

COMPUTATIONAL ANALYSIS OF FLUID FLOW

IN 2-D & 3-D PORE GEOMETRY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF GEOPHYSICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

NATTAVADEE SRISUTTHIYAKORN

JUNE 2018

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/bq733sn6965

© 2018 by Nattavadee Srisutthiyakorn. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/bq733sn6965

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Gerald Mavko, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Tapan Mukerji

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dustin Schroeder

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Jack Dvorkin,

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

Abstract

The motivation of this dissertation is to improve understanding of the geometrical

parameters controlling flow properties and to develop toolkits to assist in this task in order

to further advance Digital Rock Physics. With digital 2-D or 3-D images we can now

investigate rock geometry thoroughly. Geometrical parameters such as cross-section

geometry, tortuosity, pore size distribution, and grain size distribution will be discussed in

detail in each chapter. Then, combining the knowledge of cross-section geometry and

tortuosity, I show that the pore size distribution is the missing parameter crucial for

accurately predicting permeability in porous media and I derive the revised Kozeny-

Carman equation. Furthermore, the growing number of digital microstructures makes data

analysis via machine learning possible. I will also discuss how to employ Machine

Learning in Digital Rock Physics on permeability prediction from digital microstructures.

These various approaches are designed to advance our fundamental understanding of rock

geometry, and to determine the topological factors that are most relevant to the geophysical

properties that we wish to simulate.

v

Acknowledgement

First and foremost, I would like to acknowledge my dissertation reading committee

members – Professor Gary Mavko, Professor Tapan Mukerji, Dr. Jack Dvorkin, and

Professor Dustin Schroeder. Additionally, I would like to thank Dr. Sander Hunter for

serving on my defense oral committee, and Professor Anthony Kovscek for serving as my

Ph.D. defense chair. I am grateful for their supports and encouragements on my Ph.D. path.

I am very fortunate to have been working with my advisor Professor Gary Mavko.

My life in the past five years has been an invaluable and memorable experience due to him.

He is the best example of the perfect advisor that any student can hope for. Every discussion

with him is inspiring and enlightening. Whenever I faced any obstacle or encountered a

life-changing event, Gary and his wife Barbara were always there, reaching out and

supporting me. My heart felt thanks to both of them.

Professor Amos Nur, thank you so much for giving me the opportunity to join the

SRB group. I still remember the first time we met in Bangkok discussing different research

topics. This dissertation topic is also inspired by his curiosity regarding the prediction of

physical properties from 2-D images.

vi

I also would like to thank Professor Tapan Mukerji and Dr. Jack Dvorkin. Together

with Professor Gary they are the three musketeers of the SRB group. Many of the creative

ideas I employed in my dissertation stemmed from discussions with them. Thank you so

much for helping me grow as a researcher.

Dr. Nishank Saxena, Dr. Ronny Hofmann, and Dr. Sander Hunter mentored me

during the Summer of 2016, when I was an intern of the Petrophysics and Geomechanics

team at the Shell Technology Center Houston. I always enjoy the time we spend

exchanging ideas about the future of digital rock physics.

Dr. Ritu Sarker and Dr. Stephan Gelinsky mentored me during the Summer of 2017

when I was an intern of QI team at Shell International Exploration and Production. I have

to thank them for taking such great care of me during the entire Summer. They were

wonderful examples of great mentors.

Dr. Evelin Sullivan has been my writing tutor and my friend for the past three years.

She patiently taught me the art of good writing. We enjoy talking about running and

exercising, and she always amazes me with how she maintains an energetic lifestyle.

I thank my SRB and School of Earth Sciences colleagues for their friendship in the

basement of Mitchell: Amrita, Danica, Adam, Nishank, Chisato, Yuki, Sabrina, Priyanka,

Humberto, Pinar, Iris, Abdulla, Abrar, Salma, Vishal, Juan, Chen, Wei, Ankush, Krongrath,

Dulcie, Beibei, Chao, Tianze, Jens, Meng, Mathias, Jason, Mustafa, Lei, Larry and many

more.

vii

My life at Stanford would have been lonelier without my friends from the Stanford

Thai Student Association. We had a great time spending Friday nights together playing

board games, going to Tahoe together skiing, and organizing Thai cultural events.

I was blessed with the friendship of some truly special people. I want to thank Nui

Wiriya Thongsomboon, Amita Tiyaboonchai, and Kloy Kanteera Tepartimagorn. They are

always there for me even at the hardest times.

To Jack Visutipol, thank you so much for your caring and encouragement. I cherish

every moment we have spent together. Jack has made a tremendous effort in taking

countless trips to Stanford and Houston in the past five years to support me.

Apart from Professor Gary, I would like to dedicate this thesis to my family,

Somchai Srisutthiyakorn, Jiravadee Srisutthiyakorn, and Prin Srisutthiyakorn. Thank you

for your unconditional support and love.

viii

Contents

 ...CHAPTER 1 INTRODUCTION
 ... 1

1.1 BACKGROUND .. 2
1.2 TRENDS AND CHALLENGES ... 4
1.3 MOTIVATIONS ... 6
1.4 PREDICTING 3-D ROCK PROPERTIES FROM 2-D IMAGES ... 7

 Empirical or theoretical relations ... 8
 Reconstructing a 3-D binary image ... 9
 Directly predicting 3-D rock properties .. 10

1.5 DISSERTATION OVERVIEW .. 11

 ... CHAPTER 2 TOOLS AND TECHNIQUES IN DIGITAL ROCK PHYSICS
 ... 15

2.1 ARTIFICIAL MICROSTRUCTURE CONSTRUCTION .. 16
 Pipes of various cross-sections .. 16
 Artificial and physical sphere packs .. 17

2.2 MICROSTRUCTURE ALTERATION .. 19
2.3 GEOMETRIC MEASUREMENTS .. 20

 Minkowski Functionals .. 20
 2-D/3-D shape extraction through convolution ... 25
 2-D/3-D proximity ... 26
 2-D/3-D pore size distribution along streamlines ... 27

2.4 CONCLUSION ... 29

 .. CHAPTER 3 REVIEW OF THE KOZENY-CARMAN EQUATION
 ... 30

3.1 INTRODUCTION .. 31
3.2 THE KOZENY-CARMAN EQUATION IN DIGITAL ROCK PHYSICS 33

 ... CHAPTER 4 CROSS-SECTION GEOMETRY
 ... 35

4.1 INTRODUCTION .. 36
4.2 APPARENT RADIUS .. 39

 An Elliptical Pipe .. 43
 A Square Pipe .. 45
 An Equilateral Triangular Pipe ... 46

4.3 APPARENT RADIUS IN A PIPE WITH A THROAT ... 48

ix

4.4 CONCLUSION ... 51

 .. CHAPTER 5 TORTUOSITY
 ... 52

5.1 INTRODUCTION .. 54
5.2 DATA AND METHODOLOGY .. 58
5.3 HYDRAULIC TORTUOSITY ... 61
5.4 APPLYING LB TORTUOSITY TO THE KOZENY-CARMAN EQUATION 65
5.5 SEARCHING FOR THE MISSING PARAMETER ... 68
5.6 CONCLUSION ... 70

 .. CHAPTER 6 THE REVISED KOZENY-CARMAN
 ... 71

6.1 INTRODUCTION .. 72
6.2 THE REVISED KOZENY-CARMAN EQUATION .. 74
6.3 IMPLEMENTATION ... 77

 Streamlines on distance map approach ... 77
 Multiple 2-D thin section approach ... 79

6.4 RESULTS ... 84
6.5 CONCLUSION ... 90

 .. CHAPTER 7 MACHINE LEARNING IN DIGITAL ROCK PHYSICS
 ... 91

7.1 INTRODUCTION .. 92
7.2 DATA PROCESSING .. 93
7.3 FEATURE EXTRACTION .. 94

 Minkowski Functionals .. 94
 2-D Pattern Distribution ... 94
 3-D Pattern Distribution ... 95

7.4 METHODOLOGY.. 96
 Multilayer Neural Network (MNN) ... 96
 Convolutional Neural Network .. 98

7.5 RESULTS ... 99
7.6 CONCLUSION ... 101

 CHAPTER 8 COMPUTATION OF GRAIN SIZE DISTRIBUTION IN 2-D AND 3-D BINARY
IMAGES ... 107

8.1 INTRODUCTION .. 109
8.2 DIGITAL MICROSTRUCTURES ... 111
8.3 METHODS ... 114

 Grain size distribution ... 114
 2-D Thin Sections Segmentation .. 118
 2-D to 3-D grain size distribution modeling (Wicksell’s corpuscle problem) 120

8.4 RESULTS AND DISCUSSIONS ... 122
 Grain Size Distribution .. 122
 2-D to 3-D grain size distribution modeling (Wicksell’s corpuscle problem) 126

8.5 CONCLUSION ... 130

 .. APPENDIX A DIGITAL MICROSTRUCTURES
 ... 131

A.1 PIPES OF VARIOUS CROSS-SECTIONS ... 132
A.1.1 Round pipes ... 132
A.1.2 Elliptical pipes ... 132
A.1.3 Triangle pipes .. 132
A.1.4 Square pipes .. 133
A.1.5 Sinusoidal pipes ... 133

x

A.1.6 k-cusps hypotrochoidal pipes .. 133
A.2 ARTIFICIAL AND PHYSICAL SPHERE PACKS ... 136

A.2.1 Simple cubic pack (SCP) ... 136
A.2.2 Face-centered cubic pack (FCP) ... 136
A.2.3 Finney Pack ... 137

A.3 NATURAL ROCKS ... 139
A.3.1 Fontainebleau sandstone ... 139
A.3.2 Bituminous sand .. 139
A.3.3 Berea sandstone... 140
A.3.4 Grosmont carbonate .. 140

 ... APPENDIX B: NUMERICAL SIMULATIONS
 ... 142

B.1 LATTICE BOLTZMANN FLOW SIMULATION .. 143
B.1.1 Usage Notes ... 147

B.2 ELECTRICAL RESISTIVITY ... 148
B.3 ELASTIC MODULI ... 149
B.4 EFFECT OF DISCRETIZATION IN NUMERICAL SIMULATIONS 150

B.4.1 Scale .. 151
B.4.2 Resolution .. 155

APPENDIX C: CODES ... 159

BIBLIOGRAPHY ... 203

xi

List of Figures

Figure 1-1: Multiple approaches to predict 3-D rock elastic and flow properties from 2-D

images. .. 8

Figure 2-1:Multiple realizations of the Finney pack using r = 0.5, 1, 1.5 and LX = 3, 6, 9,

12... 18

Figure 2-2:(a) Original image of a Berea sandstone, (b) labelled pore space – different

colors represent separate components in the pore space, (c) connected pore space. 19

Figure 2-3: Idealized geometric shapes, from the left, sphere, simple cubic sphere pack,

octahedron; cylinder, 3-axis cylinder. The properties of these shapes are summarized in

Table 2-1. .. 24

Figure 2-4: Comparison of Minkowski geometrical measurements (porosity -phi, specific

surface area – SSA) to the theoretical values.. 25

Figure 2-5: The convolution of a sample image and a pattern. After convolving, any pixel

with value 5 (the number of pixels in the pattern) indicates the location of the pattern found

in the image. .. 26

Figure 2-6: (a) original image of Berea sandstone, (b) contoured 2-D proximity, (c)

contoured 3-D proximity... 27

xii

Figure 2-7: (Top) 2-D proximity along the streamlines in simple cubic pack (SCP) and

(Bottom) 3-D proximity along the streamlines in simple cubic pack (SCP). 28

Figure 4-1: 3-D digital representations of a circular pipe, an elliptical pipe with aspect ratio

0.7, a square pipe, and an equilateral triangular pipe. ... 38

Figure 4-2: For all pipes with the same porosity, a circular pipe has the highest permeability.

The ratio of the permeability of any cross-section to that of a circular cross-section can be

found using the apparent radius concept. In this case, the permeability is calculated using

Lattice-Boltzman flow simulation. ... 41

Figure 4-3: Cross-section of a square pipe of side s. The hydraulic radius is s/2 which is

exactly the radius of a circle inscribed in the square. ... 41

Figure 4-4: 3-D digital representation of a normal circular pipe and a circular pipe with a

throat in the middle. .. 49

Figure 4-5: Comparison of the apparent radius calculated from Lattice Boltzmann

simulations to that from the apparent radius model. The x axis represents the radius of the

throat, which ranges from 4 to 36 pixels. .. 50

Figure 5-1: Streamlines in sinusoidal pore channels show laminar flow behavior (low

Reynolds number). .. 58

Figure 5-2: Streamlines with 3-D segmented binary images in light grey color in the

background. From left to right: Finney pack, Berea sandstone, Grosmont carbonate. 58

Figure 5-3: Individual streamline tortuosity from simple cubic pack (SCP), face-centered

cubic pack (FCP), Finney pack, Fontainebleau sandstone, Bituminous sand, Berea

sandstone, and Grosmont carbonate. The black lines show flux-weighted tortuosity and the

grey lines show the inverted tortuosity from the Kozeny-Carman equation. 62

file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921258
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921258
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921262
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921262
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921265
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921265
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921266
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921266
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921266
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921266

xiii

Figure 5-4: Inverted tortuosity from the Kozeny-Carman equation (assuming that the

geometric factor B is 0.5) vs. flux-weighted tortuosity in sphere packs and natural rocks.

