples. To do so, we started with the KC equation (Equation 1). However this equation 

lacks a parameter to capture variation in radius or pore throat along the sinusoidal pipes.  

To account for this lack, we can approximate the analytic solution for the 

permeability of sinusoidal pipes by pipes of various radii in series. This will be explained 

in detail in the next chapter. We will show how to incorporate pore throat distribution to 

the Kozeny-Carman equation as a correction to permeability prediction. 
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5.6 CONCLUSION 

In this chapter, we obtained the flux-weighted tortuosity using streamlines 

extracted from a local flux field of the Lattice Boltzmann simulation. This practice allowed 

us to calculate the tortuosity using its original definition, the ratio of average flow path 

length to sample length. We showed that the flux-weighted tortuosity of artificial packs, 

physical packs, and natural rocks are in a small range from 1.2 to 1.6. By comparison, the 

inverted tortuosity from the Kozeny-Carman equation is unphysically high. For example, 

the inverted tortuosity has a mean of 2.55 for Berea sandstone and a mean of 7.85 for 

Grosmont carbonate. We recommend against using this approach for finding tortuosity 

since it simply uses tortuosity as a fitting factor in the Kozeny-Carman equation.  

As one acquires the flux-weighted average tortuosity, one can measure every 

variable in the Kozeny-Carman equation except a geometric factor, which is typically 

assumed to be a constant of 0.5 for natural rocks. For most samples, the Kozeny-Carman 

permeability is greater than or equal to the Lattice Boltzmann permeability, and the 

difference between these two permeabilities can vary by orders of magnitude even within 

the same rock. Therefore, the difference does not arise from a geometric factor but from 

either the computation of parameters from 3-D segmented binary images or from the 

missing parameter in the Kozeny-Carman equation. We explored (1) the computation of 

porosity and specific surface area using connected pore space and (2) the pore throat 

distribution. We found that the Kozeny-Carman equation lacks a parameter to describe 

pore throat distribution, which we illustrated with sinusoidal pipe examples.  
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 Chapter 6  

The Revised Kozeny-Carman  

This chapter combines the knowledge of cross-section pore geometry and tortuosity, 

and I show that the pore size distribution is the missing parameter crucial for predicting 

permeability in porous media accurately. Based on this insight, I derive the revised 

Kozeny-Carman equation and show that it significantly improves the permeability 

estimation compared to the original equation for isotropic clastic rocks. 
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6.1 INTRODUCTION 

In previous chapters, I showed that the well-known Kozeny-Carman (KC) equation 

cannot accurately estimate permeability, as is illustrated by sinusoidal pipe examples 

because pore size distribution is not included the equation. In this chapter, I derive the 

revised KC equation to include pore size distribution in the equation. The analysis was 

performed on sinusoidal pipes, simple cubic packs, face-centered cubic packs, Finney 

packs, Fontainebleau sandstones, and bituminous sands. The results show that the revised 

equation significantly improves the permeability estimation compared to the original 

equation for isotropic clastic rocks, without the help of a fitting parameter.  

Furthermore, I show that it is possible to estimate permeability, which is a 3-D 

physical property, from 2-D images through the revised KC equation. The computational 

time for this method is also minimal compared to the time for typical permeability 

simulation such as Lattice Boltzmann (LB) flow simulations.  

To arrive at these results, I thoroughly analyzed the representative pore size 

distribution by conducting the LB simulations on 3-D binary segmented images to obtain 

permeability and output local flux. I then used the velocity vector from the output local 

flux to trace out the streamlines. For each streamline I computed the pore size distribution 

along the streamline using the distance map in the binary images, as described in Chapter 

2. The analysis from streamlines shows that the important variables in the representative 

pore size distribution are the maximum pore throat size and the representative pore body 

size. Another finding is that the pore size distribution, sorted or unsorted, yields similar 

estimated permeability. This is a positive result that allows researchers to use 2-D thin 

sections to predict permeability by modeling the sorted pore size distribution using various 
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functions such as the linear function, the sinusoidal function, and Gauss error function 

(from cumulative distribution of Gaussian distribution). I then created the model of 

representative pore size distribution using these functions, with the starting point being the 

maximum of the minima of pore morphology (maximum pore throat) and the ending point 

being the minimum of the maxima of pore morphology (representative pore body). I 

showed that using these models in the revised KC equation enhances the estimation of 

permeability even though the inputs are from 2-D thin sections.  
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6.2 THE REVISED KOZENY-CARMAN EQUATION 

Our revised equation assumes that the flow in porous media is similar to the flow 

in several pipes with any cross-section in series instead of the flow in a straight pipe with 

circular cross-section. First, we write the Hagen-Poiseuille equation, the exact solution of 

volumetric flow rate (𝑞) in a round pipe of radius 𝑅 , length 𝑙 , pressure loss 𝛥𝑃 , and 

viscosity 𝜂. It is given by 

𝑞 = −
𝜋𝑅4

8𝜂

𝛥𝑃

𝑙
 . 

(1) 

Then, the pressure loss along a pipe 𝑖 in the series is  

𝛥𝑃𝑖 = −
8𝑞𝜂𝑙𝑖

𝜋𝑅𝑖
4  , 

(2) 

where 𝑙𝑖 is the length and 𝑅𝑖 is the radius of pipe 𝑖. Summing up Equation 2 gives the total 

pressure loss along pipes in series:  

𝛥𝑃𝑡𝑜𝑡𝑎𝑙 = −
8𝑞𝜂

𝜋
∑

𝑙𝑖

𝑅𝑖
4

𝑖

 . 
(3) 

The total volumetric flow rate is then  

𝑞 = −
𝜋𝛥𝑃𝑡𝑜𝑡𝑎𝑙

8𝜂 ∑
𝑙𝑖
𝑅𝑖

4𝑖

 . 
(4) 

The volumetric flow rate can be equated to Darcy’s law, which describes volumetric flow 

rate (𝑞) through a porous medium with permeability 𝜅, cross-sectional area 𝐴, and length 

𝐿:  
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𝑞 = −𝜅
𝐴

𝜂

𝛥𝑃

𝐿
 . 

(5) 

Hence, the permeability of several pipes in series is 

𝜅 =
𝜋𝐿

8𝐴 ∑
𝑙𝑖
𝑅𝑖

4𝑖

 . 
(6) 

If we know the flow of the pipes in series, we can meticulously calculate the 

porosity and specific surface area based on the shape of connected conical frustums (Figure 

6-1). If we were instead to calculate the specific surface area directly from several pipes in 

series without assuming the conical frustum shape, the specific surface area would be 

overestimated. 

 

 

 

 

The porosity of this connected conical frustum is approximately 

𝜙𝑓 = 𝜋 ∑ 𝑅𝑖
2𝑙𝑖

𝑛𝑧
𝑖=1

𝐴𝐿
 . (7) 

The specific surface area of the connected conical frustum is  

𝑆𝑓 =

∑ (𝜋 ∙ (𝑅𝑖 + 𝑅𝑖+1) ∙ √(𝑅𝑖 − 𝑅𝑖+1)2 + ℎ𝑖
2)𝑛𝑧−1

𝑖=1

𝐴𝐿
 

. (8) 

Figure 6-1: An example of connected conical frustums derived from discretizing a sinusoidal pipe. 
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The revised equation is derived by assuming that the primary flow path has the 

shape of segmented conical frustums in series to compute a correction factor 𝛾 . This 

correction factor is the ratio of the permeability of pipes in series (Equation 6) to the 

Kozeny-Carman permeability in its well-known form 𝜅 = 𝐵
𝜙3

𝑆2𝜏2 (Equation 7 in Chapter 

3), computed based on the shape of segmented conical frustums in series. Therefore, the 

parameters we need to estimate the permeability are the radius along the pipes in series 𝑅𝑖, 

the length of each pipe segment 𝑙𝑖, the total length of flow path 𝐿, the porosity of frustum 

shape 𝜙𝑓the specific surface area 𝑆𝑓, and the tortuosity 𝜏𝑓. The tortuosity can be obtained 

from the streamlines, or we can assume that it is within the range of 1.2-1.6 (Srisutthiyakorn 

and Mavko, 2017). This correction factor can then be used as a correction to any original 

form of the Kozeny-Carman equation. 

𝛾 =
𝜅𝑒𝑥𝑎𝑐𝑡(𝑝𝑖𝑝𝑒𝑠)

𝜅𝐾𝐶(𝑝𝑖𝑝𝑒𝑠)
=

𝜋𝐿

8𝐴 ∑
𝑙𝑖
𝑅𝑖

4𝑖

0.5
𝜙𝑓

3

𝑆𝑓
2𝜏𝑓

2

   

(9) 

The revised Kozeny-Carman equation is then 

𝜅𝐾𝐶
′ = 𝛾 ∙  𝜅𝐾𝐶 = 𝛾 ∙

1

2

𝜙3

𝑆2𝜏2
  = 𝛾 ∙

1

72

𝜙3

(1 − 𝜙)2𝜏2
𝑑2 . 

(10) 
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6.3 IMPLEMENTATION 

The main task for implementing the revised Kozeny-Carman equation is to find the 

most representative pore size distribution (𝑅𝑖). We present two approaches we employ to 

find the pore size distribution: (1) streamlines on a distance map and (2) multiple 2-D thin 

sections. 

 Streamlines on distance map approach 

The first approach to compute the pore size distribution is through a combination 

of streamlines and a distance map (Figure 6-2). This approach allows us to find the pore 

size distribution that corresponds to the major flow path and to understand the flow in 

porous media better. The first step is to solve the absolute permeability using the Lattice-

Boltzmann (LB) method. We employed a Lattice-Boltzmann simulation with a time-

dependent fixed flow rate, which handles the complex geometry of the pore space well 

(Keehm and Bosl, 2003). The fixed flow rate scheme simulates the pressure gradient along 

the flow path (Fredrich et al., 1999). It does not require mirroring of the pore space; instead, 

it adds a 15-pixel-wide buffer zone at the inlet and outlet faces (Keehm, 2003). Our 

calculation assumed no-flow boundary conditions on the side walls. The Lattice Boltzmann 

code is implemented in Windows C++ and wrapped in MATLAB; the inputs are a 3-D 

image and the size of a voxel. 

After conducting the numerical simulations, the output of LB simulation is a local 

flux velocity field (ux, uy, uz), from which we were able to find the mean flux and 

permeability using Darcy’s law. For each sample, we extracted streamlines from its local 

flux field. For each streamline, we followed the path along the Z-direction and calculated 

the distance from the streamline to the nearest solid pixel in the plane. This distance is the 
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radius of the largest circle that will fit within the pore space. The final steps were to sort 

this pore size distribution in order to ensure that the pore size changes gradually along the 

primary flow path and then to calculate the correction 𝛾 by using Equation 7 to Equation 

9, assuming that each pore size distribution has the shape of the connected conical frustum.  

We selected the pore size distribution from the streamline that yields the highest correction 

𝛾 factor to be the representative pore size distribution. 

For most samples in this isotropic clastic rock data set, these streamlines with 

maximum correction 𝛾 possess similar properties. They have a starting point, which is the 

maximum of the minima of pore morphology (the maximum pore throat), and an ending 

point, which is a point between the minimum to median of the minima of pore morphology 

(representative of the pore body). After defining these two points, we can model the pore 

size distribution using various equations as explained below. Figure 6-3 shows an example 

of how to model the pore size distribution using a sinusoidal reverse equation.  

 

Original Image
Local flux Image 

(ux, uy, uz) at each 
location

Streamlines (x,y,z), 
flux

Pore size 
distribution from 

distance map

Sort from small to 
large

Lattice Boltzmann Simulation 

Figure 6-2: An example workflow on extracting the representative pore size distribution using 
streamlines in a face-centered cubic pack. 
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 Multiple 2-D thin section approach 

The second approach is to extract the pore size distribution from multiple 2-D thin 

sections by modeling the pore size distribution. The approach still has room for 

improvement, and we plan to invest time on this in the future to reduce the number of slices 

used. Currently we use 50 slices for each sample to obtain the pore size distribution model.  

We first process the images by computing distance images individually for each 

thin section. After processing, we calculate the local minima and find the center location 

of each local minimum. We then use these locations to extract pore sizes from the distance 

image (Figure 6-4). Then for each thin section, we extract the minimum pore size and the 

maximum pore size. After combing the data for all the minima and all the maxima, we can 

find the maximum of the minima pore morphology and the minimum of the maxima pore 

morphology. After finding these two points, we model the sorted pore size distribution 

using various equations such as 

 A linear equation: 𝑦(𝑥) = 𝑚𝑥 + 𝑐  

 A sinusoidal equation: 𝑦(𝑥) = sin (𝑥) 

Figure 6-3: The comparison between the pore size distribution from streamlines and the modeled pore size 
distribution. 
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 A Gauss error equation: 𝑦(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
 

 A sinusoidal reverse equation (the mirror image of the sinusoidal equation on a 

45 degree line) 

 A Gauss error reverse equation (the mirror image of the Gauss error equation 

on a 45 degree line) 
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Figure 6-4: An example workflow of extracting the representative pore size distribution from 2-D thin 
sections. 

Figure 6-5: The representative pore size distribution model using various equations such as linear, 
sinusoidal, Gauss error, sinusoidal reverse, and Gauss error reverse. 
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  Figure 6-5 shows the sensitivity of the correction 𝛾 calculated from the equations 

above for the ratio of pore body to pore throat of 2. The correction 𝛾 ranges from 0.4205 

using the Gauss error equation to 0.7473 using the Gauss reverse equation. Further 

sensitivity of the correction is shown in Figure 6-6, where we plotted the correction for the 

different ratios of pore body to pore throat.  

Figure 6-6: The sensitivity of the correction factor 𝛾 for various ratios of pore body to pore throat. 
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Table 6-1: Correction γ for different ratio of pore body to pore throat.  

rBody/rThroat Linear 
Equation 

Sinusoidal 
Equation 

Gauss Error 
Equation 

Sinusoidal 
Reverse 
Equation 

Gauss Error 
Reverse 
Equation 

1 0.9980 0.9980 0.9980 0.9980 0.9980 
2 0.6054 0.4813 0.4205 0.7170 0.7473 
3 0.3049 0.1860 0.1428 0.4382 0.4744 
4 0.1656 0.0825 0.0583 0.2728 0.3005 
5 0.0979 0.0418 0.0279 0.1771 0.1962 
6 0.0621 0.0234 0.0150 0.1200 0.1329 
7 0.0417 0.0142 0.0088 0.0844 0.0933 
8 0.0292 0.0091 0.0056 0.0613 0.0676 
9 0.0212 0.0062 0.0037 0.0458 0.0503 
10 0.0159 0.0043 0.0025 0.0350 0.0383 
11 0.0122 0.0031 0.0018 0.0273 0.0298 
12 0.0096 0.0023 0.0013 0.0217 0.0236 
13 0.0076 0.0018 0.0010 0.0175 0.0190 
14 0.0062 0.0014 0.0008 0.0143 0.0155 
15 0.0051 0.0011 0.0006 0.0118 0.0128 
16 0.0042 0.0009 0.0005 0.0099 0.0107 
17 0.0035 0.0007 0.0004 0.0083 0.0090 
18 0.0030 0.0006 0.0003 0.0071 0.0077 
19 0.0026 0.0005 0.0003 0.0061 0.0066 
20 0.0022 0.0004 0.0002 0.0053 0.0057 
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6.4 RESULTS  

Figure 6-7 shows the comparison between Lattice Boltzmann (LB) permeability, 

and the Kozeny-Carman (KC) predicted permeability – calculated using flux-weighted 

average tortuosity and a geometric factor (B) of 0.5 – before the correction. Note that the 

permeability on the y-axis is on the log10 scale, and, therefore, LB and KC permeabilities 

differ by one to two orders of magnitude. This is the reason that the KC equation often 

requires a fitting parameter. The figure also shows that, prior to the correction, the Kozeny-

Carman equation is invalid particularly in the sinusoidal pipe examples. As porosity 

increases and pore throat size decreases in sinusoidal pipes, LB permeability decreases 

while KC permeability increases. For most samples, the original KC permeability is always 

greater than or equal to the LB permeability by orders of magnitude.  

When we applied the correction (Figure 6-8), the permeability prediction from the 

KC equation improves significantly. For this figure, we used unsorted pore size distribution 

along the streamline using the distance map. For simple cubic packs (SCP) and Face-

centered cubic packs (FCP), the inaccurate permeability predictions are mostly for the 

realizations with high value of grain dilation (the realization with low porosity and, 

therefore, low permeability). 
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Figure 6-7: Lattice Boltzmann (LB) permeability vs. the Kozeny-Carman (KC) predicted permeability 
using flux-weighted average tortuosity and a geometric factor (B) of 0.5. For most samples, KC 

permeability overpredicts permeability by orders of magnitude. Note that both axes are on the log10 scale. 
The inaccuracy of KC permeability is prominent in sinusoidal pipes. 

 

Figure 6-8: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted 
permeability with unsorted pore size distribution along the streamlines. Note that both axes are on the log10 

scale. 
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Figure 6-9 shows a comparison between Lattice Boltzmann (LB) permeability and 

the revised Kozeny-Carman (KC) predicted permeability with sorted pore size distribution. 

We found that the pore size distribution, sorted or unsorted, yields similar predicted 

permeability. This confirms that knowing every detail of pore size distribution has minimal 

impact on predicting permeability and allows us to model sorted pore size distribution 

using various functions as mentioned before.  

Figure 6-10 to Figure 6-14 show the permeability predicted using pore size 

distribution extracted from multiple 2-D thin sections in various models. The results are 

plotted without any empirical fitting. Although the prediction using only 2-D thin sections 

is not as good as that using streamlines, compared to the original KC equation the plots 

still show that the permeability prediction has improved significantly. 

 

Figure 6-9: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted 
permeability with sorted pore size distribution along the streamlines. Note that both axes are on the log10 

scale. 
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Figure 6-10: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted 
permeability with linear equation pore size distribution model. 

Figure 6-11: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted 
permeability with sinusoidal equation pore size distribution model. 
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Figure 6-12: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted 
permeability with Gauss error equation pore size distribution model. 

 

Figure 6-13: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted 
permeability with sinusoidal reverse equation pore size distribution model. 
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Figure 6-14: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted 
permeability with Gauss error reverse equation pore size distribution. 
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6.5 CONCLUSION 

We proposed a revised Kozeny-Carman (KC) equation, which is based on samples’ 

pore size distribution and apparent radius. This revised KC equation shows that the pore 

size distribution is an essential parameter in the permeability estimation. It also solves the 

problem of misusing either tortuosity or geometric factor as a fitting parameter in the KC 

equation. The pore size distribution in the revised equation can be obtained from either 3-

D µXCT segmented binary images or 2-D thin sections. We showed that using these 

models in the revised KC equation enhances the estimation of permeability without 

introduce empirical fitting even though the inputs are from 2-D thin sections.  
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 Chapter 7  

Machine Learning in Digital Rock 

Physics 

This chapter presents machine learning methods for predicting physical properties 

from binary segmented images. Instead of using these conventional numerical simulations, 

I developed machine learning methods and show that it is possible to predict 3-D transport 

properties, by using geometrical features from both 2-D and 3-D µXCT binary segmented 

images. Both multilayer neural network (MNN) and convolutional neural network (CNN) 

algorithms are employed to predict permeability. Training is performed through both feed-

forward and back-propagation with Bayesian Regularization by using a gradient descent 

algorithm. The inputs for MNN can be geometrical parameters such as Minkowski 

Functionals (porosity, specific surface area, integral of mean curvature (for 3-D), and Euler 

number). For CNN, the inputs are either 2-D or 3-D binary images. 
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7.1 INTRODUCTION 

Permeability is one of the keys to understanding the nature of a hydrocarbon 

reservoir and estimate its production capability. For single-phase fluid flow, the Lattice-

Boltzmann (LB) simulation is the established method for solving for absolute permeability. 

The LB simulation approximates the Navier-Stokes equations at the pore scale, but the 

calculation can be computationally expensive for large digital rock images (Keehm, 2003). 