For the Berea sandstone and Grosmont carbonate, we selected the subsets of the result from

one of every five samples for the representation. The black line is a 1:1 reference line. This

graph shows that the inverted tortuosity is higher than the flux-weighted tortuosity in most

cases. ... 62

Figure 5-5: Porosity vs. flux-weighted tortuosity in sphere packs and natural rocks. For the

Berea sandstone and Grosmont carbonate, we selected the subsets of result from one of

every five samples for the representation. Finney packs and face-centered cubic packs with

dashed lines show a clear trend of increasing flux-weighted tortuosity for an increase in

grain/sphere boundary. .. 64

Figure 5-6: Porosity vs. Lattice Boltzmann (LB) permeability and Kozeny-Carman (KC)

predicted permeability using flux-weighted average tortuosity and a geometric factor (B)

of 0.5. The permeability is on the log10 scale. The sinusoidal pipes (red circles) show that

the Kozeny-Carman equation can be misleading. As porosity increases and pore throat size

decreases in sinusoidal pipes, LB permeability decreases, whereas KC permeability

increases. ... 66

Figure 5-7: Lattice Boltzmann (LB) permeability vs. Kozeny-Carman (KC) predicted

permeability using flux-weighted average tortuosity and a geometric factor (B) of 0.5 for

sinusoidal pipes. Note that both axes are on a linear scale. The black line is a 1:1 reference

line... 66

Figure 5-8: Lattice Boltzmann (LB) permeability vs. the Kozeny-Carman (KC) predicted

permeability using flux-weighted average tortuosity and a geometric factor (B) of 0.5. For

file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921269
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921269
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921269
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921269
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921269
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921269

xiv

most samples, KC permeability overpredicts permeability by orders of magnitude. Note

that both axes are on the log10 scale. ... 67

Figure 5-9: Comparison between porosity, specific surface area, and KC permeability of

original images vs those of connected pore space images. The right plot shows that even

though the connected porosity and the connected specific surface area are always less than

the original ones, their effects cancel out when we calculate permeability from the KC

equation. .. 69

Figure 6-1: An example of connected conical frustums derived from discretizing a

sinusoidal pipe. ... 75

Figure 6-2: An example workflow on extracting the representative pore size distribution

using streamlines in a face-centered cubic pack. .. 78

Figure 6-3: The comparison between the pore size distribution from streamlines and the

modeled pore size distribution. ... 79

Figure 6-4: An example workflow of extracting the representative pore size distribution

from 2-D thin sections. ... 81

Figure 6-5: The representative pore size distribution model using various equations such

as linear, sinusoidal, Gauss error, sinusoidal reverse, and Gauss error reverse. 81

Figure 6-6: The sensitivity of the correction factor 𝛾 for various ratios of pore body to pore

throat. .. 82

Figure 6-7: Lattice Boltzmann (LB) permeability vs. the Kozeny-Carman (KC) predicted

permeability using flux-weighted average tortuosity and a geometric factor (B) of 0.5. For

most samples, KC permeability overpredicts permeability by orders of magnitude. Note

file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921273
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921273
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921274
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921274
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921275
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921275

xv

that both axes are on the log10 scale. The inaccuracy of KC permeability is prominent in

sinusoidal pipes. .. 85

Figure 6-8: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC)

predicted permeability with unsorted pore size distribution along the streamlines. Note that

both axes are on the log10 scale. .. 85

Figure 6-9: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC)

predicted permeability with sorted pore size distribution along the streamlines. Note that

both axes are on the log10 scale. .. 86

Figure 6-10: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC)

predicted permeability with linear equation pore size distribution model. 87

Figure 6-11: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC)

predicted permeability with sinusoidal equation pore size distribution model................. 87

Figure 6-12: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC)

predicted permeability with Gauss error equation pore size distribution model. 88

Figure 6-13: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC)

predicted permeability with sinusoidal reverse equation pore size distribution model. ... 88

Figure 6-14: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC)

predicted permeability with Gauss error reverse equation pore size distribution. 89

Figure 7-1: Example for the 5 times upscale in 2D images. ... 93

Figure 7-2: 16 2-D patterns derived from the cross-shape template. 95

Figure 7-3: The convolution of a sample image and a pattern. After convolving, the pixel

that has value 5 (the number of total pixel in the pattern) indicates the location of the pattern

found in the image. ... 95

file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921288

xvi

Figure 7-4: Example of the network architecture (Demuth, 2002). 97

Figure 7-5: Regression plots of the predicted data on the y axis versus the target on the x

axis for each model. This data is from the feed-forward network. The multi-scale models

have better regression since they are near a 45 degree line. ... 104

Figure 7-6: Regression plots of the predicted data on the y axis versus the target on the x

axis for each model. This data is from the Bayesian regularization network. The multi-scale

models have better regression since they are near a 45 degree line. 105

Figure 7-7: Mean square error of each network architecture from Training set (left) and

Test set (right). The y axis is the number of hidden layers from 1 to 5, and the x axis is the

number of nodes, where 1, 2, 3 correspond to 5, 10, 20 number of nodes. 106

Figure 8-1: 3-D µXCT images in this study include a simple cubic pack (SCP), a Finney

pack, Berea sandstone (B1 and B5), Castlegate sandstone (CG1), and Fontainbleau

sandstone (FB24), from top-left to bottom-right respectively. 113

Figure 8-2: Principal Component Analysis (PCA) to find the grain sizes along principal

axes. We measured the size of grains on two perpendicular axes (4 radii) for a 2-D image

and three perpendicular axes (6 radii) for a 3-D image. ... 116

Figure 8-3: The plot for quality control in the grain size measurement in a 2-D slice of B1,

B5, CG1, and FB24. The scale is in voxels. ... 117

Figure 8-4: Example of a 2-D thin section with subdivision grid. The size of the each

subimage is 5000x5000 pixels. ... 119

Figure 8-5: Cropped 2-D thin sections from B1, B5, CG1, and FB24 from top-left to

bottom-right. ... 119

xvii

Figure 8-6: Cropped segmented 2-D thin sections from B1, B5, CG1, and FB24 from top-

left to bottom-right before image cleaning. .. 120

Figure 8-7: 3-D and 2-D Grain size distributions from the µXCT images of a simple cubic

pack and a Finney pack for algorithm validation. For these sphere packs, volume-based

and frequency-based distribution show the same results since they are packs of identical

spheres. 2-D grain size distribution clearly shows how 2-D slicing would result in apparent

grain size measurements. .. 123

Figure 8-8: The coordination number (number of contacts per grain) from 3-D µXCT

images of a simple cubic pack and a Finney pack. The simple cubic pack shows the

coordination number of 6, which is equal to the theoretical number. 124

Figure 8-9: The coordination number (number of contacts per grain) from 3-D µXCT

images of natural rocks. .. 124

Figure 8-10: 3-D grain-size distributions with (1) volume-based (simulating the sieve

method), (2) frequency-based (simulating the laser diffraction method), (3) point-count

(simulating the point-count method on a 2-D thin section). ... 125

Figure 8-11: The comparison between 2-D volume-based grain size distribution from the

thin section, predicted 3-D volume-based grain size distribution, and the 3-D volume-based

grain size distribution from uXCT image for B1 and B5. .. 127

Figure 8-12: The comparison between 2-D volume-based grain size distribution from the

thin section, predicted 3-D volume-based grain size distribution, and the 3-D volume-based

grain size distribution from uXCT image for CG1 and FB24. 128

Figure 8-13: 2-D to 3-D grain size distribution transform matrix. The color yellow shows

the coefficient within the transform matrix that is greater than one. 129

xviii

Figure A-1: Pipes with different cross-sections from left to right: round pipes, elliptical

pipes, triangle pipes, square pipes, sinusoidal pipes, 3-cusps hypotrochoidal pipes, 4-cusps

hypotrochoidal pipes, 5-cusps hypotrochoidal pipes, 6-cusps hypotrochoidal pipes, 7-cusps

hypotrochoidal pipes. .. 135

Figure A-2: Grain dilation effect on simple cubic pack (Top) and face-centered cubic pack

(Bottom) .. 137

Figure A-3: Finney packs with different radii of spheres (LX = 3, 6, 9, 12 from left to right).

... 138

Figure A-4: From top-left to bottom-right, Fontainebleau sandstone, Bituminous sand,

Berea sandstone, Grosmont carbonate in their original sizes. .. 141

Figure B-1: Steps of the Lattice-Boltzmann algorithm: (a) initial state of the density

distribution, (b) collision step, (c) propagation step (Keehm and Bosl, 2003). 144

Figure B-2: (Left) constant forcing scheme with mirrored pore space geometry; (right)

fixed flow rate scheme with a buffer zone of 15 pixels (Keehm and Bosl, 2003). 144

Figure B-3: Comparison of permeability predictions in a circular pipe from five different

versions of the Lattice Boltzmann program and the COMSOL finite element program. The

blue line in each graph represents the theoretical permeability value. In each graph, the

length of the pipe is 100, 200, or 400 pixels. .. 146

Figure B-4: Calculated Permeability (mD) of Finney Pack (left) and Fontainebleau

Sandstone (right) for four different versions of the Lattice Boltzmann algorithm (MS = MR,

F = FP, IM = IMR, IF = IFP) from (Keehm and Bosl, 2003). .. 147

file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921308
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921308

xix

Figure B-5: 2-D representation of the Finney Pack, Fontainebleau sandstone, Berea

sandstone, and carbonate. The red line shows the method for extracting images to

investigate the scale effect. ... 150

Figure B-6: 1-D horizontal and vertical autocorrelation from xcorr2 function in MATLAB

(top) compared with Fourier transforms (bottom). Both methods yield similar

autocorrelation length. .. 152

Figure B-7: The 1-D horizontal autocorrelation function of the Finney pack. The

autocorrelation length increases as the size of the sample increases. For example, for

sample size 103 voxels, the autocorrelation length is approximately 10 voxels, and for

sample size 1303 voxels, the autocorrelation length is approximately 20 voxels. 152

Figure B-8: Physical properties vs. sample size for all benchmark digital rock samples. The

properties are (1) porosity, (2) specific surface area, (3) mean breadth, (4) Euler number,

(5) permeability on a log 10 scale, (6) resistivity, (7) bulk modulus, (8) shear modulus, and

(9) density. .. 154

Figure B-9: Images of benchmark digital rock sample in 1x, 1/2x, 1/4x, 1/8x resolutions.

... 157

Figure B-10: Physical properties vs. resolution of each sample. The properties are (1)

porosity, (2) specific surface area, (3) mean breadth, (4) Euler number, (5) permeability in

log 10 scale, (6) resistivity, (7) bulk modulus, (8) shear modulus, and (9) density. 158

file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921315
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921315
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921315
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921316
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921316
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921316
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921317
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921317
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921317
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921317
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921318
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921318
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921318
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921318
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921319
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921319
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921320
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921320
file:///C:/Users/Natt/Dropbox/ProjectPhD/Thesis%20Writing/Draft/FullDissertation_JUN18_Srisutthiyakorn.docx%23_Toc515921320

xx

List of Tables

Table 2-1: The Minkowski measurements of idealized geometric shapes. The 3-D image

size of each shape is 1003 voxels. No. 2,4,6,8 are the inverse structures of No. 1,3,5,7,

respectively. Examples of the basic shapes associated with this table are shown in Figure

3... 21

Table 2-2: Minkowski Functionals on a sphere with the change in radius. 23

Table 4-1: Analytical solutions for permeability (κ) for pipes with various cross-sectional

geometries. The parameter n is the number of pipes, l is the length of a pipe, ϕ is porosity,

S is specific surface area, τ is tortuosity, R is the radius of a circular pipe, a is semi-major

axis and b is semi-minor axis for an ellipse, t is the side of an equilateral triangle, and s is

the side of a square. A is the cross sectional area and L is the length of permeable frame.

... 38

Table 5-1: The average of flux-weighted average tortuosity, mean tortuosity, minimum

tortuosity and maximum tortuosity, and inverted tortuosity from the Kozeny-Carman

equation. For artificial packs (with an asterisk), we report only tortuosities from an original

image without any grain dilation. ... 64

Table 6-1: Correction γ for different ratio of pore body to pore throat. 83

Table 7-1: Results from Feed-Forward MNN using tan-sigmoid function. 102

xxi

Table 7-2: Results from Bayesian Regularization MNN using rectified linear or positive

linear function. .. 103

Table B-1: The four most current versions of the Lattice Boltzmann algorithm from Keehm

(2003). The versions can be classified based on algorithm (time dependent/time-

independent) and boundary conditions (fixed flow rate /constant forcing with mirrored pore

geometry). Numbers in parentheses show the most current version available in SRB Tools.

... 145

Table B-2: Summary of characteristics of four implementations for the LB flow simulation

(adapted from Keehm and Bosl, 2003). .. 145

Table B-3: A list of material properties used in the electrical resistivity and elastic moduli

finite element solver. ... 149

Table B-4: REV in length of the cube (in voxel units) for each physical property of the

benchmark digital rocks. ... 155

Table B-5: dx for each resolution on the benchmark digital rock. 155

1

 Chapter 1

Introduction

This chapter provides the background and addresses trends and challenges in digital

rock physics. Then, it discusses the motivation of the dissertation and the overview of the

dissertation.

2

1.1 BACKGROUND

As Mavko et al. states, Rock Physics is the study of “the relationships between

geophysical observations and the underlying physical properties of rocks, such as

composition, porosity, and pore fluid content”. The foundation of Rock Physics is to

discover and to understand such physical relations through the combination of theoretical

models and laboratory measurements.

Digital Rock Physics utilizes digital 2-D or 3-D images of the complex rock

microstructures (i.e. porous media) to understand these physical relations, and it has

emerged as a robust way to simulate physical processes and determine physical properties

such as effective elastic and transport properties at microscale. Numerical simulations in

Digital Rock Physics include, for example, finite element, finite difference, and Lattice

Boltzmann flow simulation (Garboczi, 1998; Arns et al., 2002; Keehm, 2003; Andrä et al.,

2013a).

Digital 3-D volumes of rock microstructures are acquired from 3-D micro x-ray

computer tomography (µXCT), which requires several steps of image filtering and

segmentation before the final 3-D binary-segmented volumes are obtained (Sezgin and

Sankur, 2004; Andrä et al., 2013a). Andrä et al. (2013) showed that effective elastic and

transport properties simulated from the 3-D binary volumes are in good quantitative

agreement with laboratory measurements, even though the analyses are performed at a

different scale (cm in laboratory measurements vs. µm to mm in numerical simulations).

Digital 2-D images of rock microstructures can be scanned from 2-D thin sections

or obtained from slicing digital 3-D μXCT volumes. A thin section is an approximately 30

μm-thick slice of rock attached to a glass slide with epoxy. The segmentation of scanned

3

thin sections is challenging since the 2-D thin sections are not truly 2-D as a result of the

wedge areas being covered by epoxy. Also, we cannot directly predict same physical

properties that require 3-D geometry such as permeability, without using some transforms.

Despite these drawbacks of digital 2-D images, they serve a purpose: they are widely

available and inexpensive and are offering higher resolution and larger field of view than

the 3-D µXCT volumes. 2-D images from a Scanning Electron Microscope (SEM) is also

useful to quantify microporosity (Flavio S. Anselmetti, 1998).

Numerical simulations have several advantages over laboratory measurements. For

one, the numerical simulations take less time than laboratory measurements. For another,

they can provide accurate measurements of physical properties without damaging the

sample, which is inevitable in testing friable sands or oil sands (Dvorkin et al., 2008). They

also allow us to obtain the “trend” of physical relations from subvolumes (i.e. porosity vs.

permeability, porosity vs. electrical formation factor, and porosity vs. elastic moduli)

(Dvorkin et al., 2011). The analysis of the 3-D binary segmented volumes can also be

enhanced by various analytical techniques such as geometrical measurements, porous

media construction and alteration, and machine learning. These techniques allow us to

extract parameters from digital 3-D volumes that cannot be extracted through conventional

laboratory experiments.

4

1.2 TRENDS AND CHALLENGES

 Towards understanding the “geometry”

Before the age of Digital Rock Physics, rock “geometry” often served as a fitting

parameter in empirical or semi-theoretical relations. Many of the geometric parameters

cannot be measured directly in the laboratory. For example, there is no practical way

to measure tortuosity or the number of contacts per grain in the laboratory settings.

Therefore, rock geometry became a mysterious parameter and was treated as such.

With digital 2-D or 3-D images we can now investigate rock geometry thoroughly. The

previously mentioned parameters can now be calculated directly from the digital

images, and we are moving towards a greater understanding of the role played by rock

geometry in elastic and transport properties.

 Towards higher resolution and larger scale digital images

Digital Rock Physics has rapidly emerged as a robust way to simulate physical

processes because of the availability of high resolution digital 3-D volumes. The main

question regarding any research in Digital Rock Physics is whether the digital volumes

in the study reach the representative elementary volume (REV), the volume necessary

to ensure that simulated physical properties are accurate. The REV varies from property

to property. For example, it is easier to reach REV for porosity than to reach it for

permeability. The REV also varies from microstructure to microstructure. It is easier

to reach REV for homogenous microstructure than for heterogenous microstructure.

Apart from the REV for the digital microstructure, it is also important to consider that

the physical simulations themselves must have a certain minimum required number of

5

voxels for the simulation result to be free from boundary condition effects. For example,

if we want to measure the grains’ diameters, measuring grain diameter at the boundary

of the image will distort the distribution.

Improvements in computational power now enable researchers to simulate physical

properties on higher resolution and larger scale digital samples. However, larger

volumes require longer computational time. This raises the question of whether for

cases in which it is not possible to simulate the physical properties on the REV volume,

it might be possible to simulate the physical properties on small samples and then

upscale those samples.

 Towards Digital images analysis via machine learning

Machine learning in Digital Rock Physics is another prominent trend. The growing

number of digital microstructures makes data analysis via machine learning possible.

For example, machine learning can be used for classification of minerals and rock types

and prediction of geophysical properties. The machine can be trained to recognize

specific patterns in 2-D and 3-D images to predict physical properties such as

permeability.

 Towards realistic numerical simulations imitating the geological processes.

As the research in Digital Rock Physics grows, we expect to see more research with

numerical simulations imitating dynamic geological processes such as deposition,

compaction, and cementation. However, as the simulations get more complicated,

computational power has to be increased as well to handle complex and dynamic

simulations.

6

1.3 MOTIVATIONS

The main motivation of this dissertation is to improve understanding of the

geometrical parameters controlling flow properties and to develop toolkits to assist in this

task in order to further advance Digital Rock Physics. Geometrical parameters such as

cross-section geometry, tortuosity and pore size distribution will be discussed in detail in

each chapter. After extracting geometrical parameters, I also discuss how to employ

Machine Learning in Digital Rock Physics on permeability prediction from digital

microstructures. These various approaches are designed to advance our fundamental

understanding of rock geometry, and to determine the topological factors that are most

relevant to the geophysical properties that we wish to simulate. After presenting the

understanding of geometrical parameters I gained from digital 3-D volumes, I apply this

knowledge to predict permeability from digital 2-D images.

Conventionally, we use digital 2-D images only for obtaining porosity, mineralogy,

and degree of cementation. To increase the use of digital 2-D images, important questions

are (1) what geometrical features can we extract from the 2-D images, and (2) do they

provide relevant information about 3-D effective elastic and transport properties? These

effective properties largely depend on rock geometry. However, we still lack knowledge

of the difference between 2-D and 3-D rock geometries, which keeps us from

understanding how these differences are manifested in 2-D and 3-D simulated results of

effective elastic and transport properties.

7

1.4 PREDICTING 3-D ROCK PROPERTIES FROM 2-D IMAGES

The use of high-resolution 2-D images for rock property prediction has long been

a challenge in rock physics since they do not contain the complete rock geometry

information, such as where the grains are in contact and how the pores are connected to

form a network. For instance, a 2-D slice of closely packed equal spheres shows mostly

isolated spheres unless the slice is cut right where the spheres are in contact. Rock

properties such as bulk modulus, shear modulus, and permeability are therefore difficult to

predict directly from 2-D images. Conventionally, these properties are obtained from core

measurements, or alternatively, from numerical simulations on 3-D Micro X-ray Computed

Tomography (µXCT) images. However, core measurements in the laboratory are time

consuming and often inflict irreversible changes to the rock matrix. Acquiring 3-D µXCT

images is also not part of the routine core analysis workflow.

There are, however, advantages to using 2-D thin sections. They are widely

available and inexpensive, since they are often produced routinely as a part of the core

analysis workflow. They also offer higher resolution images and a larger field of view

compared to the 3-D µXCT images. For example, if the computing limitation is at x voxels,

the square 2-D image will have a maximum size of √x and the cube 3-D image will have

a maximum size of ∛x. Similarly, the resolution of microscope imaging is Abbe’s limit –

half the wavelength of the light source, whereas µXCT images are limited by the resolution

of the sensor – currently ~1µm.

Various approaches can be employed to estimate 3-D rock properties. These

approaches include (1) empirical or theoretical relations by simulating 2-D rock properties

and then transforming them into 3-D rock properties, (2) reconstructing a 3-D binary image

8

and then simulating 3-D rock properties, and (3) directly predicting 3-D rock properties by

employing machine learning or using the Revised Kozeny-Carman equation (Figure 1-1).

Figure 1-1: Multiple approaches to predict 3-D rock elastic and flow properties from 2-D images.

 Empirical or theoretical relations

For the first approach, Berryman and Blair (1986) presented a method for

estimating permeability from 2-D thin sections by combining electrical formation factor

with a form of the Kozeny-Carman equation. Lock et al. (2002) proposed a method to

predict permeability by measuring areas and perimeters of individual pores from 2-D thin

sections. The Saxena et al. (2017) method involves two steps: (1) simulating permeability

of the thin section for flow normal to the face using the Lattice Boltzmann Method (LBM)

flow or the finite element method, and (2) applying 2D to 3D transform using calibration.

For elastic properties, Saxena and Mavko (2016) predicted bulk and shear modulus by

power law transform between the effective moduli obtained from 2-D and 3-D simulations.

9

 Reconstructing a 3-D binary image

Previous attempts of 3-D images reconstruction can be classified into 2 categories:

(1) using geostatistics-based method, and (2) using process-based method. Geostatistics-

based reconstruction uses 2-D thin sections directly as inputs, whereas process-based

reconstruction requires user to estimate input parameters such as porosity, the type and

amount of cementation, grain size distribution, coefficient of friction, and visual estimation

of compaction, all from 2-D thin sections.

 Adler et al. (1990) reconstructed artificial porous media by using linear and non-

linear filters of Gaussian random fields to match the porosity and correlation functions of

Fontainebleau sandstone. Yeong and Torquato (1998) attempted to create 3-D

reconstructed images of Fontainebleau sandstone by using a two-point probability function

and a lineal-path function. Manwart et al. (2000) added pore size distribution to

geostatistics-based reconstruction. Recently, a number of authors have proposed to use

single normal equation simulation (SNESIM) and sequential indicator simulation (SISIM)

for reconstructing 3-D images (Keehm, 2004; Okabe and Blunt, 2004, 2005; Kainourgiakis

et al., 2005). The SNESIM technique was introduced in geostatistics to reconstruct field

scale structures such as channels (Guardiano and Srivastava, 1993; Strebelle, 2002;

Strebelle et al., 2003). SNESIM and SISIM simulations scan through the training images

to build the search tree of data events, which can be used later to calculate conditional

probabilities at each grid node. By storing data events in the tree structure, the size of

memory required will grow exponentially. The limited size of patterns prevents SNESIM

from capturing large scale features. Strebelle (2002) introduced multigrids to solve this

problem, yet, there is still a problem with artifacts (Mariethoz et al., 2010). Direct sampling

10

helps solve the memory issues by directly sampling the training images randomly, yet

conditioned to the data event. Statistically, direct sampling can be recognized as a Markov

chain with high number of neighborhood (Mariethoz and Caers, 2014). Similar to direct

sampling, Wu et al. used a third-order Markov random field to generate 3-D images of the

pore space from 2-D. (Wu et al., 2006).

For previous works on process-based reconstruction, Øren and Bakke (2002)

included physical processes (sedimentation, compaction, and diagenesis) into their

process-based 3-D reconstructions. From 2-D thin sections, they extract porosity, the type

and amount of cementation, grain size distribution, and visual estimation of compaction.

The limitation of this method is that it only considers spherical grains, and the physical

process is limited to clastic sediments. Jin et al. developed physics-based reconstruction of

sedimentary rocks based on grain size distribution, porosity, the type and amount of

cementation, the coefficient of friction, the bound strength parameters, and the grain

stiffness moduli (Jin et al., 2003, 2008). Sain (2011) implemented granular dynamics to

construct granular packs and consolidated microstructures based on porosity, coordination

number and stress state. The physics-based reconstructions can produce stress-strain

relationship, but many parameters such as coefficient of friction and coordination number

cannot be obtained from 2-D images.

 Directly predicting 3-D rock properties

The third approach is an ongoing research and is a major part of my dissertation.

Chapter 6 addresses the Revised Kozeny-Carman method and Chapter 7 employs machine

learning to predict permeability from 2-D/3-D binary segmented images.

11

1.5 DISSERTATION OVERVIEW

Chapter 2 Tools and Techniques in Digital Rock Physics

This chapter focuses on the common tools and techniques used in Digital Rock

Physics such as artificial microstructure construction, microstructure alternation, and

microstructure geometric measurements.

Chapter 3 Review of the Kozeny-Carman Equation

This chapter presents the literature review of the Kozeny-Carman Equation,

including the derivation and application of the equation. The Kozeny-Carman equation is

a semi-empirical model relating permeability in single-phase flow to geometric

measurements such as porosity, specific surface area, tortuosity, and a geometric factor.

Through the Kozeny-Carman equation, we can better understand how the rock geometry

relates to permeability.

Chapter 4 Cross-Section Geometry

The purpose of this chapter is to understand the effect of cross-section geometry on

permeability. Therefore, I focus on the single-phase flow through pipes with various cross-

sections including circular pipes, elliptical pipes, triangular pipes, square pipes, n-cusps

hypotrochoidal pipes, and sinusoidal pipes. The sinusoidal pipes differ from the other pipes

in having cross-section that varies sinusoidally along the flow direction. In this chapter, I

also introduce the Apparent Radius, which can be used in place of the hydraulic radius in

the Kozeny-Carman equation. By mathematical derivation, I show that this form is valid

for pipes other than a circular pipe as well.

12

Chapter 5 Tortuosity

Chapter 5 presents a detailed study of hydraulic tortuosity. Hydraulic tortuosity is

one of the most important parameters in characterizing fluid flow heterogeneity in porous

media. The most basic definition of tortuosity is the ratio of average flow path length to

sample length. Although this definition seems straightforward, the lack of understanding

and of proper ways to measure tortuosity make tortuosity one of the most abused

parameters in rock physics. Often, the tortuosity is obtained from laboratory measurements

of porosity, permeability, and specific surface area by inverting the KC equation. This

approach has a major pitfall, as it treats tortuosity as a fitting factor, and the inverted

tortuosity is often un-physically high. In contrast, I obtained the tortuosity from 3-D

segmented binary images of porous media using streamlines extracted from a local flux,

the output from the Lattice Boltzmann flow simulation. After obtaining streamlines from

each sample, I calculated the distribution of tortuosities and flux-weighted average

tortuosity.

Chapter 6 The Revised Kozeny-Carman method

This chapter combines the knowledge of cross-section pore geometry and tortuosity,

and I show that the pore size distribution is the missing parameter crucial for accurately

predicting permeability in porous media. Based on this insight, I derive the revised Kozeny-

Carman equation and show that it significantly improves the permeability estimation

compared to the original equation for isotropic clastic rocks.

Chapter 7 Machine Learning in Digital Rock Physics

13

This chapter presents machine learning methods for predicting physical properties

from binary segmented images. Instead of using conventional numerical simulations, I

developed machine learning methods and showed that it is possible to predict 3-D transport

properties by using geometrical features from both 2-D and 3-D µXCT binary segmented

images. Both multilayer neural network (MNN) and convolutional neural network (CNN)

algorithms were employed to predict permeability. Training was performed through both

feed-forward and back-propagation with Bayesian Regularization by using a gradient

descent algorithm. The inputs for MNN can be geometrical parameters such as Minkowski

Functionals (porosity, specific surface area, integral of mean curvature (for 3-D), and Euler

number). For CNN, the inputs can be either 2-D or 3-D binary images.

Chapter 8 Workflow for Grain Size Distribution

The aim of this chapter is to develop a robust code to digitally measure grain size

distribution on a 2-D or 3-D image. I also aim to establish the workflow to estimate the

grain size distribution from 2-D thin sections through Wicksell’s corpuscle modeling on

the μXCT images. Furthermore, I improved the precision of the method by incorporating

principal component analysis to find the eigenvector of grain orientation. This method

enables us to extract more information from the digital image about the grain size

distribution such as the grain volume, grain surface area, grain principal axis inclination

and azimuth, and the number of contacts of each grain.

14

Appendix A: Digital Microstructures

This section describes digital microstructures used in this dissertation including (1)

pipes with various cross-sections, (2) artificial and physical sphere packs, and (3) natural

rocks.

Appendix B: Numerical Simulations

This section describes different numerical simulations used in digital rock physics

such as the Lattice Boltzmann flow simulations and finite element method. I will also

discuss the effective of discretization in different numerical simulations.

Appendix C: Codes

This section compiles all the codes I developed for this dissertation.

15

 Chapter 2

Tools and Techniques in Digital Rock

Physics

This chapter describes various common tools and techniques developed for the

Digital Rock Physics study in this dissertation. For specific tools such as streamlines

extraction or grain size distribution measurements, the details will be given in the

methodology section of their own chapters. For the complete list of the MATLAB codes,

please refer to Appendix C. These digital tools can be divided into three main categories:

(1) artificial microstructure construction, (2) microstructure alteration, and (3)

microstructure geometric measurements.

These tools and techniques are applied on the binary segmented image of a rock.

Each voxel in the image belongs to one of two phases: solid or pore space. The solid

element has the value 1 and the pore element has the value 0.

16

2.1 ARTIFICIAL MICROSTRUCTURE CONSTRUCTION

The construction of artificial microstructures is one of the most important tools in

Digital Rock Physics as it helps us to understand rock “geometry” better. Throughout this

dissertation, various simple artificial microstructures are presented ranging from simple

ones such as pipes with various cross-sections to more complex ones such as granular

packs. Artificial microstructures serve as a bridge between traditional Rock Physics and

Digital Rock Physics since most of the traditional Rock Physics theories are based on

simplified rock geometry.

 Pipes of various cross-sections

The following step allows us to create pipes with any cross-sections. First, we mesh

the grid by specifying the sample size – defined as the number of pixels in the x, y, z

directions (nx, ny, nz). Note that in order to create an image of size (nx, ny, nz), arguments

to the meshgrid function in MATLAB must be given in the order ny, nx, nz.

[x, y, z] = meshgrid(1:ny, 1:nx, 1:nz);

Once the grid is created, we modify it by using the equation corresponding to the shape we

want to create. To create a cylinder, for example, we need to provide a radius (r) and a

center location [ctx, cty, ctz] for the pipe. The code below generates a solid cylindrical

pipe.

tempImage = sqrt((x-ctx).^2 + (z-ctz).^2) < r;

Then we can invert the solid, creating a pore space, using an absolute function.

Cylinder = abs(1-tempImage);

We can create pipes of varying cross-section by replacing the constant r with a variable r.

The following codes are available in Appendix C:

17

1) createCylinder.m

2) createEllipse.m

3) createEqTriangle.m

4) createCrescent.m

5) createRectangle.m

6) createHypotrochoid.m

7) createSinusoidalPipes.m

 Artificial and physical sphere packs

The steps for creating a spherical pack are similar as those for creating a pipe. In

this case, we need to know the center (x,y,z) and the radius of each sphere. This may require

some scaling if the location and size of the spheres are different from those of the output

image. MATLAB codes in the Appendix C include

1) createSCP.m

2) createFCP.m

3) createSphericalPack.m

A Finney pack is a physical random close packing of identical spheres (Finney,

1970). The Finney pack used here consists of 4021 spheres; the location of each sphere

was digitally rendered in a 3-D Cartesian coordinate system. The Finney pack acts as a

bridge between artificial packing models and natural rocks, and it is widely used in

computational experiments (Jin et al., 2009; Richa, 2010; Sain, 2011; Dvorkin et al., 2012).