In contrast, geometric measurements and 2-D/3-D patterns are computationally 

inexpensive even at larger scales, and they can provide insights into the structure of the 

pores and perhaps into how the structure relates to the flow properties. In this project, 

machine learning methods were applied to understand the relationship between geometry 

(extracted features of rock images) and permeability, in the hope to improve accuracy and 

reduce computational time of permeability calculation.  
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7.2 DATA PROCESSING 

Data includes 3-D binary segmented images of Berea sandstone and Fontainebleau 

sandstone. We subsampled the binary images to obtain more samples for machine learning 

(64 images of size 50 voxels from Fontainebleau Sandstone and 1000 images of size 100 

voxels from Berea Sandstone). Permeability was computed from the LB simulation for 

each image to be used as the target in supervised learning. Raw inputs are binary segmented 

3-D images, where at each voxel, the value 1 represents solid and 0 represents pore. Each 

type of feature was extracted from 3 multi-scales: (a) original image, (b) 5x-upscaled image 

(Figure 7-1), and (c) 10x-upscaled image. The upscaling was done by averaging. Upscaling 

ensures that the convolution of the 2-D and 3-D patterns capture the global patterns in 

addition to the local ones. 

 

Figure 7-1: Example for the 5 times upscale in 2D images. 
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7.3 FEATURE EXTRACTION 

 Minkowski Functionals 

 Minkowski Functionals encompass standard geometric measurements for a binary 

segmented image. For a d-dimensional space, there are d+1 associated Minkowski 

measurements (Vogel et al., 2010). For example, a 2-D slice can be defined by 3 

Minkowski measurements (area, perimeter, Euler characteristic), and a 3-D solid can be 

defined by 4 Minkowski measurements (M0 - volume, M1 - surface area, M2 - integral of 

mean curvature (mean breadth), and M3 - Euler characteristic). The units of Minkowski 

measurements are L3, L2, L1, for M0, M1, M2, respectively, while M3 is dimensionless.  

M0 - Volume (L3) 

M0(X) =  V(X) 

M1 - Surface Area (L2) 

M1(X) =  ∫ ds = S(X)
δx

 

M2 - Integral of Mean Curvature (L) 

M2(X) =  
1

2
∫ [

1

r1
+

1

r2
] ds = C(X)

δx

 

M3 - Euler Characteristic (Unitless) 

M3(X)  = vertices - edges + faces – solid 

 2-D Pattern Distribution  

 2-D pattern distribution can be derived from the convolution between the pattern 

and the image. For 2-D, patterns derived from a cross shape template such as that shown 

in Figure 7-2 has been employed. Four pixels adjacent to the center form the template. 

Thus, there are 24 = 16 combinations of the pattern (Figure 7-2). After convolution, the 
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number of times that the pattern appears in the image can be obtained directly by counting 

the pixels that have the value that equals the number of pixels in the pattern (Figure 7-3). 

If the inputs are from 3 multi-scales (original, 5x upscale, 10x upscale) then the total 

number of 2-D patterns is 16*3 = 48 features. 

 For 2-D patterns, if 3-D images are 50x50x50 pixels, then the 3-D images can be 

sliced into 50 2-D images, and the pattern can be added from every 2-D image to form the 

pattern distribution. 

 

 

 

 

 

Figure 7-3: The convolution of a sample image and a pattern. After convolving, the pixel that has value 5 
(the number of total pixel in the pattern) indicates the location of the pattern found in the image. 

 3-D Pattern Distribution 

 For 3-D patterns, there are 6 pixels adjacent to the center of the 3-D cross-shape 

template, resulting in 26 = 64 combinations of pattern. If inputs are from 3 multi-scales 

then the total number of 3-D pattern is 64*3 = 192 Features. 

 

 

Figure 7-2: 16 2-D patterns derived from the cross-shape template. 
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7.4 METHODOLOGY 

 To train the network, both multilayer neural network and convolutional neural 

network can be used. I divided the data into a 3:1:1 ratio for the training, testing and 

validation set. For 5 groups of data, if one group is selected to be the test set and the rest 

of the data are training sets, this results in a 5-fold calculation. However, in both 

methodologies, one validation data set is required to stop the training early, in order to 

prevent over-fitting. Hence, there are a total of 20-fold combinations of cross-validation. 

After 20-fold calculations, the mean square errors are calculated from the average of 20 

cases. For each type of network, I varied the number of nodes (5,10,20) and hidden layers 

(1 to 5). 

 Multilayer Neural Network (MNN) 

There are four steps for neural network design: (1) create a network, (2) configure 

the network, (3) train the network, and (4) validate the network. Questions pertaining to 

network configuration include how to divide data for training, testing, and validating the 

network, and what would be an appropriate number of nodes in a hidden layer. Answers to 

these questions are vital for deriving and constructing a better network. 
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Figure 7-4: Example of the network architecture (Demuth, 2002). 

 I tested a tan-sigmoid function (a = tanh(x)) and a positive or rectified linear 

function (a = max(0,x)) in the hidden layers, and I used a linear function (a = x) in the 

output layers. I also tested the number of nodes and the number of hidden layers to obtain 

the optimal network structure using the feed-forward neural net.  

 Training is done through feed-forward and through back-propagation with 

Bayesian Regularization by using a gradient descent algorithm. Bayesian Regularization 

can be used to help achieve the goal of improved generalization. This can be done by 

adding to the previous performance function another term that includes the mean of the 

sum of the squares of the network weights and biases. To iteratively find weight and bias, 

I employ the Levenberg-Marquardt algorithm, which is a combination of the Gauss-

Newton and the Steepest Descent algorithm. The combination ensures that the Hessian 

matrix (H) is invertible. If µ = 0, the Levenberg-Marquardt algorithm is equivalent to the 

Gauss-Newton algorithm and if µ → ∞, the equation approaches the Steepest Descent 

algorithm: 

χk+1 = χk − [H(xk) + μI]−1JT(xk)e(xk),   

where e is the error vector, H is the Hessian Matrix, and J is the Jacobian matrix. 
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 The performance can be regularized to prevent over-fitting as follows: 

msereg = (1 − δ) ∙  
1

N
∑(ei)

2

N

i=1

+   δ ∙
1

M
∑(wi)

2

M

i=1

 

With this performance function, it is possible to minimize both mean square errors and 

mean square weights. The function therefore forces the network to have a smaller weight 

and bias, leading to smoother output. 

 Convolutional Neural Network 

 The convolutional neural network contains one extra layer (a convolution layer), 

which appears before the general multilayer neural network that is described in the previous 

section. For the convolutional layer, the features are 2-D and 3-D pattern distributions 

extracted from original images and upscaled images. 
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7.5 RESULTS 

Table 7-1 and Table 7-2 summarize the performance of neural networks through 

mean-square errors (MSEs) for feed-forward (FF) and Bayesian Regularization (BR). For 

both FF and BR networks, obtaining features in multi-scales helps to lower test MSEs 

gradually, except for the case of multilayer neural networks (MNN) with Minkowski 

Functionals. The convolution at a larger scale may help capture global geometry and pore 

space connectivity from both 2-D and 3-D image inputs. 

For FF networks, test MSEs of all cases are higher than train MSEs, as expected. 

The advantage of FF networks is that less time is required to train them, as seen from the 

number of iterations in Table 7-1. On the other hand, BR networks have test MSEs as good 

as or better than train MSEs due to the regularization feature. The Bayesian regularization 

algorithm prevents over-fitting by regularizing the function to minimize both weight and 

error. As shown in Table 7-2, the exception to this case is 2-D and 3-D CNN with no multi-

scale, which are over-fitted as test MSEs are higher than train MSEs. 

CNN with 2-D convolution with multi-scales (original, 5x upscale, 10x upscale) 

shows the best testing result overall from both FF and BR. The highest test MSE is from 

the Minkowski Functionals at the original scale, which is as expected since it contains only 

4 features. The regression plots of the predicted data versus the target of features are shown 

in Figure 7-5 and Figure 7-6. The permeability prediction is generally in agreement with 

the target permeability. 

Figure 7-7 shows both training and test MSE for each model and for different 

network architectures from the feed-forward neural net, where the x axis represents the 

number of nodes (5, 10, 20) and the y axis represents the number of hidden layers.  There 
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is no unique network architecture for digital rock images as different types of features have 

different optimum neurons and hidden layers. Although there is no unique answer, there 

are two observable trends from the feed-forward test MSE: (1) CNNs with multi-scale 

favor larger networks with a greater number of nodes in hidden layers and (2) MNN and 

2-D CNN with only original images favor small and simple networks. This may be due to 

the number of features supplied to the network being small.   
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7.6 CONCLUSION 

Deep Learning algorithms such as MNN and CNN can provide insights into 

important geometrical features in porous media. For example, obtaining cross-shape 

features in multi-scales helps improve the prediction because the patterns from a larger 

scale ensure that the neural network captures global pore connections in 2-D/3-D images.  

 The results of using machine learning to predict permeability are promising, 

especially for the case of 2-D CNN in multi-scales. As the cost of acquiring 2-D digital 

images is lower than that of acquiring 3-D digital images, 2-D CNN offers a good 

alternative for permeability prediction when 3-D images are too costly. In the future, we 

plan to include more features, such as pore size distribution, which can be extracted directly 

from the 2-D/3-D binary segmented images. Other interesting topological descriptors  that 

can be used in machine learning include lineal-path, chord-length density function, pore-

size function (Torquato, 2002; Lehmann et al., 2008) and Persistence (Zomorodian and 

Carlsson, 2005). 
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Table 7-1: Results from Feed-Forward MNN using tan-sigmoid function. 

 

 

 

 

 

 

 

 

Model from Feed Forward 

Network 

# Features Train 

MSE 

Test MSE Iterations Correlation 

Value R 

MNN with Minkowski 

Functionals 

4 0.2953e4 3.4147e5 10 0.58684 

MNN with Minkowski 

Functionals (multi-scale) 

504 1.4159e5 3.3678e5 10 0.87675 

CNN with 2-D Convolution 16 1.6324e5 3.6123e5 16 0.50192 

CNN with 2-D Convolution 

(multi-scale) 

48 0.8750e5 2.4307e5 13 0.92475 

CNN with 3-D Convolution 64 1.6410e5 3.3144e5 11 0.63542 

CNN with 3-D Convolution 

(multi-scale) 

192 0.6352e5 2.7400e5 10 0.90228 
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Table 7-2: Results from Bayesian Regularization MNN using rectified linear or positive linear function. 

 

 

 

 

 

 

 

 

 

Model from Bayesian 

Regularization Network 

# Features Train 

MSE 

Test MSE Iterations Correlation 

Value R 

MNN with Minkowski 

Functionals 

4 2.1379e5 1.1631e5 53 0.76999 

MNN with Minkowski 

Functionals (multi-scale) 

504 4.6362e5 2.3999e5 416 0.96225 

CNN with 2-D Convolution 16 1.6802e5 5.2754e4 50 0.88749 

CNN with 2-D Convolution 

(multi-scale) 

48 1.1989e5 1.1049e5 77 0.95353 

CNN with 3-D Convolution 64 2.1789e5 8.4937e4 57 0.86071 

CNN with 3-D Convolution 

(multi-scale) 

192 4.6362e5 2.3999e5 283 0.97467 
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Figure 7-5: Regression plots of the predicted data on the y axis versus the target on the x axis for each 
model. This data is from the feed-forward network. The multi-scale models have better regression since 

they are near a 45 degree line. 

      MNN                               MNN (multi-scale) 

 

 

 

 

2-D CNN                                       2-D CNN (multi-scale) 

 

 

 

 

 

3-D CNN                                       3-D CNN (multi-scale) 
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Figure 7-6: Regression plots of the predicted data on the y axis versus the target on the x axis for each 
model. This data is from the Bayesian regularization network. The multi-scale models have better 

regression since they are near a 45 degree line. 

      MNN                               MNN (multi-scale) 

 

 

 

 

 

 

 

 

2-D CNN                                       2-D CNN (multi-scale) 

 

 

 

 

 

 

 

 

 

3-D CNN                                       3-D CNN (multi-scale) 
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Figure 7-7: Mean square error of each network architecture from Training set (left) and Test set (right). The 
y axis is the number of hidden layers from 1 to 5, and the x axis is the number of nodes, where 1, 2, 3 

correspond to 5, 10, 20 number of nodes.
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 Chapter 8  

Computation of Grain Size Distribution 

in 2-D and 3-D binary images  

Grain Size Distribution is one of the basic measurements for sediment classification. 

The conventional methods for grain size distribution include the sieve method, the laser 

diffraction method, and the point-count method. We aimed to develop a robust computer 

code that simulates these conventional methods. The code can measure grain size 

distribution on 2-D and 3-D binary images using a watershed algorithm to extract out 

individual grains, and using principal component algorithms to find the principal axes. The 

outputs include grain radius for different principal axes, grain volume, grain surface area, 

principal axes inclinations and azimuths, and the number of contacts for each grain. The 

calculated distribution can be volume-based, frequency-based, or grid-based. Digital 

microstructures used in this study include (1) identical sphere packs including a simple 

cubic pack and a Finney pack, and (2) natural rock geometry such as Berea sandstone, 

Castlegate sandstone, and Fontainebleau sandstone. Furthermore, we employed this code 

to provide additional value of information for the µXCT images by using µXCT to create 
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2-D to 3-D model of the grain size distribution, solving what is commonly known as 

Wicksell’s corpuscle problem. We showed that our workflow successfully models a 

generalized 2-D to 3-D grain size distribution for a particular set of natural rocks we include 

in our study. We hope to be able to obtain more µXCT images in the future in order to 

create a universal model covering most types of natural rocks.  
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8.1 INTRODUCTION  

The aim of this study was to develop a robust code to digitally measure grain size 

distribution on a 2-D or 3-D image. We also aimed to establish the workflow to estimate 

the grain size distribution from 2-D thin sections through Wicksell’s corpuscle modeling 

on the μXCT images. Furthermore, we improved the precision of the method by 

incorporating principal component analysis to find the eigenvector of grain orientation. 

This method enables us to extract more information from the digital image about the grain 

size distribution such as the grain volume, grain surface area, grain principal axes 

inclination and azimuth, and the coordination number.  

Grain size distribution is the basic measurement needed for sediment classification. 

It is defined as the distribution of the grains’ diameter and their sorting. The grain size 

distribution can reveal information about the deposition process and sediment sources 

(Visher, 1969). For low energy depositional environments, the distribution becomes wider, 

signifying poorer sorting. For high energy depositional environments, the distribution 

becomes narrower and the grain size tends to be larger (Guéguen and Palciauskas, 1994). 

Well-known grain size classifications include Wentworth (1922) and Friedman and 

Sanders (1978). The grain size distribution has a wide range from 2 µm in clay to 2048 mm 

in cobbles.  

Conventionally, grain size distribution is measured using the sieve method, the laser 

diffraction method, or the point-count method. The sieve method defines a grain diameter 

as the grain passes through a square hole in a sieve. Then, the volume of grains is measured. 

Laser diffraction, on the other hand, is based on forward scattering of monochromatic 

coherent light. This method is more accurate and repeatable (Konert and Vandenberghe, 
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1997). Our code can simulate these two methods of measurement by calculating volume-

based distribution to simulate the sieve method and by calculating frequency-based 

distribution to simulate the laser diffraction method. 

Alternatively, the grain size distribution can be measured by the point-count 

method using the 2-D thin sections. This can be done by laying out a grid on the 2-D thin 

sections. Then, a geologist measures the diameter of the grains at the grid intersections. 

The accuracy of this method is compromised by its bias toward large grains since the large 

grains have a higher probability of being on the grid intersections than small grains. We 

also add the capability in our code to simulate the point-count method by creating a 

specified grid and extract the grain size distribution only from grains that are on the grid 

intersection.  

The estimation of size distribution from lower dimensional sampling probes is one 

of the classical problems in stereology known as Wicksell’s corpuscle problem (Wicksell, 

1925; Exner, 1972; Cruz‐Orive, 1983). Ohser and Sandau (2000) presented an insightful 

summary of the problem. They pointed out that Wicksell’s corpuscle problem is an ill-

posed inverse problem and approached this problem using an EM algorithm (Expectation-

Maximization) following Silverman et al. (1990). In this study, instead of solving an 

inverse problem, we set up forward modeling and solve it as linear least squares problems.  
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8.2 DIGITAL MICROSTRUCTURES  

We studied the grain size distribution of two types of digital microstructures: (1) 

sphere packs for algorithm validation purposes, including a simple cubic pack (SCP), and 

a Finney pack, and (2) natural rocks including Berea sandstone, Castlegate sandstone, and 

Fontainebleau sandstone. Artificial and physical packs were created to validate the grain 

size distribution algorithm since their attributes are known. For natural rocks, we also have 

the scanned 2-D thin sections, which are in the RGB domain and have a resolution of 0.4 

μm. Figure 8-1 shows the 3-D digital microstructures used in this study. 

1. Simple cubic pack (SCP) 

The SCP represents the loosest arrangement of sphere packs, with a porosity of 0.4764. 

The image is 500x500x500 voxels, with a voxel edge length of 2 μm. The SCP image 

contains 83 unit lattices; therefore, each sphere has a diameter of 62 voxels, which is 

equivalent to 0.124 mm.  

2. Finney pack  

The Finney pack is a physical random close packing of identical spheres (Finney, 1970). It 

is often considered a bridge between artificial sphere packs and a variety of natural rocks. 

The location of each sphere in the Finney pack was digitally rendered in a 3-D Cartesian 

coordinate system. The image is 500x500x500 voxels, with a voxel edge length of 2 μm. 

Each sphere in the Finney pack we created has a diameter of 82 voxels, which is equivalent 

to 0.164 mm.   

3. Berea sandstone (Volume: B1 and B5) 
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The Berea sandstone is moderately well sorted, sub-angular to sub-rounded Mississippian 

sandstone, with a mean grain size of approximately 240 µm from the laboratory 

measurement. The segmented µXCT image is 1024x1024x1024 voxels, with a voxel edge 

length of 2.114 μm.  

4. Castlegate sandstone (Volume: CG1) 

The Castlegate sandstone is moderately sorted, sub-angular to sub-rounded Mesozoic 

sandstone, with a mean grain size of approximately 220 µm from the laboratory 

measurement. The segmented µXCT image is 1024x1024x1024 voxels, with a voxel edge 

length of 2.114 μm. 

5. Fontainebleau sandstone (Volume: FB24) 

The Fontainebleau sandstone is moderately well sorted, sub-rounded to rounded, with 

cementation of approximately 20%. The segmented µXCT image is 1024x1024x1024 

voxels, with a voxel edge length of 2.072 μm.  
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Figure 8-1: 3-D µXCT images in this study include a simple cubic pack (SCP), a Finney pack, Berea 
sandstone (B1 and B5), Castlegate sandstone (CG1), and Fontainbleau sandstone (FB24), from top-left to 

bottom-right respectively.  
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8.3 METHODS 

In this section, we discuss our algorithm for grain size distribution measurement, 

the workflow on 2-D thin sections segmentation, and 2-D to 3-D grain size distribution 

modeling (Wicksell’s corpuscle problem). 

 Grain size distribution 

We developed MATLAB functions that can measure different grain properties from 

2-D or 3-D binary segmented images (computeGSD.m). The analysis of grain properties 

involves four major steps (1) employing a watershed algorithm to draw the boundary 

between grains, (2) employing principal component analysis (PCA) to find the principal 

axes unit vectors (eigenvectors) of the grains and extend these vectors to find the grain size, 

(3) dilating the image of each grain to detect any contact with other grains, and (4) 

removing grains at the boundary of the image.  

For the first step, we employed MATLAB’s built-in watershed algorithm 

(watershed.m). To do so, we first created the scalar distance image by calculating the 

Euclidean distance from each solid voxel to its nearest pore voxel. We then employed the 

H-minima transform (imhmin.m) to prevent the image from being oversegmented by the 

watershed algorithm. The H-minima transform uses 8 connected neighborhoods for 2-D 

images and 26 connected neighborhoods for 3-D images. In the distance image, the 

algorithm suppresses all minima whose depth is less than the specified threshold. We set 

the default minima suppression at 3 voxels. The watershed algorithm finds the ridge 

between each pair of local minima in the distance image. 

For the second step, we employed principal component analysis (PCA) to find the 

grain sizes along the grains’ principal axes. We measured the size of grains on two 
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perpendicular axes (a total of 4 radii: (𝑟1 ||𝑟2 )⊥(  𝑟3 ||𝑟4 )) for a 2D image and on three 

perpendicular axes (a total of 6 radii: (𝑟1||𝑟2)⊥( 𝑟3||𝑟4) ⊥( 𝑟5||𝑟6)) for a 3D image Figure 8-2. 