The Finney pack can be generated by calling mkfinney2.exe within MATLAB using the

following code:

nx = 200; ny = 200; nz = 200; LX = 12; x0 = 0; y0 = 0; z0 = 0; R = 1;

18

! mkfinney2.exe finneytest.dat nx ny nz LX x0 y0 z0 R

where nx, ny, and nz define the size of the 3-D binary image, LX is the field of view (the

smaller the number, the larger the field of view; the maximum value accepted is 12), x0,

y0, z0 describe the locations of the spheres, and R is the radius of the spheres (R=1 equals

the original size of the spheres in the Finney Pack). The code mkfinney.exe is the in house

code written in C++. This code also requires the input file Finney.dat, which consists of

recorded x,y,z locations for 4021 identical spheres. Figure 2-1 shows different realizations

of the Finney pack created using r = 0.5, 1, 1.5 and LX = 3, 6, 9, 12.

Figure 2-1:Multiple realizations of the Finney pack using r = 0.5, 1, 1.5 and LX = 3, 6, 9, 12.

19

2.2 MICROSTRUCTURE ALTERATION

The main objective for microstructure alteration is to study how a change in rock

geometry would affect the rock’s physical properties. Microstructure geometry can be

altered in different ways. The simplest way is the dilation and erosion of the grain size.

We can also alter an image so that it contains only the connected pore space, which

allows the computation of connected (effective) porosity. To find the connected pore space,

we first label each group of connected pores by (1) selecting an unlabeled voxel, (2)

labeling it and all the voxels connected to it, and (3) repeating steps 1 and 2 until all voxels

in the pore space are labeled (Figure 2-2). To determine effective pore space, we find the

labelled groups of connected pores that exist in all of the outermost 2-D slices from every

face, which represent the connected pore space. This process is important for finding

geometrical parameters used in transport properties because only connected pore space

contributes to fluid and electrical flow. The MATLAB function

createConnectedPorespace.m takes a digital 3-D binary image as an input.

Figure 2-2:(a) Original image of a Berea sandstone, (b) labelled pore space – different colors represent
separate components in the pore space, (c) connected pore space.

20

2.3 GEOMETRIC MEASUREMENTS

This section describes mathematical description of the pore space geometry used in

this dissertation including (a) Minkowski Functionals, (b) 2-D/3-D shape extraction

through convolution, (c) 2-D/3-D proximity, (d) 2-D/3-D pore size distribution along

streamlines, and (e) 2-D/3-D grain size distribution.

 Minkowski Functionals

Minkowski Functionals describe the standard geometric measurements for a binary

image (Vogel et al., 2010). For a d-dimensional space, there are d+1 associated Minkowski

measurements. For example, a 3-D geometry can be defined by 4 Minkowski

measurements. For a 3-D model, the first functional 𝑀0 is the total volume of pore space,

with dimensions 𝐿3. Porosity can be calculated by dividing 𝑀0 by the total volume of solid

and pore space. The second functional 𝑀1 represents the total surface area between solid

and pore spaces, with dimensions 𝐿2 . We define a specific surface area as 𝑀1 divided by

the total volume of solid and pore space. Therefore, a specific surface area has dimensions

𝐿−1. The third functional 𝑀2 is the integral of mean curvature (mean breadth) on the

surface, with dimensions 𝐿. This can be defined as 𝑀2(X) =
1

2
∫ [

1

r1
+

1

r2
] ds

δx
, where r1

and r2 are the minimum and maximum radii of curvature on the surface element 𝑑𝑠. The

last Minkowski Functional, 𝑀3, is the (dimensionless) Euler Characteristic, defined as

(number of vertices) – (number of edges) + (number of faces) – (number of distinct

objects). The computation of Minkowski Functionals on 2-D and 3-D binary images is

based on Legland et al. (2007) MATLAB codes (Legland et al., 2007).

To understand each geometrical parameter in the Minkowski Functionals, we

generated idealized shapes such as spheres, cylinders, and octahedron for the study. The

21

geometric measurements on the idealized shapes allow for testing the accuracy of the

Minkowski algorithm on 3-D binary images and help understanding whether the boundary

of the image has any effect on the geometric measurements.

Table 2-1: The Minkowski measurements of idealized geometric shapes. The 3-D image size of each shape
is 1003 voxels. No. 2,4,6,8 are the inverse structures of No. 1,3,5,7, respectively. Examples of the basic

shapes associated with this table are shown in Figure 2-3.

No. Shape Porosity

(𝑀0)

Specific

Surface

Area

(𝑀1)

Integral of

Mean

Curvature

(𝑀2)

Euler

Number

(𝑀3)

1 A Sphere (r = 40 pixels) 0.2677 0.0207 79 1

2*

A cube with spherical hole

(No.1 Inverse)

0.7323 0.0207 21 2

3 A Sphere (r = 50.5 pixels) 0.5396 0.0316 100 1

4*

A cube with spherical hole

(No.3 Inverse)

0.4604 0.0316 80 -4

5

8 isolated spheres (r = 20

pixels)

0.267 0.0411 312 8

6*

A cube with 8 isolated

spherical holes

(No.5 Inverse)

0.733 0.0411 -212 9

7

8 isolated spheres (r = 25

pixels)

0.797 0.0485 136 -4

8*

A cube with 8 isolated

spherical holes

(No.7 Inverse)

0.203 0.0485 508 -27

9 Cylinder 0.1245 0.0107 59.3333 1

10 Three cylinders 0.2843 0.0208 100 1

11 Octahedron 0.0196 0.005 49 1

12 8 Octahedrons 0.0794 0.0251 312 8

22

The integral of mean curvature for a cube of size 1003 is 100. When swapping grains

with pores, the porosity becomes 1-porosity while the specific surface area remains the

same. The integral of mean curvature changes sign from + to – but the algorithm also

considers the integral of mean curvature for the outer surface of the cube. Therefore, the

integral of mean curvature for a cube of size 1003 voxels is 100. If the original structure

has the integral of mean curvature for a cube of size X, then the inverse structure has the

integral of mean curvature for a cube of size 100 – X (Table 2-1).

As the Euler number is a direct count of vertices – edges + faces – solid, it is totaled

when there is more than one isolated object within the mesh grid. For example, if a sphere

has an Euler number of 1, a cube with 8 spheres has an Euler number of 8. However, the

Euler number becomes negative when the spheres start contacting each other. According

to observation, the higher the negative number, the higher the number of holes in the pore

space.

We change the radius of the sphere to examine the effect of grain size on

Minkowski Functionals (Table 2-2). The mesh grid remains the same size, so when the

radius = 50 (diameter = 100) the sphere touches the boundary of a mesh cube that has the

size of 1003 voxels. This is also the point with maximum specific surface area. The change

in size of the grain does not affect the Euler number: it remains 1 as the radius increases.

The algorithm approximates the integral of mean curvature to be very close to the

theoretical value of 2r for the sphere.

23

Table 2-2: Minkowski Functionals on a sphere with the change in radius.

Radius of the

Sphere

Porosity

(𝑀0)

Specific

Surface Area

(𝑀1)

Integral of

Mean

Curvature

(𝑀2)

Euler Number

(𝑀3)

10 0.0041 0.0013 19 1

20 0.0334 0.0051 39 1

30 0.1129 0.0116 59 1

40 0.2677 0.0207 79 1

50 0.5232 0.0316 99 1

60 0.7974 0.0243 100 1

70 0.9589 0.0096 100 1

80 0.9979 0.0011 100 1

90 1 0 100 1

100 1 0 100 1

24

Figure 2-3: Idealized geometric shapes, from the left, sphere, simple cubic sphere pack, octahedron;
cylinder, 3-axis cylinder. The properties of these shapes are summarized in Table 2-1.

We validated two of the Minkowski Functionals (porosity and specific surface area)

by creating multiple 3-D straight pipes in a solid frame with circular, elliptical, square, and

triangular cross-sections with porosities ranging from 5% to 40%. Since the porosity and

specific surface are known exactly for these shapes, we can test the effect of discretization

in Minkowski Functionals codes. Figure 2-4 shows that a Minkowski Functionals code can

accurately calculate porosity for straight pipes with various cross-sections, even when

porosity is very low. The largest difference between exact and calculated specific surface

area (SSA) is for the square pipe. The codes employ 26-adjacency for polyhedral

reconstructions of a structure (Legland et al., 2007), and it may be difficult to accurately

reconstruct a square pipe in the form of polyhedrons having 26-adjacency. However, the

SSA of a square pipe may be irrelevant for calculations involving realistic pore geometries.

25

Figure 2-4: Comparison of Minkowski geometrical measurements (porosity -phi, specific surface area –
SSA) to the theoretical values

The MATLAB code is available in the paper “Computation of Minkowski measures

on 2D and 3D binary images,” (Legland et al., 2007). We also provide a MATLAB wrapper

code that accommodates a cell array input of 3-D images in Appendix C called

computeMinkowski3D.m. The input can be either a 3-D matrix of a single 3-D porous

image or a cell array containing 3-D matrices of multiple 3-D porous images. The program

will run multiple simulations if a cell array containing 3-D matrices is an input.

 2-D/3-D shape extraction through convolution

We can extract the location and the number of any specific shape in the 2-D/3-D

binary image using convolution. For example, Figure 2-5 shows how to find the location

26

of a cross shape within a sample image. After convolving, any pixel in the final image that

has value equal to the number of pixels in the target shape indicates the location of the

pattern found in the image. The MATLAB commands for this task are

[outputImage2D] = conv2(image2D, targetShape2D, ‘same’)

[outputImage3D] = convn(image3D, targetShape3D, ‘same’)

where image2D is the 2-D binary segmented image of size (nx*ny) and image3D is the 3-

D binary segmented image of size (nx*ny*nz). The syntax ‘same’ returns the central part

of the convolution that is the same size as image2D/image3D.

Figure 2-5: The convolution of a sample image and a pattern. After convolving, any pixel with value 5 (the
number of pixels in the pattern) indicates the location of the pattern found in the image.

 2-D/3-D proximity

Proximity is the Euclidean distance from each 0 pixel/voxel (pore) to the nearest 1

pixel/voxel (solid) (Figure 2-6). The size of the 2-D/3-D proximity output matrix is the

same as the size of an input image.

For 2-D proximity, we slice a 3-D binary image into 2-D images perpendicular to

the Z-direction. For each pore pixel, we find the Euclidean distance from that pixel to the

nearest solid pixel in the plane. 2-D proximity is analogous to the radius of the largest

inscribed circle centered at the pixel that will fit within the pore space. The 2-D Euclidean

distance (D) between pixel (𝑥1, 𝑦1) and pixel (𝑥2, 𝑦2) is

27

𝐷 = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2.

In 3-D proximity, we find the Euclidean distance between each pore voxel and the

nearest solid voxel. The Euclidean distance (D) between voxel (𝑥1, 𝑦1, 𝑧1) and voxel

(𝑥2, 𝑦2, 𝑧2) is

𝐷 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2.

According to this definition, the 3-D proximity for each solid voxel equals zero.

Finding the 3-D proximity of each voxel is analogous to fitting the largest possible

inscribed sphere centered at the voxel within the open pore space. The output matrix of 2-

D/3-D proximity can then be used to further analyze pore throats along streamlines.

Figure 2-6: (a) original image of Berea sandstone, (b) contoured 2-D proximity, (c) contoured 3-D
proximity.

The MATLAB function that calculates 2-D/3-D proximity is

compute2D3DProximity.m. This code takes a 3-D image as an input.

 2-D/3-D pore size distribution along streamlines

2-D/3-D Proximity can be combined with streamlines to extract 2-D/3-D pore size

distribution along the streamlines. This process is achieved by using the xyz coordinates of

streamlines to extract 2-D/3-D proximity along the streamlines. The 2-D/3-D proximity is

equivalent to fitting a maximum inscribed circle/sphere, and hence some of the proximity

along the streamlines can represent the pore throat.

28

The MATLAB function that calculates 2-D/3-D pore throat distribution along streamlines

is compute2D3DProximity.m. This code takes a 3-D images as an input. The image3D

input can be either a 3-D matrix of a single 3-D porous image or a cell array containing 3-

D matrices of multiple 3-D porous images. The program will run multiple simulations if a

cell array containing 3-D matrices is the input.

Figure 2-7: (Top) 2-D proximity along the streamlines in simple cubic pack (SCP) and (Bottom) 3-D
proximity along the streamlines in simple cubic pack (SCP).

29

2.4 CONCLUSION

 With digital 2D and 3-D images it is now possible to investigate rock geometry

thoroughly. We can now measure geometric parameters that cannot be measured directly

in the laboratory. The knowledge we gained from these algorithms will be discussed in the

following chapter.

30

 Chapter 3

Review of the Kozeny-Carman

Equation

This chapter presents the literature review and the derivation of the Kozeny-Carman

Equation. The Kozeny-Carman equation is a semi-empirical model relating permeability

in single-phase flow to geometric measurements such as porosity, specific surface area,

tortuosity, and a geometric factor. Through the Kozeny-Carman equation, we can better

understand how the rock geometry relates to permeability, but using the equation can create

problems, which are addressed below.

31

3.1 INTRODUCTION

The Kozeny-Carman (KC) equation is a well-known semi-empirical equation for

permeability prediction. It relates single-phase flow permeability (𝜅) to other rock

geometric properties such as porosity (ϕ), specific surface area (S), hydraulic tortuosity (τ),

and a geometric factor (B). The original Kozeny-Carman equation was derived in 1956,

but the equation is still being used nowadays in the literatures (Carrier, 2003; Gomez et al.,

2010; Ozgumus et al., 2014).

The Kozeny-Carman equation is derived from the exact solution for laminar flow

in a straight pipe with circular cross-section, the Hagen-Poiseuille equation, and Darcy’s

law. Based on the Hagen-Poiseuille equation, the exact solution of volumetric flow rate (𝑞)

in a round pipe of radius 𝑅, length 𝑙, pressure loss 𝛥𝑃, and viscosity 𝜂 is

𝑞 = −
𝜋𝑅4

8𝜂

𝛥𝑃

𝑙
.

 (1)

The volumetric flow rate can also be calculated using Darcy’s law, which describes

volumetric flow rate (𝑞) through a porous medium with permeability 𝜅, cross-sectional

area 𝐴, and length 𝐿:

𝑞 = −𝜅
𝐴

𝜂

𝛥𝑃

𝐿

. (2)

By equating the Hagen-Poiseuille equation (Equation 1) and Darcy’s Law (Equation 2),

we can derive the original Kozeny-Carman equation as

−
𝜋𝑅4

8𝜂

𝛥𝑃

𝑙
= −𝜅

𝐴

𝜂

𝛥𝑃

𝐿

, (3)

32

𝜅 =
𝜋𝑅4

8𝐴𝜏

, (4)

where tortuosity 𝜏 equals the ratio of a length of a round pipe 𝑙 to the length of a permeable

frame 𝐿. The Kozeny-Carman equation can be expressed in terms of porosity (𝜙) and

specific surface area (S) by relating these two variables to radius 𝑅 based on the assumption

of a round pipe:

𝜙 =
𝜋𝑅2𝑙

𝐴𝐿
=

𝜋𝑅2𝜏

𝐴

, (5)

𝑆 =
2𝜋𝑅𝑙

𝐴𝐿
=

2𝜋𝑅𝜏

𝐴
=

2

𝑅

𝜋𝑅2𝜏

𝐴
=

2𝜙

𝑅

. (6)

By plugging Equations 5 and 6 into Equation 4, the Kozeny-Carman equation can be

expressed in a more familiar form:

𝜅 =
1

2

𝜙3

𝑆2𝜏2
 𝑜𝑟 𝜅 = 𝐵

𝜙3

𝑆2𝜏2

, (7)

where 𝐵 is a geometric factor. For the estimation of permeability in a granular medium

consisting of identical spheres with diameter d, we can express the specific surface area as

𝑆 =
6(1 − 𝜙)

𝑑

. (8)

Plugging 𝑆 into Equation 7, we get

𝜅 =
1

72

𝜙3

(1 − 𝜙)2𝜏2
𝑑2

. (9)

33

3.2 THE KOZENY-CARMAN EQUATION IN DIGITAL ROCK PHYSICS

In the Kozeny-Carman equation, the porosity and specific surface area can either

be measured directly from a laboratory experiment or calculated from a 3-D segmented

binary image of the porous medium under investigation. Previously, the specific surface

area was difficult to measure and very sensitive to the scale of the images (Keehm et al.,

2001), but now the codes from Minkowski functionals discussed in Chapter 2 can yield

more accurate specific surface areas (Legland et al., 2007). The tortuosity has often been

treated merely as a fitting factor due to a lack of understanding of the parameter. From a

recent study using a database of ordered sphere packs, random sphere packs, and natural

rocks, we computed the flux-weighted tortuosity directly from streamlines extracted from

a local flux velocity, which is the output from the Lattice Boltzmann (LB) flow simulation

(Srisutthiyakorn and Mavko, 2017). The results show that the hydraulic tortuosities are

mostly in the small range of 1.2-1.6, unlike the typical value used in the literature of 1.5 to

2.5 (Gomez et al., 2010). Another commonly used fitting factor is the geometric factor, B,

which describes the effect of pipe cross-sectional shape, and typically also has a small

range. For example, B is 0.5 in a round pipe, 0.562 in a square pipe, and 0.6 in an equilateral

triangle pipe (Mavko et al., 2009a).

With known parameters and without a fitting factor, the Kozeny-Carman equation

predicts permeability higher by one to two orders of magnitude than that predicted by the

LB flow simulation. In a recent paper (Srisutthiyakorn and Mavko, 2017), we also searched

for a missing parameter by exploring the computation of porosity and specific surface area

using only connected pore space. We found that the connected pore space does not

contribute to the large difference between the original Kozeny-Carman permeability and

34

LB permeability. Therefore, in order to use the original Kozeny-Carman equation

effectively, one or two fitting parameters (i.e. tortuosity, geometric factor, and the exponent

of porosity) are required for most data sets. For example, Bourbié et al. (1987) suggested

making the exponent of porosity a variable. Mavko and Nur (1997) recommended

modifying the porosity by subtracting the percolation threshold porosity from the total

porosity, and using n values, from the derived value of 3 to values of 7-8 at very low

porosity.

35

 Chapter 4

Cross-Section Geometry

This chapter discusses the effect of cross-section pore geometry on permeability. I

focus on single-phase flow through pipes with various cross-sections including circular

pipes, elliptical pipes, triangular pipes, square pipes, n-cusps hypotrochoidal pipes, and

sinusoidal pipes. The sinusoidal pipes differ from the other pipes in having circular cross-

section with diameter that varies sinusoidally along the pipe axis. I also introduce the

Apparent Radius, which can be used in place of the hydraulic radius in the Kozeny-Carman

equation to better capture the pipe shape. I will be discussing the flow in complicated rock

geometries in Chapter 6: The Revised Kozeny-Carman Equation.

36

4.1 INTRODUCTION

This chapter discusses single-phase flow through pipes with various cross-sections

and shows that for the Kozeny-Carman form of 𝜙3

𝑆2𝜏2 , porosity (𝜙) and specific surface area

(𝑆) are not uniquely related to permeability. For pipes with various cross-sections, 𝜙 and

𝑆 do not determine the radius of a pipe or the size of pore throats, which is critical for

permeability. This fact can be illustrated by a pipe with a thin throat in the middle. While

the porosity and the specific surface area of such a pipe are very similar to those of a pipe

without a throat, the permeability of a pipe with a throat can be orders of magnitude smaller.

For previous works that studied the flow on pipe models, Mason and Morrow (1991)

explained the capillary behavior of a perfectly wetting liquid in an irregular triangular

cross-section pipe since he claimed it offers greater versatility than a circular pipe in

studying capillary behavior in multiphase flow. Patzek and Kristensen (2001) explained

the conduit geometry using a Mason-Morrow shape and measured the shape factor from

corner half angle. Yet, using this method, it is not possible to determine the shape factor

from a convex cross-section shape where the angles at the corners are not constant. White

(1974) related the hydraulic radius approximation (the ratio of perimeter to area of 2-D

cross-section of a pipe) to hydraulic conductivity. Sisavath et al. (2000) made a detailed

study of the effect of laminar flow on irregular cross-sectional shape.

In this chapter, we focus on the original form of the Kozeny-Carman equation:

𝜅 =
𝜋𝑅4

8𝐴𝜏

,

37

where 𝜏 is tortuosity, which is the length of flow path (𝑙) divided by the length of the

permeable frame (𝐿) . Because the original equation always assumes circular pipe

geometry and uses hydraulic radius directly in 𝑅4, it is guaranteed to underestimate the

permeability. We solved this shortcoming by applying the Kozeny-Carman equation in the

form of 𝑅4 to pipes of any cross-sections, and replacing 𝑅, the radius of the pipe, with the

“apparent radius” 𝑅𝐴 (the geometric mean between the hydraulic radius 𝑅𝐻 and the

radius of a circular pipe 𝑅𝐶𝑖𝑟𝑐 that has the same porosity as the pipe under consideration).

This improved version of Kozeny-Carman equation will require less calibration when it is

used to fit data.

Although results obtained using this method still need to be corrected using the

geometric factor 𝐵, which is determined from the flux in the pipe, they give us a better

estimation of permeability than the original Kozeny-Carman equation does. Furthermore,

the geometric factor 𝐵 has a minimal effect on permeability prediction; its value is

typically assumed to be 0.5 for all complex geometries.

The Kozeny-Carman equation for non-circular pipes is derived in the same way, by

relating specific surface area to porosity (Dvorkin, 2009). Table 4-1 summarizes analytical

solutions for permeability for pipes of various cross-sections.

38

Table 4-1: Analytical solutions for permeability (κ) for pipes with various cross-sectional geometries. The
parameter n is the number of pipes, l is the length of a pipe, ϕ is porosity, S is specific surface area, τ is

tortuosity, R is the radius of a circular pipe, a is semi-major axis and b is semi-minor axis for an ellipse, t is
the side of an equilateral triangle, and s is the side of a square. A is the cross sectional area and L is the

length of permeable frame.

Cross-section porosity (ϕ) specific surface area (S) Kozeny-Carman
equation

B
(Geometric

Factor)
Circular

𝜙 = 𝑛 ∙
𝜋𝑅2𝑙

𝐴𝐿
 𝑆 = 𝑛 ∙

2𝜋𝑅𝑙

𝐴𝐿
 𝜅 = 𝑛 ∙

1

2

𝜙3

𝑆2𝜏2

0.5

Elliptical
𝜙 = 𝑛 ∙

𝜋𝑎𝑏𝑙

𝐴𝐿
 𝑆 = 𝑛 ∙

𝜋√2(𝑎2 + 𝑏2)𝑙

𝐴𝐿
 𝜅 = 𝑛 ∙

1

2

𝜙3

𝑆2𝜏2

0.5

Square
𝜙 = 𝑛 ∙

𝑠2𝑙

𝐴𝐿
 𝑆 = 𝑛 ∙

4𝑠𝑙

𝐴𝐿
 𝜅 = 𝑛 ∙ 0.562

𝜙3

𝑆2𝜏2

0.562

Equilateral
Triangular 𝜙 = 𝑛 ∙

𝑡2 √3
4

𝑙

𝐴𝐿

𝑆 = 𝑛 ∙
3𝑡𝑙

𝐴𝐿
 𝜅 = 𝑛 ∙ 0.6

𝜙3

𝑆2𝜏2

0.6

Figure 4-1: 3-D digital representations of a circular pipe, an elliptical pipe with aspect ratio 0.7, a square
pipe, and an equilateral triangular pipe.

39

4.2 APPARENT RADIUS

For pipes with various cross-sections, we propose to use the original form of the

Kozeny-Carman equation 𝜅 =
𝜋𝑅4

8𝐴𝜏
 to estimate the effective permeability. The only change

in the equation is that, 𝑅, the radius of a circular pipe, is replaced with 𝑅𝐴 or apparent

radius (defined below). The Kozeny-Carman can then be expressed as

𝜅 =
𝐵

𝐵𝐶𝑖𝑟𝑐

𝜋𝑅𝐴
4

8𝐴𝜏
=

𝜋𝑅𝐴
4

8𝐴𝜏
 (𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐵 = 𝐵𝐶𝑖𝑟𝑐 = 0.5) , (1)

where A is the cross-sectional area of the permeable frame and 𝜏 is tortuosity.

We define the apparent radius for any cross-section pipe as the geometric mean

between hydraulic radius 𝑅𝐻 and the radius of a circular pipe 𝑅𝐶𝑖𝑟𝑐 that has the same

porosity as the pipe under consideration.

𝑅𝐴 = 𝜎 ∙ 𝑅𝐶𝑖𝑟𝑐 = (√
𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
)𝑅𝐶𝑖𝑟𝑐 = √𝑅𝐻 ∙ 𝑅𝐶𝑖𝑟𝑐 . (2)

The hydraulic radius 𝑅𝐻 (Tchelepi, 2015) is defined as two times the porosity (𝜙) divided

by the specific surface area (𝑆):

𝑅𝐻 =
2𝜙

𝑆
 . (3)

In equation 2, 𝜎 can be defined as a shape constant that is always less than or equal

to 1. Using the shape constant 𝜎, we can describe the permeability reduction resulting from

changing a circular cross-section to other cross-sections. The only case where 𝜎 is equal to

1 is 𝑅𝐻 = 𝑅𝐶𝑖𝑟𝑐, which is valid only in a circular pipe since, in that case, the hydraulic

radius equals the radius of the pipe itself.

40

𝑅𝐻 = 2
𝜋𝑅2 ∙ 𝑙/𝐴𝐿

2𝜋𝑅 ∙ 𝑙/𝐴𝐿
= 𝑅, 𝜎 = √

𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
= 1 . (4)

𝑅𝐴 for a circular pipe is the largest radius compared to the radii of all non-circular pipes

with the same porosity. This can be proven using isoperimetric quotient theory. For any

closed shape, the isoperimetric quotient 𝑄 relates area 𝐴 and perimeter 𝑝 of a closed area

in a plane (Osserman, 1987) as follows:

𝑄 =
4𝜋𝐴

𝑝2
≤ 1 . (5)

The isoperimetric quotient is 1 only if the closed shape is a circle, indicating that

of all closed shapes with the same area, the circle has the shortest perimeter. In other words,

a circular pipe has the least specific surface area and thus the highest porosity to specific

surface area ratio. Since we are treating permeability as a function of 𝑅𝐴
4, for any cross-

section pipe with the same porosity, a circular pipe will have the highest permeability.

(Figure 4-2).

41

Figure 4-2: For all pipes with the same porosity, a circular pipe has the highest permeability. The ratio of the
permeability of any cross-section to that of a circular cross-section can be found using the apparent radius
concept. In this case, the permeability is calculated using Lattice-Boltzman flow simulation.

Figure 4-3: Cross-section of a square pipe of side s. The hydraulic radius is s/2 which is exactly the radius
of a circle inscribed in the square.

Using hydraulic radius alone as the radius of a circular pipe in Equation (1) would

underestimate the permeability even in a simple cross-section pipe. Take a square cross-

section pipe, for example, which has the hydraulic radius:

𝑅𝐻 = 2
𝑠2 ∙ 𝑙/𝐴𝐿

4𝑠 ∙ 𝑙/𝐴𝐿
= 𝑠/2 . (6)

s/2
s

42

If we use the hydraulic radius of a square as the radius of a circular pipe to find the

effective permeability, the permeability of a circular pipe (𝐾𝑐𝑖𝑟𝑐𝑅𝐻) of radius s/2 will be

less than the permeability of a square pipe (𝐾𝑠𝑞) of side s. This is because of porosity

reduction by neglecting the flow in the corners of the square Figure 4-3. The proof is as

follows:

The permeability of the square pipe is

𝜅𝑠𝑞 = 0.562
𝜙3

𝑆2𝜏2
= 0.562

(𝑠2 ∙
𝑙

𝐴𝐿)
3

(4𝑠 ∙
𝑙

𝐴𝐿)
2

𝜏2

=
0.562

16
∙ 𝑠4 ∙

𝑙

𝐴𝐿
,

𝜏2 = 1.

 (7)

The permeability of a circular pipe with hydraulic radius 𝑅𝐻 =
𝑠

2
 is

𝜅𝑐𝑖𝑟𝑐𝑅𝐻 = 0.5
𝜙3

𝑆2𝜏2
= 0.5

(𝜋𝑟2 ∙
𝑙

𝐴𝐿)3

(2𝜋𝑟 ∙
𝑙

𝐴𝐿)2𝜏2
= 0.5

(𝜋(𝑠/2)2 ∙
𝑙

𝐴𝐿)3

(2𝜋(𝑠/2) ∙
𝑙

𝐴𝐿)2𝜏2

=
0.5

16
∙
𝜋

4
∙ 𝑠4 ∙

𝑙

𝐴𝐿
, 𝜏2 = 1.

 (8)

Therefore, 𝜅𝑐𝑖𝑟𝑐𝑅𝐻 =
0.5

0.562
∙
𝜋

4
𝜅𝑠𝑞 = 0.6987 ∙ 𝜅𝑠𝑞 . As we have seen, finding the

permeability using hydraulic radius instead of the apparent radius yields a prediction

approximately 30% less than the theoretical value.

To demonstrate the utility of the concept of apparent radius, we compared analytical

solutions developed by Dvorkin (2008) for flow in pipes with the analytical solution

derived using the apparent radius. The ratio of the permeability of any pipe to the

permeability of a circular pipe that has the same porosity is constant, based on how surface

43

area changes compared to porosity. The permeability also depends on the geometric factor

B in a form of the Kozeny-Carman equation that expresses the permeability as κ = B
ϕ3

S2τ2.

The coefficient B is derived by equating the flux equation to Darcy’s equation. For example,

B is 0.5 in circular and elliptical pipes, 0.562 in a square pipe, and 0.6 in an equilateral

triangular pipe. For natural rocks where B is unknown, it is typical to assume that B is equal

to 0.5. We will demonstrate the utility of the apparent radius by looking at three specific

examples – elliptical, square, and equilateral triangular pipes – in more detail.

 An Elliptical Pipe

For a circular pipe of radius r and an elliptical pipe with semi axes a and b of the

same cross-sectional area, the equation describing the porosity of both shapes is

𝜋𝑟2 = 𝜋𝑎𝑏 = 𝜋𝑎2𝛼 , (9)

𝑎 =
𝑟

√𝛼
 . (10)

The aspect ratio (𝛼) is the ratio of the semi-minor axis to the semi-major axis (𝛼 =
𝑏

𝑎
).

The specific surface area (𝑆) of an elliptical pipe can be expressed in terms of the radius of

a circular pipe of length 𝑙 within a frame of cross-sectional area A and length 𝐿,

𝑆 =
𝜋√2(𝑎2 + 𝑏2)𝑙

𝐴𝐿
=

𝜋𝑎√2(1 + 𝛼2)𝑙

𝐴𝐿
=

𝑟

√𝛼
∙
𝜋√2(1 + 𝛼2)𝑙

𝐴𝐿

=
1

√2
(√𝛼 +

1

𝛼
) ∙

2𝜋𝑟𝑙

𝐴𝐿

.