Apart from the grain sizes, we also calculated grains’ orientations. For a 2D image, we 

calculated how far the azimuth of the principal axes deviated from the y-axis. For a 3D 

image, we calculated the azimuth and inclination of the principal axes using spherical 

coordinates following the physics ISO convention.  

The radius 𝑟 is given by  

𝑟 = √𝑥2 + 𝑦2 + 𝑧2. 

The inclination from the z-axis (𝜃) is  

𝜃 = arctan (
𝑦

𝑥
) . 

The azimuthal angle from the x-axis in the counterclockwise direction is 

𝜑 = arccos (
𝑧

𝑟
) . 

For the third step, we dilated each grain by two pixels on the watershed image and 

extracted the indices on each grain boundary. The number of unique indices on each grain 

boundary is the number of contacts per grain (i.e. coordination number).  

After measuring the different properties of grains, the last step is to impose 

boundary conditions by removing grains at the boundary. We detected grains at the image 

boundaries by using the shortest perpendicular distance from the grain centroid to the 

boundary. If this distance was smaller than the radius of the grain, then the grain was at the 

boundary.  
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The code outputs (1) grain centroid - a matrix of Cartesian coordinates for each 

grain, (2) grain radius – a matrix of the radius measured from the grain centroid for each 

grain, (3) grain azimuth, - a matrix of the azimuth of all principal axes, (4) grain inclination 

– a matrix of the inclination of all principal axes, (5) grain volume – a vector of the volume 

in voxel for each grain, and (6) the number of contacts - a vector of the number of adjacent 

grains in contact. The code can also output the plot for the quality control process for the 

2-D grain size distribution measurement. Figure 8-3 shows the example output for a 2-D 

slice for natural rocks. The green circles denote the grains that are included in the 

distribution since no part of them touches the edges of the image.  

For 3-D µXCT images, we subdivided the image into the size 5003 voxels for the 

faster running time of the watershed algorithm. After all of the simulations, the grain sizes 

are added to form the single distribution. 

The grain size distribution can be plotted in volume-based (computeHistVB.m) to 

simulate the sieve method, in frequency-based (computeHistFB.m) to simulate the laser 

diffraction method, or in point-count method (computeHistPC.m). The volume-based 

calculation was done by adding up the grain volume in each bin as the volume fraction of 

the distribution. 

 

Figure 8-2: Principal Component Analysis (PCA) to find the grain sizes along principal axes. We measured 
the size of grains on two perpendicular axes (4 radii) for a 2-D image and three perpendicular axes (6 radii) 

for a 3-D image.  
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Figure 8-3: The plot for quality control in the grain size measurement in a 2-D slice of B1, B5, CG1, and 
FB24. The scale is in voxels. 
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 2-D Thin Sections Segmentation 

The scanned 2-D thin sections are in the RGB domain and have the resolution of 

0.65μm. For each 2-D thin section, we subdivided the image into 5000x5000 pixels for the 

purpose of parallel computing (Figure 8-4). The chosen size of the subdivision was ensured 

to be larger than the largest grains in the 2-D thin sections. We then controlled the quality 

of the measurements by removing any subimages that contained any stains in the physical 

2-D thin sections.    

The K-Means segmentation was performed to transform the 2-D thin sections in 

the RGB domain into segmented binary images containing values 1 for solid and 0 for 

pores. K-Means segmentation is a well-known method for data clustering in various fields 

(Jain, 2010).  

For each of the subimages, we randomly selected 10,000 pixels to form a training 

set for K-Means segmentation. Adding up all the subimages, we had more than 2,100,000 

pixels for the training set. Each pixel contained the set of values between 0-255 for each 

channel in the RGB domain. Then, we selected only a unique set of values to prevent bias 

toward more common colors in the 2-D thin sections. Figure 8-5 and Figure 8-6 show 2-D 

thin sections before and after the segmentation process. 
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Figure 8-4: Example of a 2-D thin section with subdivision grid. The size of the each subimage is 
5000x5000 pixels. 

 

Figure 8-5: Cropped 2-D thin sections from B1, B5, CG1, and FB24 from top-left to bottom-right. 
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Figure 8-6: Cropped segmented 2-D thin sections from B1, B5, CG1, and FB24 from top-left to bottom-
right before image cleaning. 

 2-D to 3-D grain size distribution modeling (Wicksell’s corpuscle problem) 

Wicksell’s corpuscle modeling is a classic stereological problem addressing the 

estimation of the size distribution using a lower dimensional sampling (Stoyan et al., 1995; 

Ohser and Sandau, 2000). Finding the 3-D grain size distribution from a 2-D image is a 

challenging problem since a 2-D image alone does not contain the complete information 

on the distribution. For instance, a 2-D slice of closely packed equal spheres shows isolated 

spheres unless the slice is cut right where the spheres are in contact. To solve this problem, 

we modelled the 2-D to 3-D grain size distribution as a forward modeling problem. Since 

we can obtain both 3-D and 2-D histogram vectors from a µXCT image, we can use the 

µXCT image to understand better the relationship between the 2-D and 3-D grain size 

distribution by constructing the transform matrix. First, we sorted the grain size into the 

histogram using the same bin size for the 2-D and 3-D histogram (computeGSDHist.m). 

We set up the bin size in the log 10 scale with a total of 49 bins. Given the 2-D histogram 
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vector 𝑥 and 3-D histogram vector 𝑦, we related these two vectors through the transform 

matrix 𝑇 as 𝑦 = 𝑇𝑥, or in the matrix form 

[

𝑦1.
.
.

𝑦𝑛

] = [

𝑡11
. . . 𝑡1𝑛.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
𝑡𝑛1

. . . 𝑡𝑛𝑛

] [

𝑥1.
.
.

𝑥𝑛

] 

For each µXCT image, there is a single 3-D histogram vector 𝑦  and there are 

multiple sets of 2-D histogram vectors 𝑥. We assumed that all of the 2-D histogram vectors 

𝑥 contribute to each bin in the 3-D histogram vector independently as follows:   

𝑦𝑖 = ∑ 𝑡𝑖𝑘
𝑛
𝑘=1 𝑥𝑘. 

Then we combined the grain size distribution from different 2-D slices and 

reformed the problem for the histogram bin 𝑖 of the 3-D grain size distribution histogram 

as 

[

𝑦𝑖.
.
.

𝑦𝑖.

] =

[
 
 
 
 
𝑥1

𝑠𝑙𝑖𝑐𝑒 1 . . . 𝑥𝑛
𝑠𝑙𝑖𝑐𝑒 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
𝑥1

𝑠𝑙𝑖𝑐𝑒 𝑚 . . . 𝑥𝑛
𝑠𝑙𝑖𝑐𝑒 𝑚]

 
 
 
 

[

𝑡𝑖1.
.
.

𝑡𝑖𝑛

] 

This system of equations can be solved for the transform matrix of row 𝑖 through 

the linear least-square method (lsqnonneg.m). The process is repeated until all the 

coefficients in the transform matrix are solved. Furthermore, we added 2-D and 3-D grain 

size distribution from other µXCT images to create a more generalized transform matrix. 

For the 3-D grain size distribution prediction from 2-D thin sections, we created the 

generalized transform matrix for all natural rocks: B1, B5, CG1, and FB24. 
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8.4 RESULTS AND DISCUSSIONS 

 Grain Size Distribution 

The grain size distribution code can be validated by using artificial and physical 

sphere packs since their properties are known. The results show that the grain sizes from 

the 3-D µXCT images are constant, which is consistent with their geometry since they are 

packs with equal-sized spheres (Figure 8-7). For sphere packs with identical spheres, there 

is no difference between calculating the grain size distribution using the volume-based 

method, the frequency-based method, or the point-count method since all spheres have the 

same size. For the grain size distribution from 2-D slices of the 3-D µXCT images, Figure 

8-7 shows non-representative grain sizes when the slices are not at the center of the grains.  

Figure 8-8 shows that the program reports the coordination number (number of 

contacts per grain). The coordination number for a sample cubic pack is 6 which is equal 

to its theoretical number. The correlation number from the Finney ranges from 2 to 6 in 

our study. Figure 8-9 shows the coordination number for natural rocks computed from our 

code. The coordination numbers of natural rocks ranges from 1 to 20.  

For natural rocks, Figure 8-10 shows 3-D grain distribution using different methods 

of calculating the distribution (volume-based, frequency-based, and point-count). We 

observe that the small grains especially with diameters in the silt range are not represented 

well in the volume-based method since their grains are small and do not have weight in the 

distribution. However, it is also possible that these small grains really simply noise in the 

digital images as well since their diameters are approximately 3 pixels. The most surprising 

results are from the point-count grain size distributions. The point-count grid detects many 
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small grains. We previously expected that this method would have the higher mean than 

other methods since there is higher probability that the grid will fall on the larger grains.   

 

 

Figure 8-7: 3-D and 2-D Grain size distributions from the µXCT images of a simple cubic pack and a 
Finney pack for algorithm validation. For these sphere packs, volume-based and frequency-based 

distribution show the same results since they are packs of identical spheres. 2-D grain size distribution 
clearly shows how 2-D slicing would result in apparent grain size measurements. 
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Figure 8-8: The coordination number (number of contacts per grain) from 3-D µXCT images of a simple 
cubic pack and a Finney pack. The simple cubic pack shows the coordination number of 6, which is equal 

to the theoretical number. 

 

Figure 8-9: The coordination number (number of contacts per grain) from 3-D µXCT images of natural 
rocks.  
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Figure 8-10: 3-D grain-size distributions with (1) volume-based (simulating the sieve method), (2) 
frequency-based (simulating the laser diffraction method), (3) point-count (simulating the point-count 

method on a 2-D thin section). 
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 2-D to 3-D grain size distribution modeling (Wicksell’s corpuscle problem) 

We compared the predicted 3-D grain size distributions from thin sections to the 3-

D distributions from µXCT images in Figure 8-11 and Figure 8-12. We observed that the 

mean diameters from 2-D thin sections are similar to laboratory measurement. However, 

these numbers are all larger than the mean diameters from µXCT images. This could result 

from the fact that µXCT images have smaller field of view than thin sections. We created 

a transform matrix from all natural rocks in this study and still obtained a strong correlation 

between the prediction and the target. However, when we investigated the transform matrix, 

we found many missing coefficients that may require more µXCT images to model. 
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Figure 8-11: The comparison between 2-D volume-based grain size distribution from the thin section, 
predicted 3-D volume-based grain size distribution, and the 3-D volume-based grain size distribution from 

uXCT image for B1 and B5. 
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Figure 8-12: The comparison between 2-D volume-based grain size distribution from the thin section, 
predicted 3-D volume-based grain size distribution, and the 3-D volume-based grain size distribution from 

uXCT image for CG1 and FB24. 
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Figure 8-13: 2-D to 3-D grain size distribution transform matrix. The color yellow shows the coefficient 
within the transform matrix that is greater than one. 
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8.5 CONCLUSION  

The grain size distribution code is a robust method to find the grain size distribution 

from either 2-D or 3-D binary images. We validated the code using identical sphere packs. 

Using the code can reduce the time and increase the accuracy of acquiring the grain size 

distribution. However, there are still challenges for extracting the grain size distribution 

from digital images. These challenges include the segmentation process from 2-D thin 

sections and the image processing steps to remove noise. Our code can also provide the 

additional value of information to the µXCT images if they are used to create 2-D to 3-D 

grain size distribution model. We showed that our workflow successfully models a 

generalized 2-D to 3-D grain size distribution for a particular set of natural rocks we include 

in our study. We hope to be able to obtain more µXCT images in the future in order to 

create a universal model covering most types of natural rocks. 
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 Appendix A 

Digital Microstructures 

Digital microstructures used in this dissertation except ones in Chapter 8 include (1) 

pipes of various cross-sections, (2) artificial and physical sphere packs, including simple 

cubic packs (SCP), face-centered cubic packs, and Finney packs, and (3) natural rocks 

including Fontainebleau sandstone, Bituminous sands, Berea sandstones, and Grosmont 

carbonates. 
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A.1 PIPES OF VARIOUS CROSS-SECTIONS 

We generated 3-D segmented binary image cubes containing straight pipes with 

different cross-sections, parallel to the x-direction. All images are 200x100x100 voxels, 

with a voxel edge length of 0.002 mm. We specified the center at y0 = 50 and z0 = 50. The 

pipes of various cross-sections in this study are as follows (Figure A-1): 

A.1.1 Round pipes 

We created a total of 9 realizations of straight round pipes with different radii (r) 

ranging from 4 to 36 pixels with increments of 4 pixels.  The equation for creating a round 

pipe is (𝑦 − 𝑦0)
2 + (𝑧 − 𝑧0)

2 < 𝑟2. 

A.1.2 Elliptical pipes  

We created a total of 9 realizations of elliptical pipes whose porosities match the 

porosities of round pipes. The aspect ratio (𝐴𝑅) of elliptical pipes is 0.8. The equation for 

an elliptical pipe is (𝑦−𝑦0

𝑎
)
2

+ (
𝑧−𝑧0

𝑏
)
2

< 𝑟2. To match the porosity of a round pipe, we 

specified 𝑎 =
𝑟

√𝐴𝑅
 and 𝑏 = 𝑎 ∗ 𝐴𝑅. 

A.1.3 Triangle pipes  

We created a total of 9 realizations of equilateral triangle pipes whose porosities 

match the porosities of round pipes. The equations for an equilateral triangle pipe with a 

side length t is  

(1) for  𝑦 < 𝑐𝑡, 𝑎𝑏𝑠(𝑧 − 𝑧0) <
√3𝑡

4
 𝑎𝑛𝑑 𝑧 <  √3 (𝑦 − 𝑦0 +

𝑡

4
) + 𝑐𝑡 and 

(2) for 𝑦 < 𝑐𝑡, 𝑎𝑏𝑠(𝑧 − 𝑧0) <
√3𝑡

4
 𝑎𝑛𝑑 𝑧 <  −√3 (𝑦 − 𝑦0 +

𝑡

4
) + 𝑐𝑡. 
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To match the porosity of a round pipe, we specified 𝑡 = √
4𝜋𝑟2

√3
 . 

A.1.4 Square pipes  

We created a total of 9 realizations of square pipes whose porosities match the 

porosities of round pipes. The equations for a square pipe with a side length a is  

𝑎𝑏𝑠(𝑦 − 𝑦0) <
𝑎

2
, and 

𝑎𝑏𝑠(𝑧 − 𝑧0) <
𝑎

2
  . 

To match the porosity of a round pipe, we specified 𝑎 = √𝜋𝑟2 . 

A.1.5 Sinusoidal pipes 

We created a total of 9 realizations of pipes with sinusoidally varying radius and 

different fractional changes in radius (𝛿 ). The equation for creating sinusoidal cross-

sections is  

(𝑦 − 𝑦0)
2 + (𝑧 − 𝑧0)

2 = 𝑟𝑠
2 

, where 𝑟𝑠 = 𝑟0 (1 + 𝛿 ∙ sin (
𝑡

2𝑟0
)) and 𝑡 = 0: 2𝜋. We specified 𝑟0 to be 20 pixels.  

A.1.6 k-cusps hypotrochoidal pipes 

We created k-cusps hypotrochoidal pipes with k ranges from 3 to 7. For each 

number of k, we created 9 realizations of k-cusps hypotrochoidal pipes whose porosities 

match the porosities of round pipes. Therefore, there is a total of 45 realizations. The 

equation for a k-cusps hypotrochoidal pipe is  

𝑦(𝜃) = 𝑎 ∙ ((𝑘 − 1)𝑐𝑜𝑠(𝜃) + cos((𝑘 − 1)𝜃)) + 𝑦0  

𝑧(𝜃) = 𝑎 ∙ ((𝑘 − 1)𝑠𝑖𝑛(𝜃) + sin((𝑘 − 1)𝜃)) + 𝑧0 
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, where 𝜃 = 0: 2𝜋. To match the porosity of a round pipe, we specified = 𝑟

√2
 . 
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Figure A-1: Pipes with different cross-sections from left to right: round pipes, elliptical pipes, triangle 
pipes, square pipes, sinusoidal pipes, 3-cusps hypotrochoidal pipes, 4-cusps hypotrochoidal pipes, 5-cusps 

hypotrochoidal pipes, 6-cusps hypotrochoidal pipes, 7-cusps hypotrochoidal pipes. 
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A.2 ARTIFICIAL AND PHYSICAL SPHERE PACKS 

For effective elastic and transport properties, the close packing of identical spheres 

has long been studied since it resembles realistic rock geometry. Graton and Fraser (1935) 

studied systematic packings of spheres to form the empirical equation of flow through the 

close packing. The close packing of identical spheres can be a common simple model of 

granular media for both effective elastic and transport properties. Spherical packs can also 

be created from granular dynamic simulations that fully reflect the compaction effect (Silin 

et al., 2004; Sain, 2011). In this dissertation, we generated 3-D segmented binary image 

cubes containing artificial and physical packings of spheres. All images are 200x200x200 

voxels, with a voxel edge length of 12.5 μm. This voxel scale was chosen to make a sphere 

of radius 10 voxels equivalent to fine sand (0.125 mm radius) and a sphere of radius 40 

voxels equivalent to coarse sand (0.5 mm radius). The artificial and physical packings in 

this study is as follows: 

A.2.1 Simple cubic pack (SCP)  

The SCP represents the loosest arrangement of sphere packs, with a porosity of 

0.4764. We created a total of 8 realizations of SCP. The original image of a SCP contains 

33 unit lattices; therefore, each sphere has a radius of 33 voxels. The other 7 realizations 

were created by dilation of grains in the original image by increments of 5% (Figure A-2). 

With grain dilation effects, the porosities of SCP range from 0.0685 to 0.4764.  

A.2.2 Face-centered cubic pack (FCP)  

The FCP represents the densest arrangement of sphere packs, with a porosity of 

0.2595. We created a total of 8 realizations of a FCP. The original image of a FCP contains 

23 unit lattices; therefore, each sphere has a radius of 35 voxels. The other 7 realizations 
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were created by grain dilation at increments of 5% (Figure A-2). With grain dilation effects, 

the porosities of FCP range from 0.0001 to 0.2595.  

A.2.3 Finney Pack  

The Finney pack is a physical random close packing of identical spheres (Finney, 

1970). The Finney pack consists of 4021 spheres, in which the location of each sphere was 

digitally rendered in a 3-D Cartesian coordinate system. The Finney pack acts as a bridge 

between artificial packing models and natural rocks, and it is used widely in computational 

experiments (Jin et al., 2009; Richa, 2010; Sain, 2011; Dvorkin et al., 2012). For this 

experiment, the Finney pack was also digitally altered by changing the radius of each 

sphere (LX = 3,6,9,12) (Figure A-3). For LX equals 3, each sphere has a radius of 40 voxels 

and is equivalent to coarse grain (0.5. For LX equals 12, each sphere has a radius of 10 

voxels and it is equivalent to fine grain (0.125 mm). For each value of LX, we created 8 

realizations of Finney packs with grain dilation at increments of 5%. Therefore, there are 

a total of 24 realizations.  

 

Figure A-2: Grain dilation effect on simple cubic pack (Top) and face-centered cubic pack (Bottom) 
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Figure A-3: Finney packs with different radii of spheres (LX = 3, 6, 9, 12 from left to right). 
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A.3 NATURAL ROCKS 

For natural rocks, we subsampled all 3-D segmented binary images to the size 

200x200x200 voxels in order to gain more samples and to test the variability of the 

tortuosity. The subsamples are large enough to reach the representative elementary volume 

since their calculated properties such as porosity and permeability are similar to these found 

in laboratory measurements. The voxel edge lengths of each subsample are the same as the 

voxel edge lengths of the original images. Natural rock samples in this study are as follows 

(Figure A-4): 

A.3.1 Fontainebleau sandstone  

The original size of Fontainebleau sandstone is 288x288x288 voxels, with a voxel 

edge length of 7.5 μm. We generated 8 subsamples of size 200x200x200 voxels. In this 

case, the subsamples are overlapped. For Fontainebleau sandstone, the laboratory 

measurements found a porosity of approximately 0.152, and a permeability of 

approximately 1100 mD (Andrä et al., 2013a). In comparison, the subsamples have an 

average porosity of 0.147 and a permeability range from 1541.3 mD (P10) to 2094.3 mD 

(P90), with a median (P50) of 1798.6 mD. 