(11)

Given a constant porosity, the ratio of the permeability of an elliptical pipe to that of a

circular pipe will be constant and is a function of the aspect ratio:

44

𝐾𝑒𝑙𝑙

𝐾𝑐𝑖𝑟𝑐
=

0.5
𝜙3

𝑆2𝜏2

0.5
𝜙3

𝑆2𝜏2

=

0.5
1

(
1

√2
(√𝛼 +

1
𝛼) ∙

2𝜋𝑟𝑙
𝐴𝐿)

2

0.5
1

(
2𝜋𝑟𝑙
𝐴𝐿)

2

=
2

(𝛼 +
1
𝛼)

 .

(12)

We can also use the apparent radius to find this ratio. For a circular pipe with the same

porosity as an elliptical pipe,

𝜋𝑅𝐶𝑖𝑟𝑐
2 = 𝜋𝑎𝑏 = 𝜋𝑎2𝛼 =

𝜋𝑏2

𝛼

. (13)

𝑅𝐻 =
2𝜙

𝑆
=

2 (𝜋𝑎𝑏 ∙
𝑙

𝐴𝐿)

𝜋√2(𝑎2 + 𝑏2)𝑙
𝐴𝐿

=
2 (𝜋𝑎𝑏 ∙

𝑙
𝐴𝐿)

𝜋𝑎√2(1 + 𝛼2)𝑙
𝐴𝐿

= 𝑏√
2

(1 + 𝛼2)

, (14)

𝑅𝐴 = 𝜎 ∙ 𝑅𝐶𝑖𝑟𝑐 = √
𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
𝑅𝐶𝑖𝑟𝑐 = √

𝑏√
2

(1 + 𝛼2)

𝑏

√𝛼

𝑅𝐶𝑖𝑟𝑐 = √√
2

(𝛼 +
1
𝛼)

𝑅𝐶𝑖𝑟𝑐

. (15)

Since the effective permeability is proportional to 𝑅4, and the geometric constant 𝐵 of both

an ellipse and a circular pipe is 0.5,

𝐾𝑒𝑙𝑙

𝐾𝑐𝑖𝑟𝑐
=

𝐵𝑒𝑙𝑙

𝐵𝑐𝑖𝑟𝑐
∙

2

(𝛼 +
1
𝛼)

=
2

(𝛼 +
1
𝛼)

 .
(16)

Hence using the apparent radius yields the correct ratio.

45

 A Square Pipe

For a circular pipe of radius 𝑟 and a square pipe with side 𝑠 with the same cross-

sectional area, the equation describing the porosity of both shapes is,

𝜋𝑟2 = 𝑠2 . (17)

The specific surface area of a square pipe can be expressed in terms of the radius of a

circular pipe of length 𝑙 within a frame of cross-sectional area A and length 𝐿:

𝑆 =
4𝑠𝑙

𝐴𝐿
=

4(√𝜋𝑟2)𝑙

𝐴𝐿
=

2

√𝜋
∙
2𝜋𝑟𝑙

𝐴𝐿
 . (18)

The ratio between the permeability of a square pipe and that of a circular pipe is

𝐾𝑠𝑞

𝐾𝑐𝑖𝑟𝑐
=

0.562
𝜙3

𝑆2𝜏2

0.5
𝜙3

𝑆2𝜏2

=

0.562
1

(
2

√𝜋
∙
2𝜋𝑟𝑙
𝐴𝐿)

2

0.5
1

(
2𝜋𝑟𝑙
𝐴𝐿)

2

=
0.562

0.5
∙
𝜋

4
 . (19)

Alternatively, using the apparent radius concept,

𝜋𝑅𝐶𝑖𝑟𝑐
2 = 𝑠2 , (20)

𝑅𝐻 =
2𝜙

𝑆
=

2 (𝑠2 ∙
𝑙

𝐴𝐿)

4𝑠𝑙
𝐴𝐿

=
𝑠

2
=

𝑅𝐶𝑖𝑟𝑐√𝜋

2
 , (21)

𝑅𝐴 = 𝜎 ∙ 𝑅𝐶𝑖𝑟𝑐 = √
𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
𝑅𝐶𝑖𝑟𝑐 = √√𝜋

2
𝑅𝐶𝑖𝑟𝑐 . (22)

Since effective permeability is proportional to 𝑅4, and the geometric constant 𝐵 for a

square pipe is 0.562 and the geometric constant of a circular pipe is 0.5,

46

𝐾𝑠𝑞

𝐾𝑐𝑖𝑟𝑐
=

𝐵𝑠𝑞

𝐵𝑐𝑖𝑟𝑐
∙ (√√𝜋

2
)

4

=
0.562

0.5
∙
𝜋

4
 . (23)

 An Equilateral Triangular Pipe

For a circular pipe of radius r and an equilateral triangular pipe with side t of the

same cross-sectional area, the equation describing the porosity of both shapes is

𝜋𝑟2 = 𝑡2 √3

4
 .

(24)

Hence,

𝑡 = √
4𝜋𝑟2

√3
 .

(25)

The specific surface area of an equilateral triangular pipe can then be expressed in terms

of radius of a circular pipe of length 𝑙 within a frame of cross-sectional area A and length

𝐿:

𝑆 =
3𝑡𝑙

𝐴𝐿
=

3𝑙

𝐴𝐿
√

4𝜋𝑟2

√3
= (

3

√𝜋√3
)

2𝜋𝑟𝑙

𝐴𝐿
 .

(26)

The ratio between the permeability of a square pipe and that of a circular pipe is

𝐾𝑡𝑟𝑖

𝐾𝑐𝑖𝑟𝑐
=

0.6
𝜙3

𝑆2𝜏2

0.5
𝜙3

𝑆2𝜏2

=

0.6
1

((
3

√𝜋√3
)

2𝜋𝑟𝑙
𝐴𝐿)

2

0.5
1

(
2𝜋𝑟𝑙
𝐴𝐿)

2

=
0.6

0.5
∙
√3𝜋

9

.

(27)

Alternatively, using the apparent radius concept,

47

𝜋𝑅𝐶𝑖𝑟𝑐
2 = 𝑡2 √3

4
 ,

(28)

𝑅𝐻 =
2𝜙

𝑆
=

2(𝑡2 √3
4 ∙

𝑙
𝐴𝐿)

3𝑡𝑙
𝐴𝐿

=
𝑡

2√3
=

𝑅𝐶𝑖𝑟𝑐√𝜋

√3√3

,

(29)

𝑅𝐴 = 𝜎 ∙ 𝑅𝐶𝑖𝑟𝑐 = √
𝑅𝐻

𝑅𝐶𝑖𝑟𝑐
𝑅𝐶𝑖𝑟𝑐 = √

√𝜋

√3√3
𝑅𝐶𝑖𝑟𝑐

.

(30)

Since effective permeability is proportional to 𝑅4, and the geometric constant 𝐵 for an

equilateral triangular pipe is 0.6 and the geometric constant of a circular pipe is 0.5:

𝐾𝑡𝑟𝑖

𝐾𝑐𝑖𝑟𝑐
=

𝐵𝑡𝑟𝑖

𝐵𝑐𝑖𝑟𝑐
∙
√3𝜋

9
=

0.6

0.5
∙
√3𝜋

9
 . (31)

48

4.3 APPARENT RADIUS IN A PIPE WITH A THROAT

Consider two circular cross-section pipes of radius R. The pipes are identical with

the exception of the second one having a throat at the middle of the pipe (Figure 4-4). There

are insignificant differences in porosity and specific surface areas between these two pipes.

In addition, since both pipes are straight, both have a tortuosity of 1. Then we might expect

both permeabilities to be more or less the same. In reality, the permeability obtained using

Lattice-Boltzmann simulations are different by multiple orders of magnitude. Using the

Lattice-Boltzmann simulations, we can numerically solve for an effective permeability.

Assume that the circular pipe has the radius of 0.072 mm, the throat has the radius of 0.002

mm, and the frame has the size 0.4x0.2x0.2 mm. This means that in the digital

representation, the circular pipe has the radius of 36 pixels, the throat has the radius of 4

pixels, and the frame has the size 200x100x100 voxel with dx = 0.002 mm. The

permeability is 267293 mD for the pipe without a throat, and 1585 mD for the pipe

containing the throat, a difference of more than two orders of magnitude.

This example also shows that permeability is not uniquely related to porosity and

specific surface area. In actual rock geometries, we can think of the throat effect as

analogous a reduction of the size of the pore throats, resulting, for example, from

cementation.

49

 This problem can be solved by using the Kozeny-Carman equation with apparent

radius. To get the approximate apparent radius, we run the permeability calculation using

the Lattice-Boltzmann simulation and then use the Kozeny-Carman equation to solve for

R. We can model the apparent radius in a pipe with a throat by using the harmonic mean

of the radius of a throat 𝑅𝐵 and the radius of the pipe 𝑅𝐶𝑖𝑟𝑐, in which the weights 𝐶1 and

𝐶2 are such that 𝐶1 + 𝐶2 = 1:

1

𝑅𝐴
= 𝐶1 ∙

1

𝑅𝐵
+ 𝐶2 ∙

1

𝑅𝐶𝑖𝑟𝑐

 (41)

In our numerical simulations, we increase the size of the throat from 4 pixels to 36

pixels. The radius of the circular pipe is fixed at 36 pixels. The apparent radius model fits

the result from numerical simulations if 𝐶1= ¼ and 𝐶2= ¾.

Figure 4-4: 3-D digital representation of a normal circular pipe and a circular pipe with a throat in the
middle.

50

Figure 4-5: Comparison of the apparent radius calculated from Lattice Boltzmann simulations to that from
the apparent radius model. The x axis represents the radius of the throat, which ranges from 4 to 36 pixels.

51

4.4 CONCLUSION

The concept of apparent radius helps us understand the effect of geometry on

permeability for non-circular pipes. Of all the pipe shapes with the same porosity, the

circular pipe has the highest permeability. This is because it has the highest ratio of porosity

to specific surface area. Any deviation from a circular cross-section results in reduced

permeability. Apparent radius also helps us use the Kozeny-Carman equation in a form that

relates permeability to 𝑅4. Although this method of using 𝑅𝐴 still needs to be corrected

using geometric factor 𝐵, 𝐵 has minimal effect on permeability prediction, and its value is

typically assumed to be 0.5 for all complex geometries. Our improved version of the

Kozeny-Carman equation will require less calibration when it is used to fit the data.

52

 Chapter 5

Tortuosity

Chapter 5 presents the detailed study of hydraulic tortuosity. The hydraulic

tortuosity is one of the most important parameters in characterizing the heterogeneity of

fluid flow in porous media. The most basic definition of tortuosity is the ratio of average

flow path length to sample length. Although this definition seems straightforward, the lack

of understanding and of proper ways to measure tortuosity make it one of the most abused

parameters in rock physics. Often, the tortuosity is obtained from laboratory measurements

of porosity, permeability, and specific surface area by inverting the Kozeny-Carman

equation. This approach has a major pitfall, as it treats tortuosity as a fitting factor, and the

inverted tortuosity is often un-physically high. In contrast, I obtained the tortuosity from

3-D segmented binary images of porous media using streamlines extracted from a local

flux, the output from the Lattice Boltzmann flow simulation. After obtaining streamlines

from each sample, I calculated the distribution of tortuosities and flux-weighted average

tortuosity. With the tortuosity measurement from streamlines, every parameter in the KC

equation can be measured accurately from 3-D segmented binary images. I found, however,

that the KC equation is still missing some important geometric information needed to

53

predict permeability. With known parameters and without a fitting factor, the KC equation

predicts permeability higher by one to two orders of magnitude than that predicted by the

LBM. I searched for a missing parameter by exploring various concepts such as connected

pore space and pore throat distribution. I found that the connected pore space does not

contribute to the difference between the KC permeability and LBM permeability, whereas,

as I illustrate with sinusoidal pipe examples, the pore throat distribution captures what is

missing from the Kozeny-Carman equation.

54

5.1 INTRODUCTION

Hydraulic tortuosity was first introduced by Carman in the Kozeny-Carman

equation to account for the tortuous character of flow through a granular bed (Carman,

1937). The tortuosity (𝜏) is defined as 𝑙/𝐿 where 𝑙 is the length of a sinuous track and 𝐿 is

the length of a sample. The Kozeny-Carman equation can be expressed in terms of porosity

(𝜙), specific surface area (S), geometric factor (𝐵), and tortuosity (𝜏):

𝜅 =
1

2

𝜙3

𝑆2𝜏2
 𝑜𝑟 𝜅 = 𝐵

𝜙3

𝑆2𝜏2
 . (1)

The derivation of this equation is in chapter 3. This is the most frequently used and

therefore most familiar form of the Kozeny-Carman equation, since porosity and specific

surface area can be easily obtained in laboratory measurements. However, although the

definition of tortuosity is straightforward, in practice, tortuosity is difficult to measure,

especially in laboratory settings. The estimation of tortuosity requires visualization or an

exact tracing of the flow paths, something that is difficult to achieve in natural rocks

without destroying the samples. It is therefore a common practice to obtain the tortuosity

by inverting the above equation with known porosity, specific surface area, and

permeability from laboratory measurements:

𝜏𝑖𝑛𝑣 = √𝐵
𝜙3

𝑆2𝜅
 . (2)

This practice often leads to an unphysically high value of the tortuosity. For

example, Gomez (2010) reported a tortuosity of 2.5 on Fontainebleau sandstones, whereas

the tortuosity from our streamlines approach is 1.46 (Gomez et al., 2010).

55

There are numerous literatures that focus on tortuosity. For example, Ghanbarian

et al. (2013) provided an insightful review on tortuosity. Some researchers defined

tortuosity as the shortest part through porous media (Arch and Maltman, 1990; Shepard,

1993; Clennell, 1997). Dullien (1991) described hydraulic tortuosity as the square of the

flux-weighted average flow path to the sample length. Tortuosity is also often empirically

related to porosity (Pech, 1984; Du Plessis and Masliyah, 1991; Koponen et al., 1997;

Mauret and Renaud, 1997; Mota et al., 2001; Ahmadi et al., 2011)

We developed a new approach to finding tortuosity, conducting the numerical

simulations of single phase flow using the Lattice Boltzmann (LB) simulation on 3-D

segmented binary images (computeStreamlines.m). The LB simulation models the Navier-

Stokes flow through the collisions of imaginary particles at a microscopic scale to solve

for absolute permeability (Fredrich et al., 1999; Keehm, 2003; Andrä et al., 2013b). The

output of LBM simulation is a local flux velocity field (ux, uy, uz), from which we can

find the mean flux and permeability from Darcy’s equation. For each sample, we extracted

streamlines from its local flux field and calculated the flux-weighted average tortuosity.

The method is described in detail in the methodology section.

Once we acquired the flux-weighted average tortuosity, we could measure every

variable in the Kozeny-Carman equation (Equation 1) except a geometric factor (B), which

is typically assumed to be 0.5. As late as 2001, the specific surface area was difficult to

measure and very sensitive to the scale of the images (Keehm et al., 2001), but now the

codes from Minkowski functionals can yield accurate specific surface areas (Legland et al.,

2007). We found, however, that the Kozeny-Carman equation still lacks a parameter

needed to accurately predict permeability. In order to find this parameter, we are currently

56

investigating multiple options, such as connected pore space and pore throat distribution

from streamlines. We found that porosity and specific surface area from connected pore

space images do not affect the permeability calculation from the Kozeny-Carman equation

and that we can illustrate with sinusoidal pipe examples that the pore throat distribution

captures what is missing from the Kozeny-Carman equation.