A.3.2 Bituminous sand 

The original size of the bituminous sand image is 400x400x400 voxels, with a voxel 

edge length of 4 μm. We generated 8 subsamples of size 200x200x200 voxels. The 

subsamples have an average porosity of 0.368 and a permeability range from 6520.1 mD 

(P10) to 9300.7 mD (P90), with a median (P50) of 7428.2 mD. This sample was first 

studied in substitution of two phases in a three phase multimineralic rock (Saxena, 2014).  
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A.3.3 Berea sandstone  

The original size of Berea sandstone is 1024x1024x1024 voxels, with a voxel edge 

length of 0.74 μm. We generated 125 subsamples of size 200x200x200 voxels. For Berea 

sandstone, the laboratory measurements found a porosity of approximately 0.20, and a 

permeability range from 200 to 500 mD (Andrä et al., 2013a). In comparison, the 

subsamples have an average porosity of 0.19 and a permeability range from 15.9 mD (P10) 

to 210.5 mD (P90), with a median (P50) of 70.2 mD. 

A.3.4 Grosmont carbonate  

The original size of Grosmont carbonate is 1024x1024x1024 voxels, with a voxel 

edge length of 2.02 μm. We generated 125 subsamples of size 200x200x200 voxels. For 

Grosmont carbonate, the laboratory measurements found a porosity of approximately 0.21, 

and a permeability range from 150 to 470 mD (Andrä et al., 2013a). In comparison, 3-D 

segmented binary samples have an average porosity of 0.19 and a permeability range from 

6.7 mD (P10) to 1262.8 mD (P90), with a median (P50) of 149.4 mD 
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Figure A-4: From top-left to bottom-right, Fontainebleau sandstone, Bituminous sand, Berea sandstone, 
Grosmont carbonate in their original sizes. 
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 Appendix B:  

Numerical Simulations 

This section describes different numerical simulations used in digital rock physics 

such as the Lattice Boltzmann flow simulations and finite element method. I will also 

discuss the effective of discretization in different numerical simulations. 
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B.1 LATTICE BOLTZMANN FLOW SIMULATION 

Absolute permeability can be solved for numerically by using the Lattice 

Boltzmann (LB) flow simulation, which is an approximation of the Navier-Stokes 

equations for the pore space (Fredrich, 1999; Succi, 2001; Keehm, 2003). The LB 

algorithm is implemented in Windows C++ wrapped in MATLAB. The input to the 

algorithm is a 2-D or 3-D binary image, where 0 represents the pore space and 1 represents 

the mineral skeleton in a 3-D rectangular matrix. 

Four different versions of SRB’s LB simulation can be classified based on 

algorithm (time-dependent/time-independent) and boundary conditions (fixed flow 

rate/constant forcing with mirrored pore geometry) (Table B-1).  

Time-dependent LB simulation utilizes collisions of imaginary particles and 

recovers the Navier-Stokes equation for long timespans and large spatial scales (Chen et 

al., 1992; Ladd, 1994). The algorithm involves three steps: (1) determination of the initial 

state of the density distribution, (2) particle collision, and (3) particle propagation. The 

time-independent (steady-state) computation, on the other hand, is done by formulating the 

Lattice Botlzmann algorithm in matrix form and solving the resulting linear system of 

equations (Verberg and Ladd, 1999).  

On the side walls, no-flow boundary conditions are assumed. The fixed flow rate 

scheme simulates the pressure gradient along the flow path (Fredrich et al., 1999; Zhang 

and Zhang, 2000) and does not require mirroring of the pore space. Instead, it adds a buffer 

zone 15 pixels deep to the inlet and outlet faces (Keehm, 2003). In contrast, the constant 

forcing with mirrored pore geometry simulates the pressure gradient along the flow path 

using a constant forcing scheme (Gunstensen et al., 1991; Ladd, 1994; Keehm and Bosl, 
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2003) (Figure B-1 and Figure B-2), which does require mirroring of the pore space 

geometry. More details regarding this version of Lattice Boltzman simulation can be found 

in “Comparison of different Lattice-Boltzmann flow simulation implementations: 

efficiency, convergence and stability” (SRB Annual Meeting 2003).   

 

Figure B-1: Steps of the Lattice-Boltzmann algorithm: (a) initial state of the density distribution, (b) 
collision step, (c) propagation step (Keehm and Bosl, 2003). 

 

Figure B-2: (Left) constant forcing scheme with mirrored pore space geometry; (right) fixed flow rate 
scheme with a buffer zone of 15 pixels (Keehm and Bosl, 2003). 

 

 



145 
 

Table B-1: The four most current versions of the Lattice Boltzmann algorithm from Keehm (2003). The 
versions can be classified based on algorithm (time dependent/time-independent) and boundary conditions 

(fixed flow rate /constant forcing with mirrored pore geometry). Numbers in parentheses show the most 
current version available in SRB Tools. 

 
Time-dependent Time-independent 

Constant forcing with 
mirrored pore geometry 

MR (3.1.0) IMR (1.0.0) 

Fixed Flow Rate FP (2.0.0) IFP (1.1.0) 

 

Table B-2: Summary of characteristics of four implementations for the LB flow simulation (adapted from 
Keehm and Bosl, 2003). 

Low                                                                                                          High  
Complexity 
IMR/MR IFP/FP 
Grid Resolution 
IFP/FP IMR/MR 
Memory 
FP IFP MR IMR 
Convergence 
FP MR IFP IMR 
Stability 
IFP FP IMR MR 

 

For complex porous media, Keehm and Bosl (2003) recommend using the LB FP 

and IFP versions for accuracy, but for simple geometry, they recommend using the LB MR 

and IMR versions (Table B-2). We tested our four LB versions and the COMSOL multi-

physics finite element program by generating 3-D geometries of straight circular cross-

sectional pipes with three different pipe lengths (100, 200, and 400 voxels) and computing 

absolute permeability from these 3-D images.  

Figure B-3 shows that the fixed flow rate LB simulations (FP and IFP versions) 

predict absolute permeability closer to the theoretical value (blue line) as the pipes get 
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longer. On the other hand, for constant forcing with mirrored pore geometry LB 

simulations (MR and IMR versions), the calculated absolute permeabilities do not depend 

on the pipe length. The LB IMR version performs best since the calculated permeabilities 

are the closest to the theoretical permeabilities, which assumes that the pipe is infinitely 

long. Therefore, the LB IMR version is well suited for simplified pore space geometry with 

high grid resolution. Figure B-4 shows that different SRB versions of the Lattice 

Boltzmann program perform well in a realistic complex geometry (Keehm & Bosl, 2003). 

The blue lines show the laboratory measurements of absolute permeability. 

 

Figure B-3: Comparison of permeability predictions in a circular pipe from five different versions of the 
Lattice Boltzmann program and the COMSOL finite element program. The blue line in each graph 

represents the theoretical permeability value. In each graph, the length of the pipe is 100, 200, or 400 
pixels. 
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Figure B-4: Calculated Permeability (mD) of Finney Pack (left) and Fontainebleau Sandstone (right) for 
four different versions of the Lattice Boltzmann algorithm (MS = MR, F = FP, IM = IMR, IF = IFP) from 

(Keehm and Bosl, 2003). 

B.1.1 Usage Notes 

We use the LB FP version in the MATLAB wrapper since it is suitable for complex 

geometry. The LB simulation is performed by applying the pressure gradient along the x-

direction.  

The image3D input can be either a 3-D matrix of a single 3-D porous image or a 

cell array containing 3-D matrices of multiple 3-D porous images. The program will run 

multiple simulations if a cell array containing 3-D matrices is the input. The value dx is the 

voxel edge length (the length of 1 pixel in mm). The outputs are (1) a double for a single 

porous image or a vector for multiple porous images and (2) local flux in a 4-D matrix or 

a cell array containing 4-D matrices. The local flux can be used further for finding 

streamlines. The order of indices in an image is (nx, ny, nz). 
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B.2 ELECTRICAL RESISTIVITY  

We used a finite-element solver to compute elastic moduli and electrical resistivity 

(Garboczi, 1998; Arns et al., 2002). The solver utilizes discrete forms of partial differential 

equations on a regular Cartesian grid. The program (EC3D/ELECFEM3D) is available 

from the National Institute of Standards and Technology (NIST). The output is the current 

in amperes in the x, y, and z directions, which can be used to calculate the resistivity using 

Ohm’s law. A potential difference of 1 volt across the sample is implemented, and the 

boundary condition for the electric field is periodic. Material conductivity is shown in 

Table B-3.  
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B.3 ELASTIC MODULI 

The effective elastic moduli were also calculated using the NIST Finite element 

programs (EMC3D/ELAS3D) (Garboczi, 1998) using a periodic boundary condition. The 

program yields the effective linear elastic properties of the rocks including bulk modulus, 

shear modulus, and density. 

Since the purpose of this study is to investigate the influence of scale and resolution 

on model results, material properties (conductivity, bulk modulus, shear modulus, and 

density) are set to be constant for all digital samples, to focus only on changes to the scale 

and the geometry of pore space, which is assumed to contain brine. The chosen properties 

are listed in Table B-3. 

 

 

Table B-3: A list of material properties used in the electrical resistivity and elastic moduli finite element 
solver. 

 Conductivity 
(𝛺−1𝑚−1) 

Bulk Modulus 
(K) (GPa) 

Shear 
Modulus (G) 

(GPa) 

Density 
(g/cm3) 

Solid (1) – Quartz 0.5*10-14 36.6 44.0 2.65 
Pore space (0) – 

Brine 
1 3.014 0 1.055 
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B.4 EFFECT OF DISCRETIZATION IN NUMERICAL SIMULATIONS 

Since effective elastic and transport properties also depend on the discretization of 

digital samples, we tested the influence of scale (the size of sample) and resolution (voxel 

edge length) on Minkowski Functionals (porosity, specific surface area, integral of mean 

curvature, and Euler number), absolute permeability, electrical resistivity, and effective 

elastic properties. The appropriate scale and resolution were described using 

autocorrelation (Keehm, 2003), yet the autocorrelation requires us to obtain the digital 

sample first. This method then cannot be used as the feasibility test of appropriate digital 

sample scale and resolution. In the future we suggest to evaluate appropriate scale and 

resolution based on practical parameters such as grain size.  

Figure B-5: 2-D representation of the Finney Pack, Fontainebleau sandstone, Berea sandstone, and 
carbonate. The red line shows the method for extracting images to investigate the scale effect. 
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B.4.1 Scale 

For investigating the effect of changes in scale, binary images of increasing size 

were selected, ranging from 103 voxels to the maximum size of each sample (1403 or 2003 

voxels) in 10 voxel increments. (Figure B-5). 

The 2-D autocorrelation function can be obtained either from the MATLAB 2-D 

cross correlation function (xcorr2.m) or by using Fourier transforms. For Fourier 

transforms, the autocorrelation of distance h is as follows: 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟(ℎ) = 𝐹−1{𝐹(𝐴).∗ 𝐹∗(𝐴)}. 

In this expression, A is a 2-D binary image, F denotes the Fourier transform, F* 

denotes the conjugate of the Fourier transform, and F-1 denotes the inverse Fourier 

transform (Keehm, 2003). Both methods yield a similar 2-D autocorrelation functions. 

After obtaining a 2-D autocorrelation, 1-D horizontal and vertical autocorrelations can be 

extracted from the center of the 2-D autocorrelation image to the boundary. Autocorrelation 
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length can be obtained by finding the distance from the origin at which the autocorrelation 

function stops decreasing (Keehm, 2003). 

 

Figure B-6: 1-D horizontal and vertical autocorrelation from xcorr2 function in MATLAB (top) compared 
with Fourier transforms (bottom). Both methods yield similar autocorrelation length. 

Approximate autocorrelation length 

Figure B-7: The 1-D horizontal autocorrelation function of the Finney pack. The autocorrelation length increases as the 
size of the sample increases. For example, for sample size 103 voxels, the autocorrelation length is approximately 10 

voxels, and for sample size 1303 voxels, the autocorrelation length is approximately 20 voxels. 
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The representative elementary volume (REV) can be defined as the minimum 

sample size that would yield the value representative of the entire rock (Bear, 1988). It 

should be noted that autocorrelation length often increases as the size of sample increases, 

even in the extremely homogeneous case of the Finney pack, which is a random pack of 

identical spheres (Figure B-7). This raises the question of whether or not autocorrelation 

length is a good measure of appropriate sample size. There are two arguments here: (1) one 

needs to obtain the digital sample of appropriate size in order to estimate the appropriate 

sample size, which defeats the purpose of saving time and resources, and (2) the larger the 

sample size, the larger the REV derived from the sample, meaning that there is not one 

solution for ideal sample size using this method. Using digital rock samples, the REV from 

the physical properties can also be estimated by extracting the new sample images ranging 

in size from 103 voxels to the maximum size (1403 or 2003 voxels) in 10 voxel increments 

and running the simulation to obtain the physical properties of each image. 
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Figure B-8 shows the convergence of physical properties as the size of the sample 

approaches the REV. The black dots in the graph show the REV value determined using 

the following convergence criteria: if the physical property changes by less than 7% for 5 

consecutive size steps after a given size, then that size is regarded as the REV value. The 

REV values are summarized in Table B-4. 

Mean Breadth and the Euler Number do not have convergence since these 

properties grow as the size of the sample increases. Observe that elastic properties 

generally have larger REV compared to other properties such as absolute permeability and 

electrical resistivity.  

 

Figure B-8: Physical properties vs. sample size for all benchmark digital rock samples. The properties are (1) porosity, (2) 
specific surface area, (3) mean breadth, (4) Euler number, (5) permeability on a log 10 scale, (6) resistivity, (7) bulk 

modulus, (8) shear modulus, and (9) density. 
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Table B-4: REV in length of the cube (in voxel units) for each physical property of the benchmark digital 
rocks. 
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Finney 50 40 0 0 20 70 50 80 30 
Fontainebleau 60 60 0 0 60 0 60 60 10 

Berea 60 0 0 0 60 80 60 0 50 
Carbonate 80 40 0 0 70 0 80 0 20 

 

B.4.2 Resolution 

We investigated the resolution effect by increasing voxel edge length (dx), or the 

length per pixel, which has the effect of decreasing resolution. For each image, dx is 

artificially increased by averaging the image in a specified window. For example, an image 

with ½ the resolution of the original image can be created by averaging 23 voxels into 1 

larger voxel. If the averaged value is greater than 0.5, the new voxel is assigned a value of 

1 to represent the solid. Table B-5 shows the dx associated with new images at 1/2x, 1/4x, 

and 1/8x resolutions. Figure B-9 shows visualization of the new images. At 1/8x resolution, 

the images hardly resemble the original pore space geometry.  

Table B-5: dx for each resolution on the benchmark digital rock. 

Resolution Finney dx(mm) Fontainebleau 
dx(mm) 

Berea dx(mm) Carbonate 
dx(mm) 

1x 0.07 0.0075 0.00074 0.00202 
1/2 x 0.14 0.015 0.00148 0.00404 
1/4 x 0.28 0.03 0.00296 0.00808 
1/8 x 0.56 0.06 0.00592 0.01616 
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After producing lower resolution digital samples, we can then use the numerical 

simulation techniques discussed above to determine the effect of voxel size on the results 

(Figure B-10). As the resolution decreases, the porosity tends to become lower and the 

specific surface area (SSA) increases. The mean breadth and the Euler number of a sample 

are smaller because lower resolution images show fewer distinct grains. The numerical 

simulations of absolute permeability perform relatively well in low resolution images, but 

they begin to perform poorly at 1/8x resolution. The effect of resolution on electrical 

resistivity is similar. This is because these properties largely depend on the pore-filling 

fluid conductivity and the connectivity of pore space as in general the solid is less 

conductive than the pore fluid. In conclusion, the reductions in resolution begin to have an 

effect on transport properties only when major connected flow paths begin to disappear. 

Effective elastic moduli are governed by mineral components and mechanics at the grain 

contacts. As resolution decreases, the geometry of pore space is oversimplified and grain 

contacts becomes larger, leading to a stiffer simulated rock frame. As a result, both the 

bulk and shear moduli are highly sensitive to the resolution of digital sample. For numerical 

simulation involving effective elastic moduli, the resolution of digital images should be as 

high as possible. 
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Figure B-9: Images of benchmark digital rock sample in 1x, 1/2x, 1/4x, 1/8x resolutions. 
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Figure B-10: Physical properties vs. resolution of each sample. The properties are (1) porosity, (2) specific surface area, (3) 
mean breadth, (4) Euler number, (5) permeability in log 10 scale, (6) resistivity, (7) bulk modulus, (8) shear modulus, and (9) 

density. 
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Appendix C:  

Codes 
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function [image3D] = createCylinder(nx,ny,nz,r,ct) 
%createCylinder creates a 3-D binary image of a round pipe 
% 
%   Input Arguments 
%   - nx     : an integer, number of pixel in x-direction 
%   - ny     : an integer, number of pixel in y-direction 
%   - nz     : an integer, number of pixel in z-direction 
%   - r0     : an integer, radius of a cylinder pipe 
%   - ct     : an integer, center of a cylinder pipe 
% 
%   Output Arguments 
%   - image3D      : a (ny*nx*nz) uint8 matrix, 3-D binary image of 
%                    pore space (0 = pore, 1 = grain) 
% 
%   Note: 
%       In order to run this code, qCBinary.m file is needed. 

  
%   Revision 1: August 2014 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  
%% Program 
% Create the image 
[x y z]     = meshgrid(1:ny, 1:nx, 1:nz); 
tempImage   = sqrt((x-ct).^2 + (z-ct).^2) < r; 
tempImage   = qCBinary(tempImage); 

  
% Output 
image3D    = abs(1-tempImage); 
end 

 

function [image3D] = createEllipse(nx,ny,nz,a,b,ct) 
%createEllipse creates a 3-D binary image of an elliptic pipe 
% 
%   Input Arguments 
%   - nx     : an integer, number of pixel in x-direction 
%   - ny     : an integer, number of pixel in y-direction 
%   - nz     : an integer, number of pixel in z-direction 
%   - a      : an integer, semi-major axes 
%   - b      : an integer, semi-minor axes 
%   - ct     : an integer, center of a cylinder pipe 
% 
%   Output Arguments 
%   - image3D      : a (ny*nx*nz) uint8 matrix, 3-D binary image of 
%                    pore space (0 = pore, 1 = grain) 
% 
%   Note: 
%       In order to run this code, qCBinary.m file is needed. 

  
%   Revision 1: August 2014 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 
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%% Program 
% Create the image 
[x y z] = meshgrid(1:nx, 1:ny, 1:nz); 
temp = ((x-ct)./a).^2 + ((z-ct)./b).^2 < 1; 
temp = QCbinary(temp); 

  
% Output 
image3D = abs(1-temp); 

  
end 

 

function [image3D] = createEqTriangle(nx,ny,nz,t,ct) 
%createEqTriangle creates a 3-D binary image of an equilateral 

triangle pipe 
% 
%   Input Arguments 
%   - nx     : an integer, number of pixel in x-direction 
%   - ny     : an integer, number of pixel in y-direction 
%   - nz     : an integer, number of pixel in z-direction 
%   - t      : an integer, length of equilateral triangle 
%   - ct     : an integer, center of a cylinder pipe 
% 
%   Output Arguments 
%   - image3D      : a (ny*nx*nz) uint8 matrix, 3-D binary image of 
%                    pore space (0 = pore, 1 = grain) 
% 
%   Note: 
%       In order to run this code, qCBinary.m file is needed. 

  
%   Revision 1: August 2014 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  
%% Program 

  
% Create the image 
[x y z] = meshgrid(1:nx, 1:ny, 1:nz); 
c = t/2; 
d = sqrt(3)*t/2; 
temp1 = and(and(abs(x-ct+t/4)<c/2,abs(z-ct)<d/2),z < d/c*(x-ct+t/4) + 

ct ); 
temp2 = and(and(abs(x-ct-t/4+1)<c/2,abs(z-ct)<d/2),z < -d/c*(x-ct-t/4) 

+ ct ); 
temp = temp1+temp2; 
temp = qCBinary(temp); 

  
% Output 
image3D = abs(1-temp); 
end 
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function [image3D] = createCrescent(nx,ny,nz,r0,phi,ct) 
%createCrescent creates a 3-D binary image of a crescent pipe 
%    
%   Input Arguments 
%   - nx     : an integer, number of pixel in x-direction 
%   - ny     : an integer, number of pixel in y-direction 
%   - nz     : an integer, number of pixel in z-direction 
%   - r0     : an integer, radius of a cylinder pipe that is required 

.. 
%              to change the size of crescent pipe 
%   - ct     : an integer, center of the pipe 
%   - phi    : an integer, angle governing how curve the crescent pipe 

is 
% 
% 
%   Output Arguments 
%   - image3D      : a (ny*nx*nz) uint8 matrix, 3-D binary image of 
%                    pore space (0 = pore, 1 = grain) 
% 
%   Note 
%       (1) In order to run this code, qCBinary.m file is needed. 
%       (2) the largest r within nx,nz = 100 is 24 
%   Example 
%       [Crescent] = createCrescent(100,200,100,24,pi/4,50); 

  
%   Revision 1: August 2014 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  

  
%% Program 
% Initialziation 
[x y z] = meshgrid(1:nx, 1:ny, 1:nz); 
Area = pi*r0^2; 
b = sqrt(Area./((2-(2.*cos(phi)).^2).*phi+sin(2.*phi))); %verified to 

give the same porosity 
eps = cos(phi).*2; 
a = b.*eps; 

  
% Create the image 
temp1 = sqrt((x-ct+b).^2 + (z-ct).^2) < a; 
temp2 = sqrt((x-ct).^2 + (z-ct).^2) < b; 
temp = temp2 - temp1; 
temp = qCBinary(temp); 

  
% Output 
image3D = abs(1-temp); 
end 
 

 

function [image3D] = createRectangle(nx,ny,nz,a,b,ct) 
%createRectangle creates a 3-D binary image of a rectangle pipe 
% 
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%   Input Arguments 
%   - nx     : an integer, number of pixel in x-direction 
%   - ny     : an integer, number of pixel in y-direction 
%   - nz     : an integer, number of pixel in z-direction 
%   - a      : an integer, semi-major axes 
%   - b      : an integer, semi-minor axes 
%   - ct     : an integer, center of a cylinder pipe 
% 
%   Output Arguments 
%   - image3D      : a (ny*nx*nz) uint8 matrix, 3-D binary image of 
%                    pore space (0 = pore, 1 = grain) 
% 
%   Note: 
%       In order to run this code, qCBinary.m file is needed. 

  
%   Revision 1: August 2014 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  
%% Program 

  
% Create the image 
[x y z] = meshgrid(1:nx, 1:ny, 1:nz); 
temp = and(abs(x-ct)<a/2,abs(z-ct)<b/2); 
temp = qCBinary(temp); 

  
% Output 
image3D = abs(1-temp); 

  
end 

 

function [image3D] = createHypotrochoid(nx,ny,nz,r,k,ct) 
%createHypotrochoid create a 3-D binary image of a hypotrochoidal pipe 
% 
%   Input Arguments 
%   - nx     : an integer, number of pixel in x-direction 
%   - ny     : an integer, number of pixel in y-direction 
%   - nz     : an integer, number of pixel in z-direction 
%   - r      : an integer, radius of the hypotrochoid 
%   - k      : an integer, number of sides 
%   - ct     : an integer, center of a cylinder pipe 
% 
%   Output Arguments 
%   - image3D      : a (ny*nx*nz) uint8 matrix, 3-D binary image of 
%                    pore space (0 = pore, 1 = grain) 
% 
%   Note: 
%       (1) In order to run this code, qCBinary.m file is needed. 
%       (2) For more information, 

http://mathworld.wolfram.com/Hypocycloid.html 

  
%   Revision 1: August 2014 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 
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%% Program 
% Create the image 
[x y z] = meshgrid(1:nx, 1:ny, 1:nz); 
theta = linspace(0,2*pi,200); 

  
a = sqrt(1/2).*r; % valid for k =3; 
for t=1:ny 
    xv(t) = (k-1)*a*cos(theta(t)) + a*cos((k-1)*theta(t)) + ct; 
    zv(t) = (k-1)*a*sin(theta(t)) - a*sin((k-1)*theta(t)) + ct; 
end 

  
for j = 1:ny 
    temp(:,j,:) = inpolygon(x(:,j,:),z(:,j,:),xv,zv); 
end 
temp = qCBinary(temp); 

  
% Output 
image3D = abs(1-temp); 

  
end 

 

function [image3D] = createSinusoidalPipe(nx,ny,nz,r0,ct,delta) 
%createSinusoidalPipe creates a 3-D binary image of a sinusoidal pipe 
% 
%   Input Arguments 
%   - nx     : an integer, number of pixel in x-direction 
%   - ny     : an integer, number of pixel in y-direction 
%   - nz     : an integer, number of pixel in z-direction 
%   - r0     : an integer, initial radius 
%   - ct     : an integer, center of the pipe 
%   - delta  : an integer, fractional change in radius 
% 
%   Output Arguments 
%   - image3D      : a (nx*ny*nz) uint8 matrix, 3-D binary image of  
%                    pore space (0 = pore, 1 = grain) 

  
%   Revision 1: April 2016 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  
%% Program 

  
% Initialization 
lambda = 2*r0; 

  
% Grid meshing 
[x, z] = meshgrid(1:nx, 1:nz); 

  
t = linspace(0,4*pi*lambda,200); 
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% Equation 
rr = r0*(1 + delta*sin(t./lambda)); 

  
for iSlice = 1:ny 
    temp(iSlice,:,:) = sqrt((x - ct).^2 + (z - ct).^2) < rr(iSlice); 
end 

  
temp = qCBinary(temp); 
image3D = abs(1-temp); 

 
end 

 

function [ image3DQC ] = qCBinary( image3D ) 
%qCBinary QC the image after any mathematical operation that it is 

binary. 
% 
%   Input Arguments 
%   - image3D      : a (nx*ny*nz) uint8 matrix, 3-D binary image of  
%                    pore space to be checked (0 = pore, 1 = grain) 
% 
%   Output Arguments 
%   - image3DQC    : a (nx*ny*nz) uint8 matrix, 3-D binary image of  
%                    pore space (0 = pore, 1 = grain) 

  
%   Revision 2: December  2015 Nattavadee Srisutthiyakorn (more 

efficient) 
%   Revision 1: September 2014 Nattavadee Srisutthiyakorn (QCbinary.m) 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  

  
%% Program 
% Find the size 
[nx, ny, nz]    = size(image3D); 

  
% Replace any value greater than 1 with 1 
tempImage       = image3D(:); 
tempImage(tempImage > 1) = 1; 

  
% Reshape back into the same shape 
image3DQC       = reshape(tempImage,[nx, ny, nz]); 

 

function [ image3D ] = createSCP( cubeLength, nUnitCell, 

grainDilationRatio ) 
%createSCP creates a 3D image of simple cubic pack 
%    
%   Input Arguments 
%   - cubeLength   : an integer, length of a 3D image cube in pixel  
%                    (cubeLength = nx = ny = nz) 
%   - nUnitCell    : an integer, number of unit cell of the size,  
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%                    for example, nUnitcell = 2 resulting in 2^3 unit 

cells  
%                    in 3-D images 
%                   (Default: 1 for unit cell of SCP) 
%   - grainDilationRatio  
%                  : an integer, the size of sphere in relation to 
%                    the original one. If it's greater than 1 then the  
%                    spheres overlap 
%                    (Default: 1 = using the original radius of 

spheres) 
% 
%   Output Arguments 
%   - image3D      : a (nx*ny*nz) uint8 matrix, 3-D binary image of  
%                    pore space (0 = pore, 1 = grain) 
% 
%   Note 
%   - need to use qCBinary.m 

  
%   Revision 1: December 2015 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 
%% QC Inputs 
if nargin < 2 
    nUnitCell = 1;  
    grainDilationRatio = 1; 
end  

  

  
%% Initialization 
unitCellLength = ceil(cubeLength./nUnitCell); 

  
sphereRadius = unitCellLength/2; 
endpt = unitCellLength; 

  
CT      = [ 0       0       0; 
            endpt   0       0; 
            0       endpt   0; 
            0       0       endpt; 
            endpt   endpt   0; 
            endpt   0       endpt; 
            0       endpt   endpt; 
            endpt   endpt   endpt]; 

  
% Create a mesh 
[x, y, z]   = meshgrid(1:unitCellLength, 1:unitCellLength, 

1:unitCellLength); 

  
image3DUnit = zeros(unitCellLength, unitCellLength, unitCellLength); 

  
% Filling in the identical spheres 
for iSphere = 1:8 
    tempImage   = sqrt((x - CT(iSphere,1)).^2 + (y - CT(iSphere,2)).^2 

... 
                + (z - CT(iSphere,3)).^2) < 

sphereRadius.*grainDilationRatio; 
    image3DUnit = image3DUnit + tempImage; 
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end 

  
% QC the overlap 
image3DUnit = qCBinary(image3DUnit); 

  
% Expand the unit cell 
if nUnitCell > 1 
    image3D = expandUnitCell( image3DUnit, nUnitCell); 
    image3D = image3D(1:cubeLength,1:cubeLength,1:cubeLength); 
else 
    image3D = image3DUnit; 
end 

  

     
end 

 

function [ image3D ] = createFCP( cubeLength, nUnitCell, 

grainDilationRatio ) 
%createFCP creates a 3D image face-centered cubic pack 
%    
%   Input Arguments 
%   - cubeLength   : an integer, length of a 3D image cube in pixel  
%                    (cubeLength = nx = ny = nz) 
%   - nUnitCell    : an integer, number of unit cell of the size,  
%                    for example, nUnitcell = 2 resulting in 2^3 unit 

cells  
%                    in 3-D images 
%                   (Default: 1 for unit cell of SCP) 
%   - grainDilationRatio  
%                  : an integer, the size of sphere in relation to 
%                    the original one. If it's greater than 1 then the  
%                    spheres overlap 
%                    (Default: 1 = using the original radius of 

spheres) 
% 
%   Output Arguments 
%   - image3D      : a (nx*ny*nz) uint8 matrix, 3-D binary image of a 
%                    face-centered cubic pack (0 = pore, 1 = grain) 
% 
%   Note 
%   - need to use qCBinary.m 

  
%   Revision 1: March 2016 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 
%% QC Inputs 
if nargin < 2 
    nUnitCell = 1; 
    grainDilationRatio = 1; 
end  
if nargin < 3 
    grainDilationRatio = 1; 
end  
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%% Initialization 
unitCellLength = ceil(cubeLength./nUnitCell); 

  
sphereRadius = ceil(unitCellLength./(2*sqrt(2))); 
midpt = floor(unitCellLength/2); 
endpt = unitCellLength; 

  
edgeCT  = [ 0       0       0; 
            endpt   0       0; 
            0       endpt   0; 
            0       0       endpt; 
            endpt   endpt   0; 
            endpt   0       endpt; 
            0       endpt   endpt; 
            endpt   endpt   endpt]; 

  
midCT   = [ 0       midpt   midpt; 
            midpt   0       midpt; 
            midpt   midpt   0; 
            endpt   midpt   midpt; 
            midpt   endpt   midpt; 
            midpt   midpt   endpt;]; 

  
% Create a mesh 
[x, y, z]   = meshgrid(1:unitCellLength, 1:unitCellLength, 

1:unitCellLength); 

  
image3DUnit = zeros(unitCellLength, unitCellLength, unitCellLength); 

  
% Filling in spheres at the edge 
for iSphere = 1:8 
    tempImage   = sqrt((x - edgeCT(iSphere,1)).^2 + (y - 

edgeCT(iSphere,2)).^2 ... 
                + (z - edgeCT(iSphere,3)).^2) < 

sphereRadius.*grainDilationRatio; 
    image3DUnit = image3DUnit + tempImage; 
end 

  
% Filling in spheres at the middle 
for iSphere = 1:6 
    tempImage   = sqrt((x - midCT(iSphere,1)).^2 + (y - 

midCT(iSphere,2)).^2 ... 
                + (z - midCT(iSphere,3)).^2) < 

sphereRadius.*grainDilationRatio; 
    image3DUnit = image3DUnit + tempImage; 
end 

  
% QC the overlap 
image3DUnit = qCBinary(image3DUnit); 

  
% Expand the unit cell 
if nUnitCell > 1 
    image3D = expandUnitCell( image3DUnit, nUnitCell); 
    image3D = image3D(1:cubeLength,1:cubeLength,1:cubeLength); 
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else 
    image3D = image3DUnit; 
end 

     
end 

 

function [ image3D ] = createSphericalPack( locationX, locationY, 

locationZ,... 
                                            radius, cubeSize ) 
%createSphericalPack creates a 3-D binary image of a sphere pack 
%    
%   Input Arguments 
%   - locX         : a (nSph*1) double vector, x coordinate location 
%   - locY         : a (nSph*1) double vector, y coordinate location 
%   - locZ         : a (nSph*1) double vector, z coordinate location 
%   - radius       : a (nSph*1) double vector, radius of a sphere 
%   - cubeSize     : an integer, size of the pack  
%                    (Example: cubeSize = 200 -> 200^3 px cube; 
% 
%   Output Arguments 
%   - image3D      : a (nx*ny*nz) int8 matrix, 3-D binary image of a 
%                    rock (0 = pore, 1 = grain) 
% 
%   Revision 1: January 2016 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  
%% Program  
% Initialization 
bufferZone  = 10; 
nz          = cubeSize + bufferZone*2;  

  
% Find the dimension of this pack 
minVec = [min(locationX) min(locationY) min(locationZ)]; 
maxVec = [max(locationX) max(locationY) max(locationZ)]; 

  
% Scaling the cube size 
locationX    = locationX.*nz./maxVec(1); 
locationY    = locationY.*nz./maxVec(2); 
locationZ    = locationZ.*nz./maxVec(3); 
radius  = radius.*nz./maxVec(1); 

  
% Create the geometry 
[x, y, z] = meshgrid(1:nz, 1:nz, 1:nz); 
tempImage = zeros(nz,nz,nz); 

  
for iSph = 1:size(radius,1) 
    tempSph = sqrt((x - locationX(iSph)).^2 ... 
                 + (y - locationY(iSph)).^2 ... 
                 + (z - locationZ(iSph)).^2) < radius(iSph); 
    tempImage = tempImage + tempSph; 
end 
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tempImage = qCBinary(tempImage); 

  
% Output 
image3D = int8(tempImage(11:cubeSize + bufferZone, ... 
                         11:cubeSize + bufferZone, ... 
                         11:cubeSize + bufferZone)); 

     

     
end 

 

function [ image3DConnected ] = createConnectedPorespace( image3D ) 
%createConnectedPorespace creates a 3-D binary image of connected pore 

space 
% 
%   Input Arguments 
%   - image3D           : a (nx*ny*nz) uint8 matrix, 3-D binary image 

of  
%                         pore space (0 = pore, 1 = grain) 
% 
%   Output Arguments 
%   - image3DConnected  : a (nx*ny*nz) uint8 matrix, 3-D binary image 

of  
%                         effective (connected) pore space  
%                        (0 = pore, 1 = grain) 

  
%   Revision 1: October  2015 Nattavadee Srisutthiyakorn                               
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  

  
%% Initialization 
[nx, ny, nz]        = size(image3D); 
image3DConnected    = ones(nx, ny, nz); 

  

  
% Step 1: Labeling the pores 
% Inverse grains <-> pores 
image3DInverse      = abs(1 - image3D); 
poreLabel           = bwconncomp(image3DInverse); 
image3DInverseLabel = labelmatrix(poreLabel); 

  

  
% Step 2: Find the label number that exist on both ends 
tempFirstSlide  = image3DInverseLabel(:,:,1); 
tempLastSlide   = image3DInverseLabel(:,:,end); 

  
labelFirstSlide = unique(tempFirstSlide); 
labelLastSlide  = unique(tempLastSlide); 
labelEffective  = intersect(labelFirstSlide, labelLastSlide); 

  

  
% Step 3: Create connected pore space 



171 
 

nLabel = length(labelEffective); 
for iLabel = 1:nLabel 
    label = labelEffective(iLabel); 
    if label >= 1 % Pore = 1+ -> 0 
        image3DConnected(image3DInverseLabel == label) = 0;  
    else % Grain = 0 -> 1 
        image3DConnected(image3DInverseLabel == label) = 1;  
    end  
end 

  

  

  
end 

 

function [ porosity, specificSurfaceArea, meanBreadth, eulerNumber ] 

... 
    = computeMinkowski3D( image3D, option ) 
%computeMinkowski3D porosity, specific surface area, mean breadth, 

eulerNo 
% 
%   Input Arguments 
%   - image3D      : Two types of inputs are possible 
%                    (1) a single digital rock 
%                     a (nx*ny*nz) uint8 matrix, 3-D binary image of  
%                    pore space (0 = pore, 1 = grain) 
%                           ---- or ---- 
%                    (2) a cell array of digital rocks 
%                    a cell array containing matrix as specified above 
%   - option       : an integer, 0 for nConnection (6)  and nDirection 

(3) 
%                                1 for nConnection (26) and nDirection 

(13) 
% 
%   Output Arguments 
%   - porosity            : a vector (nImage*1), porosity 
%   - specificSurfaceArea : a vector (nImage*1), surface area/length^3 
%   - meanBreadth         : a vector (nImage*1), mean breadth  
%   - eulerNumber         : a vector (nImage*1), Euler's number   
% 
%   Example 
%       [BereaFRS200_Results.Original.porosity, ... 
%        BereaFRS200_Results.Original.specificSurfaceArea, ... 
%        BereaFRS200_Results.Original.meanBreadth, ... 
%        BereaFRS200_Results.Original.eulerNumber] ... 
%        = computeMinkowski3D(BereaFRS200, 1) 
%   Note 
%       In order to run this code, imMinkowski files are needed. 
%       "Computation of Minkowski measures on 2D and 3D binary 

images". 
%       David Legland, Kien Kieu and Marie-Francoise Devaux (2007) 
%       Image Analysis and Stereology, Vol 26(2), June 2007 
%       web: http://www.ias-iss.org/ojs/IAS/article/view/811 

  
%   Revision 3: April  2016 Nattavadee Srisutthiyakorn 
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%   Revision 2: August 2015 Nattavadee Srisutthiyakorn 
%   Revision 1: June   2014 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  

  
%% QC Inputs 

  
if nargin < 2 
    option = 1; 
end 

  

  

  
%% Check whether the input is a matrix or a cell array of matrices 

  
if iscell(image3D) 

     
    % Initialization 
    nImage              = length(image3D); 
    porosity            = zeros(nImage, 1); 
    specificSurfaceArea = zeros(nImage, 1); 
    meanBreadth         = zeros(nImage, 1); 
    eulerNumber         = zeros(nImage, 1); 

     
    for iImage = 1:nImage 

         
        disp(['Current image: 

(',num2str(iImage),'/',num2str(nImage),')']) 

         
        try 
        [ porosity(iImage), specificSurfaceArea(iImage),... 
            meanBreadth(iImage), eulerNumber(iImage) ] ... 
            = computeMK3D( image3D{iImage}, option ); 
        end 

         
        % Save every 50 iteration 
        if nImage > 50 && floor(iImage/50) == iImage/50 
            save('tempMinkowski','porosity','specificSurfaceArea',... 
                'meanBreadth','eulerNumber'); 
        end 

         
    end 

     
else 
    [ porosity, specificSurfaceArea, meanBreadth, eulerNumber ] ... 
        = computeMK3D( image3D, option ); 
end 

  
end 
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function [ porosity, specificSurfaceArea, meanBreadth, eulerNumber ] 

... 
    = computeMK3D( image3D, option ) 
%% QC Inputs 
[~, ~, nZ] = size(image3D); 

  
% Check inputs 
if nZ < 2 
    help(mfilename); 
    error('Error: image3d input is required to be 3-D') 
end 

  

  

  
%% Create reverse image(s) 
image3DInverse = abs(1-image3D); 

  