Our data consist of over 400 segmented binary 3-D image cubes containing (1)

pipes of various cross-sections, (2) artificial and physical sphere packs, including simple

cubic packs (SCP), face-centered cubic packs, and Finney packs, and (3) natural rocks

including Fontainebleau sandstone, Bituminous sands, Berea sandstones, and Grosmont

carbonates. The details of these microstructures are given in the Appendix A. We found

that for most samples, the flux-weighted average tortuosity ranges from 1.2 to 1.6, except

for straight pipes, for which the tortuosity is 1.

We subsampled all microstructures of natural rocks to the size 200x200x200 voxels

to gain more samples and to test the variability of the tortuosity. Using subsamples may

raise the concern that the sample volume is not at the representative elementary volume

(REV). Generally, REV is defined as the smallest sample volume that can be representative

of the whole rock for a given attribute (Bear, 1988). Therefore, REV is different for

different physical properties. The Finney packs at large radii (LX = 3 and LX = 6) may not

have reached the REV needed for simulating permeability since they have a small aspect

ratio of cell size to grain diameter. However, we decided to include the results of these two

volumes in the analysis since they have tortuosities similar to those of the Finney packs at

small radii (LX = 9 and LX = 12). This also indicates that we can calculate the tortuosity

57

from subsamples as well, and that the tortuosity requires even less REV than the

permeability.

Due to our limitation in computational power at the time of the study, we mitigated

this REV problem by also running the simulation on the entire volume of Berea sandstone

with reduced resolution (from a resolution of 0.74 μm to one of 3.788 μm to reduce the

voxels from 1024x1024x1024 to 200x200x200). The flux-weighted average tortuosity

from the entire volume of Berea sandstone is 1.41, which is slightly higher than the average

of flux-weighted average tortuosity of 1.38 from the subsamples of Berea sandstones.

58

5.2 DATA AND METHODOLOGY

We developed a method to extract streamline-based hydraulic tortuosity from local

flux matrix output (Figure 5-1 and Figure 5-2). This method allows us to directly calculate

tortuosity from its basic definition, the ratio of average flow path length to sample length.

Figure 5-1: Streamlines in sinusoidal pore channels show laminar flow behavior (low Reynolds number).

For extracting streamlines, the first step is to run a Lattice Boltzmann (LB)

simulation on a 3-D segmented binary image. The LB simulation approximates Navier-

Stokes flow through the collisions of imaginary particles at a microscopic scale to solve

for absolute permeability (Fredrich et al., 1999; Keehm, 2003; Andrä et al., 2013b). The

Figure 5-2: Streamlines with 3-D segmented binary images in light grey color in the background. From
left to right: Finney pack, Berea sandstone, Grosmont carbonate.

59

output of the LB simulation is a local flux vector (ux, uy, uz) at each grid point, from which

we can find the mean flux and permeability using Darcy’s equation. More details of the

LB simulation can be found in Appendix B.

For 3-D porous media, the local flux matrix comprises flux in the x, y, z directions

for each voxel location. Since the mean flow is along the x-direction, we initialized a

streamline for each pixel in a y-z cross-section. The streamlines step in the x-direction one

pixel at a time, with the displacement vector determined from the ux, uy, uz local flux.

Since after the first time step, the streamlines are unlikely to be on a grid, we interpolated

the ux, uy, uz local flux using bilinear interpolation to obtain accurate velocity at a given

location. We employed a no-flow boundary condition by eliminating any streamlines that

touched the boundary of a sample. Only completed flow paths were used in the tortuosity

calculation. After generating streamlines, we extracted the following information for each

streamline:

1. XYZ coordinate

A matrix (nx, 3) containing x,y,z coordinate locations along each streamline.

2. Absolute flux along streamlines

A vector (nx, 1) containing absolute flux along each streamline (𝐴 =

√𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2).

3. Total distance

A scalar containing total Euclidean distance along a streamline.

4. Total time

60

A scalar containing total Euclidean distance divided by Darcy’s velocity.

5. Total flux

A scalar containing total absolute flux along a streamline.

6. Individual streamline tortuosity

A scalar containing total distance divided by sample length.

Since there are multiple streamlines for each sample, the tortuosity is a distribution. For

each sample, we then calculated the tortuosity as follows:

1. Flux-weighted average tortuosity (𝜏𝐹𝑙𝑢𝑥𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑)

The ratio of average streamline length, weighted by total flux of each streamline,

to the length of a sample.

2. Mean tortuosity (𝜏𝑀𝑒𝑎𝑛)

The ratio of average streamline length to the length of a sample.

3. Minimum tortuosity (𝜏𝑀𝑖𝑛)

The ratio of shortest streamline length to the length of a sample.

4. Maximum tortuosity (𝜏𝑀𝑎𝑥)

The ratio of longest streamline length to the length of a sample.

5. Inverted tortuosity from Kozeny-Carman equation (𝜏𝐾𝐶)

The inverted Kozeny-Carman equation given the known permeability, specific

surface area, porosity, and a geometrical factor of 0.5 (Equation 2).

61

5.3 HYDRAULIC TORTUOSITY

Figure 5-3 shows examples for the distributions of individual streamline tortuosity.

The black lines are flux-weighted average tortuosity and the red lines are inverted tortuosity

from the Kozeny-Carman equation. We selected one sample of each of the following rocks:

simple cubic pack (SCP), face-centered cubic pack (FCP), Finney pack, Fontainbleau

sandstone, Bituminous sand, Berea sandstone, and Grosmont carbonate. From the

distributions of individual streamline tortuosity, we calculated the minimum tortuosity,

maximum tortuosity, mean tortuosity, and flux-weighted average tortuosity to represent

the tortuosity of each sample. In this graph, the inverted tortuosities are all larger than the

flux-weighted average tortuosities. We plot the inverted tortuosity vs. flux-weighted

average tortuosity in Figure 5-4. The grey line represents a 1:1 reference line. Figure 5-4

helps to confirm that for most samples, the inverted tortuosity is larger than flux-weighted

tortuosity, since the data lie to the right of the reference line. For all samples, excluding

straight pipes, the flux-weighted tortuosity has quantiles P10 of 1.02, P50 of 1.34, and P90

of 1.49. In contrast, the inverted tortuosity has P10 of 1.63, P50 of 2.85, and P90 of 11.71.

We advise against the latter method of calculating tortuosity since it treats tortuosity as a

fitting factor in the Kozeny-Carman equation, and the Kozeny-Carman equation almost

always yields unphysically high tortuosity compared to the flux-weighted tortuosity, even

in the case of artificial sphere packs.

62

Figure 5-4: Inverted tortuosity from the Kozeny-Carman equation (assuming that the geometric factor B is
0.5) vs. flux-weighted tortuosity in sphere packs and natural rocks. For the Berea sandstone and Grosmont
carbonate, we selected the subsets of the result from one of every five samples for the representation. The

black line is a 1:1 reference line. This graph shows that the inverted tortuosity is higher than the flux-
weighted tortuosity in most cases.

Figure 5-3: Individual streamline tortuosity from simple cubic pack (SCP), face-centered cubic
pack (FCP), Finney pack, Fontainebleau sandstone, Bituminous sand, Berea sandstone, and

Grosmont carbonate. The black lines show flux-weighted tortuosity and the grey lines show the
inverted tortuosity from the Kozeny-Carman equation.

63

For representing the tortuosity of a sample, we chose flux-weighted tortuosity,

which assigns higher weight to streamlines with higher flux value since streamlines with

high flux are the ones that govern most of the flow. There is no significant difference

between flux-weighted average tortuosity and mean tortuosity as observed from the cross-

plot between these two quantities (Table 5-1).

In Figure 5-5, the flux-weighted average tortuosity is plotted against porosity. The

face-centered cubic packs and Finney packs show a trend of increasing flux-weighted

tortuosity when porosity decreases. The porosity reduction caused by grain dilation results

in closing some of the flow paths and therefore in increased tortuosity. For SCP, the grain

dilation barely affects tortuosity since the streamlines in SCP are mostly straight. For

subsamples of natural rocks including Fontainebleau sandstone, Bituminous sand, Berea

sandstone and Grosmont carbonate, we do not observe any significant relationship between

porosity and tortuosity.

In Table 5-1, we report averages of flux-weighted average tortuosity, mean

tortuosity, minimum tortuosity, and maximum tortuosity for artificial packs and natural

rocks. In determining the average of the different types of tortuosity, we excluded 0, Inf,

and NaN values. For artificial packs (labeled with an asterisk), we report only the tortuosity

from an original image without any grain dilation. Note that the inverted tortuosity from

the Kozeny-Carman equation is larger than the flux-weighted tortuosity in every case.

64

Figure 5-5: Porosity vs. flux-weighted tortuosity in sphere packs and natural rocks. For the Berea sandstone
and Grosmont carbonate, we selected the subsets of result from one of every five samples for the

representation. Finney packs and face-centered cubic packs with dashed lines show a clear trend of
increasing flux-weighted tortuosity for an increase in grain/sphere boundary.

Table 5-1: The average of flux-weighted average tortuosity, mean tortuosity, minimum tortuosity and
maximum tortuosity, and inverted tortuosity from the Kozeny-Carman equation. For artificial packs (with

an asterisk), we report only tortuosities from an original image without any grain dilation.

Si
m

pl
e

cu
bi

c
pa

ck

(S
C

P)
*

Fa
ce

-c
en

te
re

d
cu

bi
c

pa
ck

(F

C
P)

*

Fi
nn

ey
 p

ac
ks

 (L
X

 =
 3

)*

Fi
nn

ey
 p

ac
ks

 (L
X

 =
 6

)*

Fi
nn

ey
 p

ac
ks

 (L
X

 =
 9

)*

Fi
nn

ey
 p

ac
ks

 (L
X

 =
 1

2)
*

Fo
nt

ai
ne

bl
ea

u
sa

nd
st

on
e

B
itu

m
in

ou
s s

an
d

B
er

ea
 sa

nd
st

on
e

G
ro

sm
on

t c
ar

bo
na

te

𝜏𝐹𝑙𝑢𝑥𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 1.01 1.35 1.20 1.25 1.23 1.24 1.46 1.23 1.38 1.38

𝜏𝑀𝑒𝑎𝑛 1.02 1.35 1.21 1.26 1.23 1.25 1.46 1.24 1.37 1.37

𝜏𝑀𝑖𝑛 1.00 1.20 1.06 1.07 1.08 1.10 1.27 1.09 1.13 1.17

𝜏𝑀𝑎𝑥 1.63 2.00 1.75 1.96 1.85 1.86 1.89 2.03 2.25 2.20

𝜏𝐾𝐶 1.56 1.82 2.54 1.78 1.77 1.83 2.90 1.78 2.55 7.85

65

5.4 APPLYING LB TORTUOSITY TO THE KOZENY-CARMAN EQUATION

Once we acquire the flux-weighted average tortuosity, we can measure every

variable in the Kozeny-Carman equation (Equation 1) except a geometric factor (B), which

is typically assumed to be 0.5 for natural rocks. Figure 5-6 shows the comparison between

Lattice Boltzmann (LB) permeability and the Kozeny-Carman (KC) predicted permeability

using flux-weighted average tortuosity and a geometric factor (B) of 0.5. Note that the

permeability on the y-axis is on the log10 scale, and, therefore, these two permeabilities

differ by one to two orders of magnitude. The graph also shows that the Kozeny-Carman

equation can be misleading especially in the case of sinusoidal pipes (i.e., pipes whose

radius varies along the direction of flow). As porosity increases and pore throat size

decreases in sinusoidal pipes, LB permeability decreases while KC permeability increases

(Figure 5-7). LB permeability vs. KC permeability is plotted in Figure 5-8, which clearly

shows that for most samples, KC permeability is always equal to or greater, even by orders

of magnitude, than LB permeability. Our ultimate goal is to find a physical parameter to

shift data to a 1:1 reference line. Figure 5-8 also confirms that the Kozeny-Carman equation

works well in the sphere packs. Since the differences between LB and KC permeability are

mostly parallel to the 1:1 reference line, we require for sphere packs only a constant shift

to fit the Kozeny-Carman equation. However, this is not the case for natural rocks since

the differences between LB and KC permeability are highly scattered.

66

Figure 5-7: Lattice Boltzmann (LB) permeability vs. Kozeny-Carman (KC) predicted permeability using
flux-weighted average tortuosity and a geometric factor (B) of 0.5 for sinusoidal pipes. Note that both axes

are on a linear scale. The black line is a 1:1 reference line.

Figure 5-6: Porosity vs. Lattice Boltzmann (LB) permeability and Kozeny-Carman (KC) predicted
permeability using flux-weighted average tortuosity and a geometric factor (B) of 0.5. The permeability is on
the log10 scale. The sinusoidal pipes (red circles) show that the Kozeny-Carman equation can be misleading.
As porosity increases and pore throat size decreases in sinusoidal pipes, LB permeability decreases, whereas

KC permeability increases.

67

Figure 5-8: Lattice Boltzmann (LB) permeability vs. the Kozeny-Carman (KC) predicted permeability
using flux-weighted average tortuosity and a geometric factor (B) of 0.5. For most samples, KC

permeability overpredicts permeability by orders of magnitude. Note that both axes are on the log10 scale.

68

5.5 SEARCHING FOR THE MISSING PARAMETER

The difference between LB and KC permeability varies by orders of magnitude for

different rocks and within the same rock. For example, Figure 5-8 shows that for Grosmont

carbonate the difference can be anywhere from 0.3 order of magnitude to two orders of

magnitude. If the difference were from the geometric factor (B), we would expect the

geometric factor to be more or less the same within the same rock. B accounts for the

variation in the cross-sectional shape of the pipes and typically has a small range. For

example, B is 0.5 in a round pipe, 0.562 in a square pipe, and 0.6 in an equilateral triangle

pipe (Mavko et al., 2009b). Since the difference between LB and KC permeability is large,

the difference must result not from a geometric factor but from either the computation of

parameters from 3-D segmented binary images or from the missing parameter in the

Kozeny-Carman equation.

We first investigated the computation of porosity and specific surface area. For the

flow within porous media, only the connected pore space contributes to fluid flow.

However, when we calculate porosity and specific surface area, the calculation includes

isolated pores (pores not connected to other pores) and therefore yields total porosity and

total specific surface area. We, therefore, developed a workflow to obtain 3-D segmented

binary images that have only the connected pore space. In order to find the connected pore

space, we first label each group of connected pores by (1) selecting an unlabeled voxel, (2)

labeling it and all the voxels connected to it, and (3) repeating steps 1 and 2 until all voxels

in the pore space are labeled. To determine effective pore space, we find the labeled groups

of connected pores that exist in all of the outermost 2-D slices from every face, which

represent the connected pore space. The connected porosity and the connected specific

69

surface area are always less than or equal to the total porosity and the total specific surface

area. But, when we used both the connected porosity and the connected specific surface

area in the calculation, we did not observe any significant change in the KC permeability

(Figure 5-9). Therefore, this is not the cause of the difference between the KC and LB

permeabilities.