  
%% Run Minkowski Functionals 
switch option 
    case 0 
        nConnectivity = 6; 
        nDirection    = 3; 
    case 1 
        nConnectivity = 26; 
        nDirection = 13; 
end 

  
% Perform a check whether it's all solid or all pore space 
checkOriginal = any(any(any(image3D,3))); 
checkReverse  = any(any(any(image3DInverse,3))); 

  
if and(checkOriginal, checkReverse) 
    % Porosity 
    try 
        porosity = 1 - imVolumeDensity(image3D); 
    catch 
        porosity = NaN; 
    end 

     
    % Specific Surface Area (Surface Estimate/Length^3) 
    try 
        specificSurfaceArea = imSurfaceDensity(image3D, nDirection); 
    catch 
        specificSurfaceArea = NaN; 
    end 

     
    % Mean Breadth 
    try 
        meanBreadth = imMeanBreadth(image3D, nDirection); 
    catch 
        meanBreadth = NaN; 
    end 
    % Euler Number 
    try 



174 
 

        eulerNumber = imEuler3d(image3D, nConnectivity); 
    catch 
        eulerNumber = NaN; 
    end 
    % Warning if number of element > 1 
    if numel(porosity) > 1 
        warning(['WARNING: imMinkowski yileds the number'... 
            ' of element greater than 1']) 
    end 

     
end 

  
end 

  

 

function [ Proximity2D, Proximity3D ] ... 
    = compute2D3DProximity( image3D ) 
%computeStreamlines2D3DProximity extracts proximity to the nearest 

solid 
% 
%   Input Arguments 
%   - image3D         : a (nx*ny*nz) uint8 matrix, 3-D binary image of  
%                       pore space (0 = pore, 1 = grain) 
% 
%   Output Arguments 
%   - Proximity2D     : a (nx*ny*nz) uint8 matrix, 3-D double image of  
%                       2-D proximity (0 = pore, 1 = grain)        
%   - Proximity3D     : a (nx*ny*nz) uint8 matrix, 3-D double image of  
%                       3-D proximity (0 = pore, 1 = grain)     

  
%   Revision 1: April    2016 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  

  
%% Program 
% Rotate matrix into the the flow along x direction 
[nx, ny, nz] = size(image3D); 
for iSlice = 1:nx 
    image3DRot(:,:,iSlice) = reshape(image3D(iSlice,1:ny,1:nz),ny,nz); 
end 

  
% Find the distance matrix in 2D, 3D 
Proximity3D = bwdist(image3DRot,'euclidean'); 
Proximity2D = zeros(ny, nz, nx); 

  
for iSlice = 1:nx 
    image2D = image3DRot(:,:,iSlice); 
    Proximity2D(:,:,iSlice) = bwdist(image2D,'euclidean'); 
end 
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function [ StreamlinesXYZ, StreamlinesAbsFlux, totalDistance, 

totalTime, ... 
    totalFlux, tortuosity, tortuosityMin, tortuosityMean, 

tortuosityMax, ... 
    tortuosityFluxWeighted, tortuosityStd ] ... 
    = computeStreamlines( localFlux ) 
%computeStreamlines compute streamlines from a local flux matrix 
% 
%   Input Arguments 
%   - localFlux    : a (nx*ny*nz*3) matrix, local flux in x, y, z 

direction. 
%                  This is an output from latticeBoltzmannFP3D.m 
%                           ---- or ---- 
%                  a cell array containing matrix as specified above 
% 
%   Output Arguments 
%   for a single localFlux matrix, 
%   - StreamlinesXYZ  : a cell array (nStreamline*1), x, y, z 

locations of 
%                       each streamline 
%   - StreamlinesAbsFlux : a cell array (nStreamline*1), 
%                          flux along streamline 
%   - totalDistance   : a vector (nStreamline,1), distance 
%   - totalTime       : a vector (nStreamline,1), distance/velocity 
%   - totalFlux       : a vector (nStreamline,1), total flux of each 

flow path 
%   - tortuosity      : a vector (nStreamline,1), distance/nz of each 

flow path 
%   - tortuosityMin   : a double, minimum tortuosity of all 

streamlines 
%   - tortuosityMean  : a double, mean tortuosity of all streamlines 
%   - tortuosityMax   : a double, maximum tortuosity of all 

streamlines 
%   - tortuosityFluxWeighted : a double, flux weighted mean tortuosity 

of 
%                              all streamlines 
%   - tortuosityStd   : a double, standard deviation tortuosity of all 
%                       streamlines 

  
%   Revision 5: April    2016 Nattavadee Srisutthiyakorn 
%   Revision 4: February 2016 Nattavadee Srisutthiyakorn 
%   Revision 3: December 2015 Nattavadee Srisutthiyakorn 
%   Revision 2: August   2015 Nattavadee Srisutthiyakorn 
%   Revision 1: February 2015 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  

  
%% Program 
% Internal Option 
cleanPath = 1; 

  
% Check whether the input is a matrix or a cell array of matrices 

  
if iscell(localFlux) 
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    % Initialize 
    nFlux              = size(localFlux, 2); 

     
    for iFlux = 1:nFlux 

         
        disp(['Current flux: 

(',num2str(iFlux),'/',num2str(nFlux),')']) 

         
        try 
            [ StreamlinesXYZ{iFlux}, StreamlinesAbsFlux{iFlux}, ... 
                totalDistance{iFlux}, totalTime{iFlux}, ... 
                totalFlux{iFlux}, tortuosity{iFlux}, ... 
                tortuosityMin(iFlux,:), tortuosityMean(iFlux,:), ... 
                tortuosityMax(iFlux,:), 

tortuosityFluxWeighted(iFlux,:), ... 
                tortuosityStd(iFlux,:) ] ... 
                = computeIndividalStreamlines( localFlux{iFlux}, 

cleanPath ); 

              
            % Save every 50 iteration 
            if nFlux > 50 && floor(iFlux/50) == iFlux/50 
                save('tempFlowPath', 'StreamlinesXYZ', 'tortuosity', 

... 
                    'totalTime', 'Stats'); 
            end 
        end 
    end 

     

     
else 
    [ StreamlinesXYZ, StreamlinesAbsFlux, totalDistance, totalTime, 

... 
        totalFlux, tortuosity, tortuosityMin, tortuosityMean, 

tortuosityMax, ... 
        tortuosityFluxWeighted, tortuosityStd ] ... 
        = computeIndividalStreamlines( localFlux, cleanPath ); 
end 

  
end 

  

  

  
function [ StreamlinesXYZ, StreamlinesAbsFlux, totalDistance, 

totalTime, ... 
    totalFlux, tortuosity, tortuosityMin, tortuosityMean, 

tortuosityMax, ... 
    tortuosityFluxWeighted, tortuosityStd ] ... 
    = computeIndividalStreamlines( localFlux, cleanPath ) 
%% QC Inputs 
[~, ~, ~, type] = size(localFlux); 
if type < 2 
    help(mfilename) 
    error('Incorrect Flux Type') 
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end 

  

  

  
%% Extracting flow paths 
uXRaw = localFlux(:,:,:,1); 
uYRaw = localFlux(:,:,:,2); 
uZRaw = localFlux(:,:,:,3); 
[nx, ny, nz] = size(uXRaw); 

  
% %% Rearrange x axis to z axis for interpolation 
% % Initialization 

  
uX        = zeros(ny,nz,nx); 
uY        = zeros(ny,nz,nx); 
uZ        = zeros(ny,nz,nx); 

  
for iSlice = 1:nx 
    uX(:,:,iSlice) = reshape(uXRaw(iSlice,1:ny,1:nz),ny,nz); 
    uY(:,:,iSlice) = reshape(uYRaw(iSlice,1:ny,1:nz),ny,nz); 
    uZ(:,:,iSlice) = reshape(uZRaw(iSlice,1:ny,1:nz),ny,nz); 
end 

  
% % QC Plots 
% figure 
% subplot(1,3,1) 
% imagesc(uX(:,:,1)) 
% subplot(1,3,2) 
% imagesc(uY(:,:,1)) 
% subplot(1,3,3) 
% imagesc(uZ(:,:,1)) 

  

  

  
%% Interpolation to find location and flux of each streamline 
% as of now each streamline is stored in grid (for matrix calculation) 

  
% Initialization 
streamlinesLocY = zeros(ny,nz,nx); 
streamlinesLocZ = zeros(ny,nz,nx); 
streamlinesuX   = zeros(ny,nz,nx); 
streamlinesuY   = zeros(ny,nz,nx); 
streamlinesuZ   = zeros(ny,nz,nx); 

  
% Z axis -> X axis when plotted (start from top left) 
[Z,Y] = meshgrid(1:nz,1:ny); 

  

  
for jSlice = 1:nx 
    tempuX = uX(:,:,jSlice); 
    tempuY = uY(:,:,jSlice); 
    tempuZ = uZ(:,:,jSlice); 

     
    if jSlice == 1 
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        % Find new location (Beware of NaN) 
        diffX = 1; 
        diffY = (tempuY./tempuX); 

         
        streamlinesLocY(:,:,1) = diffY + Y; 
        streamlinesLocZ(:,:,1) = (tempuZ) ./ (sqrt(tempuX.^2 + 

tempuY.^2)) ... 
            .* (sqrt(diffX.^2 + diffY.^2)) + Z; 

         
    else 
        % Find new location (Beware of NaN) 
        tempvX = streamlinesuX(:,:,jSlice - 1); 
        tempvY = streamlinesuY(:,:,jSlice - 1); 
        tempvZ = streamlinesuZ(:,:,jSlice - 1); 

         
        diffX = 1; 
        diffY = (tempvY ./ tempvX); 
        streamlinesLocY(:,:,jSlice) = diffY + 

streamlinesLocY(:,:,jSlice-1); 
        streamlinesLocZ(:,:,jSlice) = (tempvZ) ./ (sqrt(tempvX.^2 + 

tempvY.^2)) ... 
            .* (sqrt(diffX.^2+diffY.^2)) ... 
            + streamlinesLocZ(:,:,jSlice - 1); 
    end 

     
    % Interpolation to create velocity vector 
    streamlinesuX(:,:,jSlice) = interp2(Z, Y, tempuX, 

streamlinesLocZ(:,:,jSlice), ... 
        streamlinesLocY(:,:,jSlice), 'linear'); 
    streamlinesuY(:,:,jSlice) = interp2(Z, Y, tempuY, 

streamlinesLocZ(:,:,jSlice), ... 
        streamlinesLocY(:,:,jSlice), 'linear'); 
    streamlinesuZ(:,:,jSlice) = interp2(Z, Y, tempuZ, 

streamlinesLocZ(:,:,jSlice), ... 
        streamlinesLocY(:,:,jSlice), 'linear'); 
end 

  
% % QC Plots 
% figure 
% subplot(1,3,1) 
% imagesc(streamlinesuX(:,:,1)) 
% subplot(1,3,2) 
% imagesc(streamlinesuY(:,:,1)) 
% subplot(1,3,3) 
% imagesc(streamlinesuZ(:,:,1)) 
% 
% figure 
% subplot(1,2,1) 
% imagesc(streamlinesLocY(:,:,1)) 
% subplot(1,2,2) 
% imagesc(streamlinesLocZ(:,:,1)) 

  
disp('Step 1: Interpolation') 
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%% Transform data into individual path 
%Initialization 
tempStreamlinesXYZ  = cell(ny*nz,1); 
tempStreamlinesFlux = cell(ny*nz,1); 
count = 1; 

  
for j = 1:ny 
    for k = 1:nz 

         
        tempStreamlinesXYZ{count}(:,1) = [1:nx]'; 
        tempStreamlinesXYZ{count}(:,2) = streamlinesLocY(j,k,:); 
        tempStreamlinesXYZ{count}(:,3) = streamlinesLocZ(j,k,:); 

         
        tempStreamlinesFlux{count}(:,1)    = streamlinesuX(j,k,:); 
        tempStreamlinesFlux{count}(:,2)    = streamlinesuY(j,k,:); 
        tempStreamlinesFlux{count}(:,3)    = streamlinesuZ(j,k,:); 

         
        count = count + 1; 
    end 
end 

  
disp('Step 2: Extract individual paths') 

  
%% Clean any path that contains NaN -> outside the boundary 
if cleanPath 
    nPath = numel(tempStreamlinesXYZ); 
    count = 1; 

     
    for i = 1:nPath 
        if any(any(isnan(tempStreamlinesXYZ{i}))) == 0 

             
            StreamlinesXYZ{count}  = tempStreamlinesXYZ{i}; 
            StreamlinesFlux{count} = tempStreamlinesFlux{i}; 
            StreamlinesAbsFlux{count} = 

sqrt(tempStreamlinesFlux{i}(:,1).^2 ... 
                + tempStreamlinesFlux{i}(:,2).^2 ... 
                + tempStreamlinesFlux{i}(:,3).^2); 
            count                  = count + 1; 

             
        end 
    end 
else 
    StreamlinesXYZ     = tempStreamlinesXYZ; 
    StreamlinesFlux    = tempStreamlinesFlux; 
end 

  
disp('Step 3: Clean paths with NaN') 

  
%% Find Tortuosity 
% Initialization 
nFlowPathClean = numel(StreamlinesXYZ); 
totalDistance  = zeros(1, nFlowPathClean); 
totalTime      = zeros(1, nFlowPathClean); 
totalFlux      = zeros(1, nFlowPathClean); 
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for i = 1:numel(StreamlinesXYZ) 

     
    pathX = StreamlinesXYZ{i}(:,1); 
    pathY = StreamlinesXYZ{i}(:,2); 
    pathZ = StreamlinesXYZ{i}(:,3); 

     
    velocityX = StreamlinesFlux{i}(:,1); 
    velocityY = StreamlinesFlux{i}(:,2); 
    velocityZ = StreamlinesFlux{i}(:,3); 

     
    % Initialization 
    flowDistance    = zeros(size(pathX,1)-1, 1); 
    flowAvgVelocity = zeros(size(pathX,1)-1, 1); 
    flowTime        = zeros(size(pathX,1)-1, 1); 

     
    for j = 1:size(pathX,1) - 1 
        if and(any(StreamlinesXYZ{i}(j,:))   ~= 0, ... 
                any(StreamlinesXYZ{i}(j+1,:)) ~= 0) 

             
            flowDistance(j)  = sqrt( (pathX(j+1)-pathX(j)).^2 + ... 
                (pathY(j+1)-pathY(j)).^2 + ... 
                (pathZ(j+1)-pathZ(j)).^2 ); 

             
            flowAvgVelocity(j) ... 
                = (sqrt(velocityX(j+1).^2 + velocityY(j+1).^2 + ... 
                velocityZ(j+1).^2) + ... 
                sqrt(velocityX(j).^2   + velocityY(j).^2   + ... 
                velocityZ(j).^2))./2; 

             
            flowTime(j)    = flowDistance(j)./flowAvgVelocity(j); 

             
        end 
    end 

     
    % For each path 
    totalDistance(1,i)  = sum(flowDistance); 
    totalTime(1,i)      = sum(flowTime); 
    totalFlux(1,i)      = sum(flowAvgVelocity); 
end 

  
tortuosity  = (totalDistance./(nx)); 

  
% Find the major statistics 
tortuosityMin   = nanmin(tortuosity); 
tortuosityMean  = nanmean(tortuosity); 
tortuosityMax   = nanmax(tortuosity); 
tortuosityFluxWeighted = 

nansum(totalDistance.*totalFlux)./nansum(totalFlux)./nx; 
tortuosityStd   = nanstd(tortuosity); 

  
disp('Step 4: Calculate tortuosity') 
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end 

 

function [ StreamlinesProximity2D, StreamlinesProximity3D, ... 
    StreamlinesProximity2DNorm, StreamlinesProximity3DNorm, ... 
    Proximity2DMin, Proximity2DMean, Proximity2DMax, Proximity2DStd, 

... 
    Proximity3DMin, Proximity3DMean, Proximity3DMax, Proximity3DStd] 

... 
    = computeStreamlines2D3DProximity( image3D, StreamlinesXYZ ) 
%computeStreamlines2D3DProximity extract proximity to the nearest 

solid 
% 
%   Input Arguments 
%   - image3D         : a (nx*ny*nz) uint8 matrix, 3-D binary image of 
%                       pore space (0 = pore, 1 = grain) 
%                           ---- or ---- 
%                       a cell array containing matrix as specified 

above 
% 
%   - StreamlinesXYZ  : a cell array (nStreamline*1), x, y, z 

locations of 
%                       each streamline (output from 

computeStreamlines) 
%                           ---- or ---- 
%                       a cell array containing cell array as 

specified above 
% 
%   Output Arguments 
%   - StreamlinesProximity2D : a cell array (nStreamline*1) containing 
%                              vector (nx*1) of nearest distance to 

solid 
%                              in 2-D slice. 
%   - StreamlinesProximity3D : a cell array (nStreamline*1) containing 
%                              vector (nx*1) of nearest distance to 

solid 
%                              in 3-D slice. 
%   - StreamlinesProximity2DNorm : a cell array (nStreamline*1) 

containing 
%                              vector (nx*1) of nearest distance to 

solid 
%                              in 2-D slice normalized with the 

maximum. 
%   - StreamlinesProximity3DNorm : a cell array (nStreamline*1) 

containing 
%                              vector (nx*1) of nearest distance to 

solid 
%                              in 3-D slice normalized with the 

maximum. 
%   - Proximity2DMin  : a vector (nStreamlines*1) containing a minimum 

value 
%                       of 2D proximity along each streamline 
%   - Proximity2DMean : a vector (nStreamlines*1) containing a mean 

value 
%                       of 2D proximity along each streamline 
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%   - Proximity2DMax  : a vector (nStreamlines*1) containing a maximum 

value 
%                       of 2D proximity along each streamline 
%   - Proximity2DStd  : a vector (nStreamlines*1) containing a std 

value 
%                       of 2D proximity along each streamline 
%   - Proximity3DMin  : a vector (nStreamlines*1) containing a minimum 

value 
%                       of 3D proximity along each streamline 
%   - Proximity3DMean : a vector (nStreamlines*1) containing a mean 

value 
%                       of 3D proximity along each streamline 
%   - Proximity3DMax  : a vector (nStreamlines*1) containing a maximum 

value 
%                       of 3D proximity along each streamline 
%   - Proximity3DStd  : a vector (nStreamlines*1) containing a std 

value 
%                       of 3D proximity along each streamline 

  
%   Revision 1: April    2016 Nattavadee Srisutthiyakorn 
%   Stanford Rock Physics and Borehole Geophysics Project (SRB) 

  

  

  
%% Program 

  
if iscell(image3D) 
    % Initialization 
    nImage              = length(image3D); 
    for iImage = 1:nImage 

         
        disp(['Current image: 

(',num2str(iImage),'/',num2str(nImage),')']) 

         
        try 
            [ StreamlinesProximity2D{iImage}, 

StreamlinesProximity3D{iImage}, ... 
                StreamlinesProximity2DNorm{iImage}, 

StreamlinesProximity3DNorm{iImage},... 
                Proximity2DMin{iImage}, Proximity2DMean{iImage}, ... 
                Proximity2DMax{iImage}, Proximity2DStd{iImage}, ... 
                Proximity3DMin{iImage}, Proximity3DMean{iImage}, ... 
                Proximity3DMax{iImage}, Proximity3DStd{iImage}] ... 
                = computeSTL2D3DProximity( image3D{iImage}, 

StreamlinesXYZ{iImage}); 
        end 
    end 

     
else 
    [ StreamlinesProximity2D, StreamlinesProximity3D, ... 
        StreamlinesProximity2DNorm, StreamlinesProximity3DNorm, ... 
        Proximity2DMin, Proximity2DMean, Proximity2DMax, 

Proximity2DStd, ... 
        Proximity3DMin, Proximity3DMean, Proximity3DMax, 

Proximity3DStd] ... 
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        = computeSTL2D3DProximity( image3D, StreamlinesXYZ ); 
end 

  

  
end 

  

  

  
function [ StreamlinesProximity2D, StreamlinesProximity3D, ... 
    StreamlinesProximity2DNorm, StreamlinesProximity3DNorm, ... 
    Proximity2DMin, Proximity2DMean, Proximity2DMax, Proximity2DStd, 

... 
    Proximity3DMin, Proximity3DMean, Proximity3DMax, Proximity3DStd] 

... 
    = computeSTL2D3DProximity( image3D, StreamlinesXYZ ) 

  
% Rotate matrix into the the flow along x direction 
[nx, ny, nz] = size(image3D); 
for iSlice = 1:nx 
    image3DRot(:,:,iSlice) = reshape(image3D(iSlice,1:ny,1:nz),ny,nz); 
end 

  
% Find the distance matrix in 2D, 3D 
Proximity3D = bwdist(image3DRot,'euclidean'); 
Proximity2D = zeros(ny, nz, nx); 

  
for iSlice = 1:nx 
    image2D = image3DRot(:,:,iSlice); 
    Proximity2D(:,:,iSlice) = bwdist(image2D,'euclidean'); 
end 

  
% Find the distance from the flow path 
nStreamline = length(StreamlinesXYZ); 

  
for iStreamline = 1:nStreamline 
    % Initialization 
    x = StreamlinesXYZ{iStreamline}(:,1); 
    y = StreamlinesXYZ{iStreamline}(:,2); 
    z = StreamlinesXYZ{iStreamline}(:,3); 

     
    for iSlice = 1:nx 
        StreamlinesProximity2D{iStreamline}(iSlice) ... 
            = 

Proximity2D(round(y(iSlice)),round(z(iSlice)),round(x(iSlice))); 
        StreamlinesProximity3D{iStreamline}(iSlice) ... 
            = 

Proximity3D(round(y(iSlice)),round(z(iSlice)),round(x(iSlice))); 
    end 

     
    % Analyze the statistics of proximity 
    Proximity2DMin(iStreamline)     = 

min(StreamlinesProximity2D{iStreamline}); 
    Proximity2DMean(iStreamline)    = 

mean(StreamlinesProximity2D{iStreamline}); 
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    Proximity2DMax(iStreamline)     = 

max(StreamlinesProximity2D{iStreamline}); 
    Proximity2DStd(iStreamline)     = 

std(StreamlinesProximity2D{iStreamline}); 
    StreamlinesProximity2DNorm{iStreamline} ... 
        = 

StreamlinesProximity2D{iStreamline}./Proximity2DMax(iStreamline); 

     
    Proximity3DMin(iStreamline)     = 

min(StreamlinesProximity3D{iStreamline}); 
    Proximity3DMean(iStreamline)    = 

mean(StreamlinesProximity3D{iStreamline}); 
    Proximity3DMax(iStreamline)     = 

max(StreamlinesProximity3D{iStreamline}); 
    Proximity3DStd(iStreamline)     = 

std(StreamlinesProximity3D{iStreamline}); 
    StreamlinesProximity3DNorm{iStreamline} ... 
        = 

StreamlinesProximity3D{iStreamline}./Proximity3DMax(iStreamline); 

     
end 

  

  
end 

 

function [ PSD ] = modelPSD( nX, yMin, yMax) 
%modelPSD create different model of pore size distribution 

  

  
% model 1 straight line 
PSD{1} = linspace(yMin, yMax, nX); 

  
% model 2 sinusoidal  
xRange = linspace(3*pi/2, 5*pi/2, nX); 
yEqn   = sin(xRange); 
% transpose the equation to the specified range 
PSD{2} = ((yMax-yMin)/(max(yEqn) - min(yEqn))*(yEqn - min(yEqn))) + 

yMin;  

  
% model 3 gauss error equation 
xRange = linspace(-2,2,nX); 
yEqn   = erf(xRange); 
% transpose the equation to the specified range 
PSD{3} = ((yMax-yMin)/(max(yEqn) - min(yEqn))*(yEqn - min(yEqn))) + 

yMin; 

  
% model 4 sinusoidal  
xRange = linspace(2*pi/2, 4*pi/2, nX); 
yEqn   = sin(xRange); 
% transpose the equation to the specified range 
PSD{4} = -(PSD{2} - PSD{1}) + PSD{1}; 
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% model 5 gauss err flip curvature 
PSD{5} = -(PSD{3} - PSD{1}) + PSD{1}; 

  
end 

 

function [ KCcorrection, phi_ssa ] = computeKCcorrection( PSD ) 
%computeKCcorrection compute the correction for the Kozeny-Carman 

equation 
%   Input Argument 
%   - PSD          : a vector (nVoxel), the pore size distribution 

along 
%                    the flow path 
%   Output Argument 
%   - KCcorrection : a double, the value needed for correction from 
%                    Kozeny-Carman permeability to Lattice Boltzmann 
%                    Permeability 
%   Note 

  

  
%% Program 
% Initialization 
PSD  = PSD(:); 
% Remove the number 0 
PSD = PSD(PSD ~= 0); 
nPSD = length(PSD); 

  
% compute the approximate surface area using a frustum formula 
for iPSD = 2:nPSD 
    r1 = PSD(iPSD-1); 
    r2 = PSD(iPSD); 
    saSlice(iPSD-1) = pi.*(r2 + r1).*sqrt((r2-r1).^2 + 1^2); 
    % The discretization is 1 voxel at a time 
end 

  
pv = pi.*sum(PSD.^2);       % Pore volume 
sa = sum(saSlice);          % Surface Area 

  
phi_ssa = pv/sa;            % Pore volume/Surface area ratio 

  
% calculate the hydraulic radius 
rH = 2.*pv./sa; 

  
% calculate the equivalent radius of a circular pipe that has the same 
% porosity 
rC = sqrt(sum(PSD.^2)/nPSD); 

  
% calculate the apparent radius (same definition as the Kozeny-Carman) 
rA = sqrt(rH.*rC); 

  
% calculate permeability ratio 
% Definition: 
% permTheo = pi*L/(8*A*l*sum(1./(rr*dl).^4))*m2tomD; 



186 
 

% permKC = pi.*(rA.*dl).^4./(8.*A).*m2tomD; 

  
permTheo = nPSD./(sum(1./PSD.^4)); 
permKC = (rA).^4; 

  
% the correction 
KCcorrection = permTheo./permKC; 

  

  
end 

 

function [ grainCentroid, grainRadius, grainAzimuth, grainInclination, 

... 
           grainVolume, nContact, grainSurfaceArea ] ... 
    = computeGSD( image, minThres, bc, qcPlot ) 
%computeGSD compute grain size distribution  
%   Input Arguments 
%   - image      : an (nx*ny) or (nx*ny*nz) uint8 matrix, 2-D or 3-D 

binary  
%                  image of porespace (1 = grain, 0 = pore) 
%   - minThres   : an integer, a threshold to suppress all minima in 

the  
%                  intensity image whose depth is less than this 

number 
%   - bc         : an integer, boundary condition 
%                  0: impose no boundary condition  
%                  1: remove grains that are close to the boundary  
%   - qcPlot     : an integer, plot the QC image 
%                  1: show plot 
% 
%   Output Arguments 
%   - grainCentroid    : a (nGrain*2) or (nGrain*3) integer matrix, xy 

or xyz  
%                        location of the grain in voxel 
%   - grainRadius      : a (nGrain*4) or (nGrain*6) double matrix, 

radius 
%                        of each grain in voxel. The vector is based 

on the  
%                        principal component analysis  
%   - grainAzimuth     : a (nGrain*4) or (nGrain*6) double matrix, 
%                        azimuth on each axis of radius based on  
%                        spherical cooridnate (ISO physics). 
%   - grainInclination : (For 3D), a (nGrain*6) double matrix, 
%                        inclination on each axis of radius based on  
%                        spherical cooridnate (ISO physics). 
%   - grainVolume      : a (nGrain*1) vector, the volume of grain in 

voxel 
%   - nContact         : a (nGrain*1) vector, the number of contact of 

each 
%                        grain 
%   - grainSurfaceArea : a (nGrain*1) vector, the surface area of 

grain in voxel 
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%   Revision 3: Nov 2017 Natt Srisutthiyakorn - Add spherical 
%                                               coordinate/qc3D 
%   Revision 2: Oct 2017 Natt Srisutthiyakorn - Add grain contact 

  

  

  

  
%% Program 
% Default parameters 
if nargin < 2 
    minThres    = 1; 
    bc          = 1; 
    qcPlot      = 0; 
end 

  
% Determine whether it is 2-D or 3-D image 
[imSize(1), imSize(2), imSize(3)]    = size(image); 

  

  

  
%% Watershed algorithm 
% Create the distance map image (100+ s for 1024^3 voxels) 
disp('Step 1: Create distance map - find the distance of each point to 

the nearest solid') 
imageDistGrain          = bwdist(~image); 
imageDistGrain          = -imageDistGrain; 
imageDistGrain(~image)  = -Inf; 

  
% Impose height threshold (500+ s for 1024^3 voxels) if applicable 
if minThres > 1 
    imageDistGrain = imhmin(imageDistGrain,minThres); 
end 

  
% Watershed algorithm (3500+ s for 1024^3 voxels) 
disp('Step 2: Apply watershed algorithm') 
imageGrainIdx = watershed(imageDistGrain); 

  
% QC pore (component 0 is boundary and now pore) 
imageGrainIdx(~image) = 0; 

  
% Find region properties (100+ s for 1024^3 voxels)  
disp('Step 3: Find center of mass and volume') 
stats       = regionprops('table', imageGrainIdx, 'Centroid', 'Area'); 
componentNo = unique(imageGrainIdx); 

  

  

  
% Get grain properties (exclude 0) 
grainNo             = componentNo(componentNo ~= 0); 
grainNo             = grainNo(grainNo ~= 1); 
grainNo             = grainNo(grainNo ~= 2); % Noise in 1-2? 
nGrain              = length(grainNo); 
allGrainCentroid    = round(stats.Centroid(grainNo,:)); 
allGrainVolume      = round(stats.Area(grainNo,:)); 
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nTotalSize          = length(imageGrainIdx(:)); 
if imSize(3) == 1     % 2D--------------------------------------------

----- 
    grainRadius      = zeros(nGrain,4); 
    grainAzimuth     = zeros(nGrain,4); 
    grainInclination = zeros(nGrain,4); 
elseif imSize(3) > 1  % 3D--------------------------------------------

----- 
    grainRadius      = zeros(nGrain,6); 
    grainAzimuth     = zeros(nGrain,6); 
    grainInclination = zeros(nGrain,6); 
end 

  
% QC 
%imageGrainIdx(:,:,1) 
%[vol, idx] = max(allGrainVolume) 

  
% QC Plot 
if qcPlot 
    if imSize(3) == 1 % 2D--------------------------------------------

----- 
        figure 
        subplot(1,3,1) 
        imagesc(image); 
        axis equal; xlim([0 imSize(2)]); ylim([0 imSize(1)]); 
        colormap(flipud(gray)) 
        title('Original') 

  
        subplot(1,3,2) 
        imagesc(imageGrainIdx) 
        title('Watershed') 
        axis equal; xlim([0 imSize(2)]); ylim([0 imSize(1)]); 

  
        subplot(1,3,3) 
        imagesc(imageGrainIdx) 
        title('Measurement') 
        axis equal; xlim([0 imSize(2)]); ylim([0 imSize(1)]);   
    elseif imSize(3) > 1  % 3D----------------------------------------

----- 
        figure 
        colors = jet(nGrain); 
        colors = colors(randperm(length(colors)),:); % Randomize the 

color  

         
        for iGrain = 1:nGrain 
            idxSingleGrain  = (imageGrainIdx(:) == grainNo(iGrain)); 
            imageGrain      = zeros(nTotalSize,1); 
            imageGrain(idxSingleGrain) = 1; 
            imageGrain      = reshape(imageGrain,[imSize(1), 

imSize(2), imSize(3)]); 

             
            fv = isosurface(imageGrain,0); 
            patch(fv,'EdgeColor','none','facecolor',colors(iGrain,:)); 
            box on; 
            view(45,45);axis equal 
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            alpha(0.2) 
            hold on 
        end 
    end 
end     

     

  

  
%% Find the surface area of each grain using the isosurface 
grainSurfaceArea = zeros(nGrain,1); 
tic 
for iGrain = 1:nGrain 
    if iGrain/100 == round(iGrain/100) 
    disp(['Step 4: Measure grain surface area (', num2str(iGrain),... 
        '/',num2str(nGrain), ')']) 
    end 
    idxSingleGrain      = (imageGrainIdx(:) == grainNo(iGrain)); 
    imageGrain    = zeros(nTotalSize,1); 
    imageGrain(idxSingleGrain) = 1;   

     
    if imSize(3) > 1 
        imageGrain      = reshape(imageGrain,[imSize(1), imSize(2), 

imSize(3)]); 
        % Extract the surface surface 
        fv = isosurface(imageGrain,0); 
        % p =  patch(fv,'facecolor','cyan','EdgeColor','none'); - QC 

plots 
        % verts = get(p, 'Vertices'); 
        % faces = get(p, 'Faces'); 
        % close all; 

         
        % Find the surface area 
        vertices = fv.vertices; 
        faces = fv.faces; 
        a = vertices(faces(:, 2), :) - vertices(faces(:, 1), :); 
        b = vertices(faces(:, 3), :) - vertices(faces(:, 1), :); 
        c = cross(a, b, 2); 
        grainSurfaceArea(iGrain) = 1/2 * sum(sqrt(sum(c.^2, 2))); 
    end 

     
end 
toc 

  

     

  
%% Find the number of contact 
nContact = zeros(nGrain,1); 

  
for iGrain = 1:nGrain 
    if iGrain/100 == round(iGrain/100) 
    disp(['Step 5: Measure number of contact(', num2str(iGrain),... 
        '/',num2str(nGrain), ')']) 
    end 
    idxSingleGrain      = (imageGrainIdx(:) == grainNo(iGrain)); 
    imageGrain    = zeros(nTotalSize,1); 
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    imageGrain(idxSingleGrain) = 1;   

     
    if imSize(3) == 1 
        imageGrain    = reshape(imageGrain,[imSize(1), imSize(2)]); 
        % Dilate the grain first to get the outer boundary. 
        imageGrain = bwmorph(imageGrain,'dilate'); 
        imageGrain = bwmorph(imageGrain,'dilate'); 
        % Find boundary of a grain 
        grainBound  = bwboundaries(imageGrain,'noholes'); 
        linearInd   = sub2ind([imSize(1),imSize(2)], 

grainBound{1}(:,1), grainBound{1}(:,2)); 
        contactIdx  = unique(imageGrainIdx(linearInd)); 
    elseif imSize(3) > 1 
        contactIdx      = []; 
        imageGrain      = reshape(imageGrain,[imSize(1), imSize(2), 

imSize(3)]); 
        for iz = 1:imSize(3) 
            % Dilate the grain first to get the outer boundary. 
            imageGrain(:,:,iz) = bwmorph(imageGrain(:,:,iz),'dilate'); 
            imageGrain(:,:,iz) = bwmorph(imageGrain(:,:,iz),'dilate'); 
            % Find boundary of a grain 
            grainBound  = bwboundaries(imageGrain(:,:,iz),'noholes'); 
            if length(grainBound) == 1 
                linearInd   = sub2ind([imSize(1),imSize(2)], 

grainBound{1}(:,1), grainBound{1}(:,2)); 
                contactIdx  = [contactIdx; imageGrainIdx(linearInd)];  
            end 
        end      
    end 

     
    % Find the unique index that is not 0 (the pore) and the itself. 
    contactIdx  = unique(contactIdx); 
    contactIdx  = contactIdx(contactIdx ~= 0); 
    contactIdx  = contactIdx(contactIdx ~= grainNo(iGrain)); 
    nContact(iGrain) = length(contactIdx); 
end 

  

  

  
%% Measure the grain size     
for iGrain = 1:nGrain 
    if iGrain/100 == round(iGrain/100) 
    disp(['Step 6: Measure grain size (', num2str(iGrain),... 
        '/',num2str(nGrain), ')']) 
    end 
    idxSingleGrain      = (imageGrainIdx(:) == grainNo(iGrain)); 
    imageGrain    = zeros(nTotalSize,1); 
    imageGrain(idxSingleGrain) = 1; 

     

     
    if imSize(3) == 1 % 2D--------------------------------------------

----- 
        imageGrain    = reshape(imageGrain,[imSize(2), imSize(1)]); 
        [idxXX, idxYY] = find(imageGrainIdx == grainNo(iGrain)); 
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        % Obtain principal direction 
        [coeff] = pca([idxXX idxYY]); 

         
        nVec = size(coeff,2); 
        X0 = allGrainCentroid(iGrain,1); 
        Y0 = allGrainCentroid(iGrain,2); 

  
        for iVec = 1:nVec 
            clear temp* 

  
            % Find index of a straight line in both direction on 

principal axis 
            a = coeff(1,iVec); 
            b = coeff(2,iVec); 

  
            if a >= b 
                tempX1 = [X0:imSize(2)]'; 
                tempX2 = [X0:-1:1]'; 
                nL1    = ones(length(tempX1),1); 
                nL2    = ones(length(tempX2),1); 
                tempY1 = nL1.*round(b./a.*(tempX1-X0) + Y0); 
                tempY2 = nL2.*round(b./a.*(tempX2-X0) + Y0);     
            elseif b > a 
                tempY1 = [Y0:imSize(1)]'; 
                tempY2 = [Y0:-1:1]'; 
                nL1    = ones(length(tempY1),1); 
                nL2    = ones(length(tempY2),1); 
                tempX1 = nL1.*round(a./b.*(tempY1-Y0) + X0); 
                tempX2 = nL2.*round(a./b.*(tempY2-Y0) + X0);         
            end 

  
            % Initialization of lines for measurement 
            nLine1 = length(tempX1); 
            nLine2 = length(tempX2); 
            tempLine1 = zeros(nLine1,1); 
            tempLine2 = zeros(nLine2,1); 

  
            for iLine1 = 1:nLine1 
                try % instead of checking boundary 
                tempLine1(iLine1,1) = imageGrain(tempY1(iLine1),... 
                                                       

tempX1(iLine1)); 
                end 
            end 

  
            for iLine2 = 1:nLine2 
                try 
                tempLine2(iLine2,1) = imageGrain(tempY2(iLine2),... 
                                                       

tempX2(iLine2)); 
                end 
            end 

  
            % Find the boundary wihtin the lines 
            bound1 = find(tempLine1 == 0, 1, 'first'); 
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            if isempty(bound1) 
                bound1 = nLine1; 
            end 

  
            bound2 = find(tempLine2 == 0, 1, 'first'); 
            if isempty(bound2) 
                bound2 = nLine2; 
            end 

  
            % Calculate grain size to the boundary 
            dX1 = tempX1(bound1) - tempX1(1); 
            dY1 = tempY1(bound1) - tempY1(1); 
            dX2 = tempX2(bound2) - tempX2(1); 
            dY2 = tempY2(bound2) - tempY2(1); 

             
            % Compute 2 radius from PCA at a time 
            grainRadius(iGrain,2.*(iVec-1) + 1) ... 
                = sqrt(dX1^2 + dY1^2); 
            grainRadius(iGrain,2.*(iVec-1) + 2) ... 
                = sqrt(dX2^2 + dY2^2); 

  
            grainAzimuth(iGrain,2.*(iVec-1) + 1) ... 
                = atan(dX1/dY1)*180/pi; 
            grainAzimuth(iGrain,2.*(iVec-1) + 2) ... 
                = atan(dX2/dY2)*180/pi; 

             
            if qcPlot 
                if imSize(3) == 1  
                hold on 
                

plot(tempX1(1:bound1),tempY1(1:bound1),'r','LineWidth',2) 
                

plot(tempX2(1:bound2),tempY2(1:bound2),'r','LineWidth',2) 
                end 
            end 

             
        end 

     

         
    elseif imSize(3) > 1 % 3D-----------------------------------------

----- 
        imageGrain    ... 
            = reshape(imageGrain,[imSize(1), imSize(2), imSize(3)]); 

  
        [idxXX, idxYY, idxZZ] = find(imageGrainIdx == 

grainNo(iGrain)); 

  
        % principal component analysis to get principal direction 

(each column 
        % = one principal component 
        [coeff] = pca([idxXX idxYY idxZZ]); 
        nVec = size(coeff,2); 

  
        % Centroid 
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        X0 = allGrainCentroid(iGrain,1); 
        Y0 = allGrainCentroid(iGrain,2); 
        Z0 = allGrainCentroid(iGrain,3); 

  
        for iVec = 1:nVec 
            clear temp* 

  
            % Obtain the value of secondary and tertiary direction 
            a = coeff(1,iVec); 
            b = coeff(2,iVec); 
            c = coeff(3,iVec); 

  
            [~,idxMax] = max([a,b,c]); 

  
            if idxMax == 1; 
                tempX1 = [X0:imSize(1)]'; 
                tempX2 = [X0:-1:1]'; 
                nL1    = ones(length(tempX1),1); 
                nL2    = ones(length(tempX2),1); 
                tempY1 = nL1.*round(b./a.*(tempX1-X0) + Y0); 
                tempY2 = nL2.*round(b./a.*(tempX2-X0) + Y0);     
                tempZ1 = nL1.*round(c./a.*(tempX1-X0) + Z0); 
                tempZ2 = nL2.*round(c./a.*(tempX2-X0) + Z0);    
            elseif idxMax == 2; 
                tempY1 = [Y0:imSize(2)]'; 
                tempY2 = [Y0:-1:1]'; 
                nL1    = ones(length(tempY1),1); 
                nL2    = ones(length(tempY2),1); 
                tempX1 = nL1.*round(a./b.*(tempY1-Y0) + X0); 
                tempX2 = nL2.*round(a./b.*(tempY2-Y0) + X0);  
                tempZ1 = nL1.*round(c./b.*(tempY1-Y0) + Z0); 
                tempZ2 = nL2.*round(c./b.*(tempY2-Y0) + Z0);              
            elseif idxMax == 3; 
                tempZ1 = [Z0:imSize(3)]'; 
                tempZ2 = [Z0:-1:1]'; 
                nL1    = ones(length(tempZ1),1); 
                nL2    = ones(length(tempZ2),1); 
                tempX1 = nL1.*round(a./c.*(tempZ1-Z0) + X0); 
                tempX2 = nL2.*round(a./c.*(tempZ2-Z0) + X0);  
                tempY1 = nL1.*round(c./c.*(tempZ1-Z0) + Y0); 
                tempY2 = nL2.*round(c./c.*(tempZ2-Z0) + Y0);                
            end 

  
            % Initialization of lines for measurement 
            nLine1 = length(tempX1); 
            nLine2 = length(tempX2); 
            tempLine1 = zeros(nLine1,1); 
            tempLine2 = zeros(nLine2,1); 

  
            for iLine1 = 1:nLine1 
                try % instead of checking boundary 
                    tempLine1(iLine1,1) ... 
                        = imageGrain(tempY1(iLine1),... 
                                           tempX1(iLine1),... 
                                           tempZ1(iLine1)); 
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                end 
            end 

  
            for iLine2 = 1:nLine2 
                try 
                    tempLine2(iLine2,1) ... 
                        = imageGrain(tempY2(iLine2),... 
                                           tempX2(iLine2),... 
                                           tempZ2(iLine2)); 
                end 
            end 

  
            % Find the boundary wihtin the lines 
            bound1 = find(tempLine1 == 0, 1, 'first'); 
            if isempty(bound1) 
                bound1 = nLine1; 
            end 

  
            bound2 = find(tempLine2 == 0, 1, 'first'); 
            if isempty(bound2) 
                bound2 = nLine2; 
            end 

  
            % Calculate grain size to the boundary 
            dX1 = tempX1(bound1) - tempX1(1); 
            dY1 = tempY1(bound1) - tempY1(1); 
            dZ1 = tempZ1(bound1) - tempZ1(1); 
            dX2 = tempX2(bound2) - tempX2(1); 
            dY2 = tempY2(bound2) - tempY2(1); 
            dZ2 = tempZ2(bound2) - tempZ2(1); 

             
            grainRadius(iGrain,2.*(iVec-1) + 1) ... 
                = sqrt((dX1)^2 + (dY1)^2 + (dZ1)^2); 
            grainRadius(iGrain,2.*(iVec-1) + 2) ... 
                = sqrt((dX2)^2 + (dY2)^2 + (dZ2)^2); 

                  
            grainAzimuth(iGrain,2.*(iVec-1) + 1) ... 
                = acos(dZ1/grainRadius(iGrain,2.*(iVec-1) + 1)); 
            grainAzimuth(iGrain,2.*(iVec-1) + 2) ... 
                = acos(dZ2/grainRadius(iGrain,2.*(iVec-1) + 2)); 

             
            grainInclination(iGrain,2.*(iVec-1) + 1) ... 
                = atan(dY1/dX1)*180/pi; 
            grainInclination(iGrain,2.*(iVec-1) + 2) ... 
                = atan(dY2/dX2)*180/pi; 

  
        end 
    end 
end 

    

  

  
%% Output 
% Clean 0 data 
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idxNonZero          = all(grainRadius,2); 
grainRadius         = grainRadius(idxNonZero,:); 
grainCentroid       = allGrainCentroid(idxNonZero,:); 
grainVolume         = allGrainVolume(idxNonZero,:); 
grainAzimuth        = grainAzimuth(idxNonZero,:); 
grainInclination    = grainInclination(idxNonZero,:); 
nContact            = nContact(idxNonZero,:); 
grainSurfaceArea    = grainSurfaceArea(idxNonZero,:); 

  
%% Boundary condition Exclude grains at the boundary  
if bc 
    radius      = max(grainRadius,[],2); 
    nGrain      = length(radius); 
    idxAccept   = []; 
    idxReject   = []; 

  
    if imSize(3) == 1 %2D---------------------------------------------

--------- 
        % Define all the corner points 
        c1 = [1, 1]; 
        c2 = [imSize(1), 1]; 
        c3 = [1, imSize(1)]; 
        c4 = [imSize(1), imSize(1)]; 

  
        % Calculate the distance from a point to a line for each 

centroid 
        for iGrain = 1:nGrain 
            p = grainCentroid(iGrain,:); 
            distanceLine1 = abs(det([c2 - c1; p - c2])/sqrt(sum((c2 - 

c1).^2))); 
            distanceLine2 = abs(det([c3 - c1; p - c3])/sqrt(sum((c3 - 

c1).^2))); 
            distanceLine3 = abs(det([c4 - c3; p - c3])/sqrt(sum((c4 - 

c3).^2))); 
            distanceLine4 = abs(det([c4 - c2; p - c2])/sqrt(sum((c4 - 

c2).^2))); 
            if (distanceLine1 > radius(iGrain) && distanceLine2 > 

radius(iGrain) &&... 
                    distanceLine3 > radius(iGrain) && distanceLine4 > 

radius(iGrain)) 
                idxAccept = [idxAccept, iGrain]; 
            else 
                idxReject = [idxReject, iGrain]; 
            end 

  
        end     

  
    elseif imSize(3) > 1 %3D------------------------------------------

--------- 
        % Define the corner points 
        corner = [1 1 1;  
                  1 imSize(1) 1;  
                  1 1 imSize(1);  
                  1 imSize(1) imSize(1); 
                  imSize(1) 1 1;  
                  imSize(1) imSize(1) 1;  
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                  imSize(1) 1 imSize(1);  
                  imSize(1) imSize(1) imSize(1)];  

  
        % Define 6 different planes from corners point 
        plane = [1 2 3; 
                 1 3 5; 
                 3 4 7; 
                 2 4 6; 
                 1 2 5; 
                 5 6 7]; 
        % Calculate the distance from a point to a line for each 

centroid       
        for iGrain = 1:nGrain 
            point = grainCentroid(iGrain,:); 

  
            for iPlane = 1:6 
                c1 = corner(plane(iPlane,1),:); 
                c2 = corner(plane(iPlane,2),:); 
                c3 = corner(plane(iPlane,3),:); 

  
                normal = cross(c1 - c2, c1 - c3); 

  
                d = dot(normal, c1); 

  
                % Find the closest distance from a point to plane 
                distance(iGrain,iPlane) = (dot(normal, point) - 

d)./sqrt(dot(normal,normal)); 
            end 

  
            if min(abs(distance(iGrain,:))) > radius(iGrain) 
                idxAccept = [idxAccept, iGrain]; 
            else 
                idxReject = [idxReject, iGrain]; 
            end 

  
        end     

  
    end 

     
    % Screen the data to the number  
    grainRadius         = grainRadius(idxAccept,:); 
    grainCentroid       = grainCentroid(idxAccept,:); 
    grainVolume         = grainVolume(idxAccept,:); 
    grainAzimuth        = grainAzimuth(idxAccept,:); 
    grainInclination    = grainInclination(idxAccept,:); 
    nContact            = nContact(idxAccept,:); 
    grainSurfaceArea    = grainSurfaceArea(idxAccept,:); 

     

     
    if qcPlot 
        if imSize(3) == 1  
        scatter(grainCentroid(:,1), grainCentroid(:,2),'go') 
        end 
    end 
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end 

 

function [grainDiameter] = computeGrainDiameter(grainRadius, 

measureOption) 
%computeGrainDiameter compute grain diameter 
%   Input Arguments 
%   - grainRadius   : a (nGrain*6) or (nGrain*4) double matrix, 
%                     radius of each grain [r1 r2 r3 r4 r5 r6] or 
%                     [r1 r2 r3 r4] in Micron 
%   - measureOption : a string, compute the distribution using 
%                     "max" grain size 
%                     "mean" grain size 
% 
%   Output Arguments 
%   - grainDiameter : a (nGrain*1) double matrix, 
%                     a max diameter of each grain 

  
%   Revision 1: May 2018 Nattavadee Srisutthiyakorn 

  

  

  
%% 
if (~exist('measureOption', 'var')) 
    measureOption = "max"; 
end 

  

  

  
[~, nRadius]= size(grainRadius); 
% Add to get the grain diameter instead of the radius. 
if nRadius == 6 
    grainDiameter(:,1) = grainRadius(:,1) + grainRadius(:,2); 
    grainDiameter(:,2) = grainRadius(:,3) + grainRadius(:,4); 
    grainDiameter(:,3) = grainRadius(:,5) + grainRadius(:,6); 
elseif nRadius == 4 
    grainDiameter(:,1) = grainRadius(:,1) + grainRadius(:,2); 
    grainDiameter(:,2) = grainRadius(:,3) + grainRadius(:,4); 
end 

  
% Use the find the average grain size or max grain size for sieving 
if measureOption == "mean" 
    grainDiameter  = mean(grainDiameter,2); 
elseif measureOption == "max" 
    grainDiameter  = max(grainDiameter,[],2); 
end 

  

  
end 

 

function [histFB, binCenter, statGSD] ... 
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    = computeHistFB( grainProp, binEdge ) 
%computeHistFB compute frequency-based histogram of the different 

properties of GSD  
%   Input Arguments 
%   - grainProp     : a (nGrain*1) double vector, grain properties 

such as 
%                     maximum diameter, nContact, and etc.  
%   - binEdge       : (optional) a vector, histogram bin edge 
% 
%   Output Arguments 
%   - histFB        : a (nBin*1) vector, probability distribution 

function (PDF)  
%   - binCenter     : a (nBin*1) vector, bin center in mm as specified 

in the code 
%   - statGSD       : a struct, containing grain size distribution 
%                     statistics 
% 
%   Notes 
%   - Beware that the output from computeGSD is the voxel,  
%     please multiply by the resolution in micron for maximum grain 

radius and 
%     multiply by resolution.^3 for grain volume 
%     grainProp       = grainProp.*dx./1000; 

  
%   Revision 1: May 2018 Nattavadee Srisutthiyakorn 

  
%% Program 
if (~exist('binEdge', 'var')) 
    % Prefixed Histogram bin in mm due to the plot nature in log scale  
    % for grain diameter 
    binEdge = fliplr([4.0000 3.3600 2.8300 2.3800 2.0000 1.6800 1.4100 

1.1900 1.0000 ... 
           0.8500 0.7100 0.6000 0.5000 0.4200 0.3500 0.2970 0.2500 

0.2100 ... 
           0.1770 0.1490 0.1250 0.1050 0.0880 0.0740 0.0620 0.0530 

0.0440 ... 
           0.0370 0.0310 0.0260 0.0220 0.0190 0.0160 0.0130 0.0110 

0.0093 ... 
           0.0078 0.0065 0.0055 0.0046 0.0039 0.0033 0.0028 0.0023 

0.0019 ... 
           0.0016 0.0014 0.0012 0.0010]); 
end 

  
% Sort data into histogram bin 
nEdge           = length(binEdge); 
nBin            = nEdge - 1; 
histFB          = zeros(nEdge - 1, 1); 
binCenter(1)    = binEdge(1); 

  
for iEdge = 1:nEdge - 1 
    [index{iEdge}] = find(and(grainProp <= binEdge(iEdge + 1),... 
                             grainProp  >  binEdge(iEdge))); 
    binCenter(iEdge)   = (binEdge(iEdge + 1) + binEdge(iEdge))./2;  
end 

  
for iBin = 1:nBin 
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    histFB(iBin)  = length(index{iBin}); 
end 

  
% Normalized to get the PDF 
nGrainCheck = sum(histFB); 
histFB = histFB./nGrainCheck; 

  
% Export the statistics 
statGSD.mean = mean(grainProp); 
statGSD.std  = std(grainProp); 

  
% Find the cumulative density function  
% histCDF = cumsum((histFB))./sum(histFB); 

 

function [histVB, binCenter, statGSD] ... 
    = computeHistVB( grainProp, grainVolume, binEdge ) 
%computeHistVB computes volume-based histogram of the different 

properties of GSD  
%   Input Arguments 
%   - grainProp     : a (nGrain*1) double vector, grain properties 

such as 
%                     maximum diameter, nContact, and etc.  
%   - grainVolume   : a (nGrain*1) double vector, volume of each grain 

or 
%                     other weight 
%                     *** Beware that the output from computeGSD is 

the 
%                     voxel, please multiply grainVolume*resolution.^3 
%   - binEdge       : (optional) a vector, histogram bin edge 
% 
%   Output Arguments 
%   - histVB        : a (nBin*1) vector, probability distribution 

function (PDF)  
%   - binCenter     : a (nBin*1) vector, bin center in mm as specified 

in the code 
%   - statGSD       : a struct, containing grain size distribution 
%                     statistics 
% 
%   Notes 
%   - Beware that the output from computeGSD is the voxel,  
%     please multiply by the resolution in micron for maximum grain 

radius and 
%     multiply by resolution.^3 for grain volume 
%     grainProp       = grainProp.*dx./1000; 

  
%   Revision 1: May 2018 Nattavadee Srisutthiyakorn 

  
%% Program 
if (~exist('binEdge', 'var')) 
    % Prefixed Histogram bin in mm due to the plot nature in log scale  
    % for grain diameter 
    binEdge = fliplr([4.0000 3.3600 2.8300 2.3800 2.0000 1.6800 1.4100 

1.1900 1.0000 ... 
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           0.8500 0.7100 0.6000 0.5000 0.4200 0.3500 0.2970 0.2500 

0.2100 ... 
           0.1770 0.1490 0.1250 0.1050 0.0880 0.0740 0.0620 0.0530 

0.0440 ... 
           0.0370 0.0310 0.0260 0.0220 0.0190 0.0160 0.0130 0.0110 

0.0093 ... 
           0.0078 0.0065 0.0055 0.0046 0.0039 0.0033 0.0028 0.0023 

0.0019 ... 
           0.0016 0.0014 0.0012 0.0010]); 
end 

  
% Sort data into histogram bin 
nEdge           = length(binEdge); 
nBin            = nEdge - 1; 
histVB          = zeros(nEdge - 1, 1); 
binCenter(1)    = binEdge(1); 

  
for iEdge = 1:nEdge - 1 
    [index{iEdge}] = find(and(grainProp <= binEdge(iEdge + 1),... 
                             grainProp  >  binEdge(iEdge))); 
    binCenter(iEdge)   = (binEdge(iEdge + 1) + binEdge(iEdge))./2;  
end 

  
% Find the weight/volume/area of each bin in order to plot the 

percentage 
for iBin = 1:nBin 
    histVB(iBin)  = sum(grainVolume(index{iBin}))./sum(grainVolume); 
end 

  
% Normalized to get the PDF 
nGrainCheck = sum(histVB); 
histVB = histVB./nGrainCheck; 

  
% Export the statistics 
statGSD.mean = sum(grainProp.*grainVolume)./sum(grainVolume);    
statGSD.std  = std(grainProp, grainVolume); 

  
% Find the cumulative density function  
% histCDF = cumsum((histVF))./sum(histVF); 

  

 

function [histPC, binCenter, statGSD, idxSelectedGrain] ... 
    = computeHistPC( grainProp, grainCentroid, gridPC, binEdge ) 
%computeHistPC compute frequency-based histogram of the different 

properties of GSD  
%   Input Arguments 
%   - grainProp     : a (nGrain*1) double vector, grain properties 

such as 
%                     maximum diameter, nContact, and etc.  
%   - grainCentroid : a (nGrain*2) or (nGrain*3) integer matrix, xy or 

xyz  
%                     location of the grain in voxel 
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%   - gridPC        : (optional) a vector, for creating a grid for 

point 
%                     count 
%   - binEdge       : (optional) a vector, histogram bin edge 
% 
%   Output Arguments 
%   - histFB        : a (nBin*1) vector, probability distribution 

function (PDF)  
%   - binCenter     : a (nBin*1) vector, bin center in mm as specified 

in the code 
%   - statGSD       : a struct, containing grain size distribution 
%                     statistics 
%   - idxSelectedGrain : a (nSelectedGrains*1), the index of the grain 

that 
%                        is closest to the grid. 
% 
%   Notes 
%   - Beware that the output from computeGSD is the voxel,  
%     please multiply by the resolution in micron for maximum grain 

radius and 
%     multiply by resolution.^3 for grain volume 
%     grainProp       = grainProp.*dx./1000; 

  
%   Revision 1: May 2018 Nattavadee Srisutthiyakorn 

  
%% Program 
if (~exist('binEdge', 'var')) 
    % Prefixed Histogram bin in mm due to the plot nature in log scale  
    % for grain diameter 
    binEdge = fliplr([4.0000 3.3600 2.8300 2.3800 2.0000 1.6800 1.4100 

1.1900 1.0000 ... 
           0.8500 0.7100 0.6000 0.5000 0.4200 0.3500 0.2970 0.2500 

0.2100 ... 
           0.1770 0.1490 0.1250 0.1050 0.0880 0.0740 0.0620 0.0530 

0.0440 ... 
           0.0370 0.0310 0.0260 0.0220 0.0190 0.0160 0.0130 0.0110 

0.0093 ... 
           0.0078 0.0065 0.0055 0.0046 0.0039 0.0033 0.0028 0.0023 

0.0019 ... 
           0.0016 0.0014 0.0012 0.0010]); 
end 
if (~exist('gridPC', 'var')) 
    maxPixel    = max(max(grainCentroid)); 
    maxNumGrain    = length(grainProp); 
    nSampling   = round((maxNumGrain./10).^(1/3)); % The total of 

nSampling*nSampling samples for 2-D and 
                      % and nSampling*nSampling*nSampling samples for 

3-D will be taken from point count 
    gridPC      = linspace(1, maxPixel, nSampling); 
    gridPC      = round(gridPC); 
end  

    
% Create the grid 
[x, y, z]       = meshgrid(gridPC); 
gridCentroid    = [x(:) y(:) z(:)]; 
idxSelectedGrain = dsearchn(grainCentroid, gridCentroid); 
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% Select only the index 
grainProp       = grainProp(idxSelectedGrain); 

  
% Sort data into histogram bin 
nEdge           = length(binEdge); 
nBin            = nEdge - 1; 
histPC          = zeros(nEdge - 1, 1); 
binCenter(1)    = binEdge(1); 

  
for iEdge = 1:nEdge - 1 
    [index{iEdge}] = find(and(grainProp <= binEdge(iEdge + 1),... 
                             grainProp  >  binEdge(iEdge))); 
    binCenter(iEdge)   = (binEdge(iEdge + 1) + binEdge(iEdge))./2;  
end 

  
for iBin = 1:nBin 
    histPC(iBin)  = length(index{iBin}); 
end 

  
% Normalized to get the PDF 
nGrainCheck = sum(histPC); 
histPC = histPC./nGrainCheck; 

  
% Export the statistics 
statGSD.mean = mean(grainProp); 
statGSD.std  = std(grainProp); 

  
% Find the cumulative density function  
% histCDF = cumsum((histFB))./sum(histFB); 
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