Figure 5-9: Comparison between porosity, specific surface area, and KC permeability of original images vs
those of connected pore space images. The right plot shows that even though the connected porosity and

the connected specific surface area are always less than the original ones, their effects cancel out when we
calculate permeability from the KC equation.

Another possible cause of the difference is that the Kozeny-Carman equation lacks

an important parameter governing the flow, and this can be illustrated with sinusoidal pipe

examples. To do so, we started with the KC equation (Equation 1). However this equation

lacks a parameter to capture variation in radius or pore throat along the sinusoidal pipes.

To account for this lack, we can approximate the analytic solution for the

permeability of sinusoidal pipes by pipes of various radii in series. This will be explained

in detail in the next chapter. We will show how to incorporate pore throat distribution to

the Kozeny-Carman equation as a correction to permeability prediction.

70

5.6 CONCLUSION

In this chapter, we obtained the flux-weighted tortuosity using streamlines

extracted from a local flux field of the Lattice Boltzmann simulation. This practice allowed

us to calculate the tortuosity using its original definition, the ratio of average flow path

length to sample length. We showed that the flux-weighted tortuosity of artificial packs,

physical packs, and natural rocks are in a small range from 1.2 to 1.6. By comparison, the

inverted tortuosity from the Kozeny-Carman equation is unphysically high. For example,

the inverted tortuosity has a mean of 2.55 for Berea sandstone and a mean of 7.85 for

Grosmont carbonate. We recommend against using this approach for finding tortuosity

since it simply uses tortuosity as a fitting factor in the Kozeny-Carman equation.

As one acquires the flux-weighted average tortuosity, one can measure every

variable in the Kozeny-Carman equation except a geometric factor, which is typically

assumed to be a constant of 0.5 for natural rocks. For most samples, the Kozeny-Carman

permeability is greater than or equal to the Lattice Boltzmann permeability, and the

difference between these two permeabilities can vary by orders of magnitude even within

the same rock. Therefore, the difference does not arise from a geometric factor but from

either the computation of parameters from 3-D segmented binary images or from the

missing parameter in the Kozeny-Carman equation. We explored (1) the computation of

porosity and specific surface area using connected pore space and (2) the pore throat

distribution. We found that the Kozeny-Carman equation lacks a parameter to describe

pore throat distribution, which we illustrated with sinusoidal pipe examples.

71

 Chapter 6

The Revised Kozeny-Carman

This chapter combines the knowledge of cross-section pore geometry and tortuosity,

and I show that the pore size distribution is the missing parameter crucial for predicting

permeability in porous media accurately. Based on this insight, I derive the revised

Kozeny-Carman equation and show that it significantly improves the permeability

estimation compared to the original equation for isotropic clastic rocks.

72

6.1 INTRODUCTION

In previous chapters, I showed that the well-known Kozeny-Carman (KC) equation

cannot accurately estimate permeability, as is illustrated by sinusoidal pipe examples

because pore size distribution is not included the equation. In this chapter, I derive the

revised KC equation to include pore size distribution in the equation. The analysis was

performed on sinusoidal pipes, simple cubic packs, face-centered cubic packs, Finney

packs, Fontainebleau sandstones, and bituminous sands. The results show that the revised

equation significantly improves the permeability estimation compared to the original

equation for isotropic clastic rocks, without the help of a fitting parameter.

Furthermore, I show that it is possible to estimate permeability, which is a 3-D

physical property, from 2-D images through the revised KC equation. The computational

time for this method is also minimal compared to the time for typical permeability

simulation such as Lattice Boltzmann (LB) flow simulations.

To arrive at these results, I thoroughly analyzed the representative pore size

distribution by conducting the LB simulations on 3-D binary segmented images to obtain

permeability and output local flux. I then used the velocity vector from the output local

flux to trace out the streamlines. For each streamline I computed the pore size distribution

along the streamline using the distance map in the binary images, as described in Chapter

2. The analysis from streamlines shows that the important variables in the representative

pore size distribution are the maximum pore throat size and the representative pore body

size. Another finding is that the pore size distribution, sorted or unsorted, yields similar

estimated permeability. This is a positive result that allows researchers to use 2-D thin

sections to predict permeability by modeling the sorted pore size distribution using various

73

functions such as the linear function, the sinusoidal function, and Gauss error function

(from cumulative distribution of Gaussian distribution). I then created the model of

representative pore size distribution using these functions, with the starting point being the

maximum of the minima of pore morphology (maximum pore throat) and the ending point

being the minimum of the maxima of pore morphology (representative pore body). I

showed that using these models in the revised KC equation enhances the estimation of

permeability even though the inputs are from 2-D thin sections.

74

6.2 THE REVISED KOZENY-CARMAN EQUATION

Our revised equation assumes that the flow in porous media is similar to the flow

in several pipes with any cross-section in series instead of the flow in a straight pipe with

circular cross-section. First, we write the Hagen-Poiseuille equation, the exact solution of

volumetric flow rate (𝑞) in a round pipe of radius 𝑅 , length 𝑙 , pressure loss 𝛥𝑃 , and

viscosity 𝜂. It is given by

𝑞 = −
𝜋𝑅4

8𝜂

𝛥𝑃

𝑙
 .

(1)

Then, the pressure loss along a pipe 𝑖 in the series is

𝛥𝑃𝑖 = −
8𝑞𝜂𝑙𝑖

𝜋𝑅𝑖
4 ,

(2)

where 𝑙𝑖 is the length and 𝑅𝑖 is the radius of pipe 𝑖. Summing up Equation 2 gives the total

pressure loss along pipes in series:

𝛥𝑃𝑡𝑜𝑡𝑎𝑙 = −
8𝑞𝜂

𝜋
∑

𝑙𝑖

𝑅𝑖
4

𝑖

 .
(3)

The total volumetric flow rate is then

𝑞 = −
𝜋𝛥𝑃𝑡𝑜𝑡𝑎𝑙

8𝜂 ∑
𝑙𝑖
𝑅𝑖

4𝑖

 .
(4)

The volumetric flow rate can be equated to Darcy’s law, which describes volumetric flow

rate (𝑞) through a porous medium with permeability 𝜅, cross-sectional area 𝐴, and length

𝐿:

75

𝑞 = −𝜅
𝐴

𝜂

𝛥𝑃

𝐿
 .

(5)

Hence, the permeability of several pipes in series is

𝜅 =
𝜋𝐿

8𝐴 ∑
𝑙𝑖
𝑅𝑖

4𝑖

 .
(6)

If we know the flow of the pipes in series, we can meticulously calculate the

porosity and specific surface area based on the shape of connected conical frustums (Figure

6-1). If we were instead to calculate the specific surface area directly from several pipes in

series without assuming the conical frustum shape, the specific surface area would be

overestimated.

The porosity of this connected conical frustum is approximately

𝜙𝑓 = 𝜋 ∑ 𝑅𝑖
2𝑙𝑖

𝑛𝑧
𝑖=1

𝐴𝐿
 . (7)

The specific surface area of the connected conical frustum is

𝑆𝑓 =

∑ (𝜋 ∙ (𝑅𝑖 + 𝑅𝑖+1) ∙ √(𝑅𝑖 − 𝑅𝑖+1)2 + ℎ𝑖
2)𝑛𝑧−1

𝑖=1

𝐴𝐿

. (8)

Figure 6-1: An example of connected conical frustums derived from discretizing a sinusoidal pipe.

76

The revised equation is derived by assuming that the primary flow path has the

shape of segmented conical frustums in series to compute a correction factor 𝛾 . This

correction factor is the ratio of the permeability of pipes in series (Equation 6) to the

Kozeny-Carman permeability in its well-known form 𝜅 = 𝐵
𝜙3

𝑆2𝜏2 (Equation 7 in Chapter

3), computed based on the shape of segmented conical frustums in series. Therefore, the

parameters we need to estimate the permeability are the radius along the pipes in series 𝑅𝑖,

the length of each pipe segment 𝑙𝑖, the total length of flow path 𝐿, the porosity of frustum

shape 𝜙𝑓the specific surface area 𝑆𝑓, and the tortuosity 𝜏𝑓. The tortuosity can be obtained

from the streamlines, or we can assume that it is within the range of 1.2-1.6 (Srisutthiyakorn

and Mavko, 2017). This correction factor can then be used as a correction to any original

form of the Kozeny-Carman equation.

𝛾 =
𝜅𝑒𝑥𝑎𝑐𝑡(𝑝𝑖𝑝𝑒𝑠)

𝜅𝐾𝐶(𝑝𝑖𝑝𝑒𝑠)
=

𝜋𝐿

8𝐴 ∑
𝑙𝑖
𝑅𝑖

4𝑖

0.5
𝜙𝑓

3

𝑆𝑓
2𝜏𝑓

2

(9)

The revised Kozeny-Carman equation is then

𝜅𝐾𝐶
′ = 𝛾 ∙ 𝜅𝐾𝐶 = 𝛾 ∙

1

2

𝜙3

𝑆2𝜏2
 = 𝛾 ∙

1

72

𝜙3

(1 − 𝜙)2𝜏2
𝑑2 .

(10)

77

6.3 IMPLEMENTATION

The main task for implementing the revised Kozeny-Carman equation is to find the

most representative pore size distribution (𝑅𝑖). We present two approaches we employ to

find the pore size distribution: (1) streamlines on a distance map and (2) multiple 2-D thin

sections.

 Streamlines on distance map approach

The first approach to compute the pore size distribution is through a combination

of streamlines and a distance map (Figure 6-2). This approach allows us to find the pore

size distribution that corresponds to the major flow path and to understand the flow in

porous media better. The first step is to solve the absolute permeability using the Lattice-

Boltzmann (LB) method. We employed a Lattice-Boltzmann simulation with a time-

dependent fixed flow rate, which handles the complex geometry of the pore space well

(Keehm and Bosl, 2003). The fixed flow rate scheme simulates the pressure gradient along

the flow path (Fredrich et al., 1999). It does not require mirroring of the pore space; instead,

it adds a 15-pixel-wide buffer zone at the inlet and outlet faces (Keehm, 2003). Our

calculation assumed no-flow boundary conditions on the side walls. The Lattice Boltzmann

code is implemented in Windows C++ and wrapped in MATLAB; the inputs are a 3-D

image and the size of a voxel.

After conducting the numerical simulations, the output of LB simulation is a local

flux velocity field (ux, uy, uz), from which we were able to find the mean flux and

permeability using Darcy’s law. For each sample, we extracted streamlines from its local

flux field. For each streamline, we followed the path along the Z-direction and calculated

the distance from the streamline to the nearest solid pixel in the plane. This distance is the

78

radius of the largest circle that will fit within the pore space. The final steps were to sort

this pore size distribution in order to ensure that the pore size changes gradually along the

primary flow path and then to calculate the correction 𝛾 by using Equation 7 to Equation

9, assuming that each pore size distribution has the shape of the connected conical frustum.

We selected the pore size distribution from the streamline that yields the highest correction

𝛾 factor to be the representative pore size distribution.

For most samples in this isotropic clastic rock data set, these streamlines with

maximum correction 𝛾 possess similar properties. They have a starting point, which is the

maximum of the minima of pore morphology (the maximum pore throat), and an ending

point, which is a point between the minimum to median of the minima of pore morphology

(representative of the pore body). After defining these two points, we can model the pore

size distribution using various equations as explained below. Figure 6-3 shows an example

of how to model the pore size distribution using a sinusoidal reverse equation.

Original Image
Local flux Image

(ux, uy, uz) at each
location

Streamlines (x,y,z),
flux

Pore size
distribution from

distance map

Sort from small to
large

Lattice Boltzmann Simulation

Figure 6-2: An example workflow on extracting the representative pore size distribution using
streamlines in a face-centered cubic pack.

79

 Multiple 2-D thin section approach

The second approach is to extract the pore size distribution from multiple 2-D thin

sections by modeling the pore size distribution. The approach still has room for

improvement, and we plan to invest time on this in the future to reduce the number of slices

used. Currently we use 50 slices for each sample to obtain the pore size distribution model.

We first process the images by computing distance images individually for each

thin section. After processing, we calculate the local minima and find the center location

of each local minimum. We then use these locations to extract pore sizes from the distance

image (Figure 6-4). Then for each thin section, we extract the minimum pore size and the

maximum pore size. After combing the data for all the minima and all the maxima, we can

find the maximum of the minima pore morphology and the minimum of the maxima pore

morphology. After finding these two points, we model the sorted pore size distribution

using various equations such as

 A linear equation: 𝑦(𝑥) = 𝑚𝑥 + 𝑐

 A sinusoidal equation: 𝑦(𝑥) = sin (𝑥)

Figure 6-3: The comparison between the pore size distribution from streamlines and the modeled pore size
distribution.

80

 A Gauss error equation: 𝑦(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0

 A sinusoidal reverse equation (the mirror image of the sinusoidal equation on a

45 degree line)

 A Gauss error reverse equation (the mirror image of the Gauss error equation

on a 45 degree line)

81

Figure 6-4: An example workflow of extracting the representative pore size distribution from 2-D thin
sections.

Figure 6-5: The representative pore size distribution model using various equations such as linear,
sinusoidal, Gauss error, sinusoidal reverse, and Gauss error reverse.

82

 Figure 6-5 shows the sensitivity of the correction 𝛾 calculated from the equations

above for the ratio of pore body to pore throat of 2. The correction 𝛾 ranges from 0.4205

using the Gauss error equation to 0.7473 using the Gauss reverse equation. Further

sensitivity of the correction is shown in Figure 6-6, where we plotted the correction for the

different ratios of pore body to pore throat.

Figure 6-6: The sensitivity of the correction factor 𝛾 for various ratios of pore body to pore throat.

83

Table 6-1: Correction γ for different ratio of pore body to pore throat.

rBody/rThroat Linear
Equation

Sinusoidal
Equation

Gauss Error
Equation

Sinusoidal
Reverse
Equation

Gauss Error
Reverse
Equation

1 0.9980 0.9980 0.9980 0.9980 0.9980
2 0.6054 0.4813 0.4205 0.7170 0.7473
3 0.3049 0.1860 0.1428 0.4382 0.4744
4 0.1656 0.0825 0.0583 0.2728 0.3005
5 0.0979 0.0418 0.0279 0.1771 0.1962
6 0.0621 0.0234 0.0150 0.1200 0.1329
7 0.0417 0.0142 0.0088 0.0844 0.0933
8 0.0292 0.0091 0.0056 0.0613 0.0676
9 0.0212 0.0062 0.0037 0.0458 0.0503
10 0.0159 0.0043 0.0025 0.0350 0.0383
11 0.0122 0.0031 0.0018 0.0273 0.0298
12 0.0096 0.0023 0.0013 0.0217 0.0236
13 0.0076 0.0018 0.0010 0.0175 0.0190
14 0.0062 0.0014 0.0008 0.0143 0.0155
15 0.0051 0.0011 0.0006 0.0118 0.0128
16 0.0042 0.0009 0.0005 0.0099 0.0107
17 0.0035 0.0007 0.0004 0.0083 0.0090
18 0.0030 0.0006 0.0003 0.0071 0.0077
19 0.0026 0.0005 0.0003 0.0061 0.0066
20 0.0022 0.0004 0.0002 0.0053 0.0057

84

6.4 RESULTS

Figure 6-7 shows the comparison between Lattice Boltzmann (LB) permeability,

and the Kozeny-Carman (KC) predicted permeability – calculated using flux-weighted

average tortuosity and a geometric factor (B) of 0.5 – before the correction. Note that the

permeability on the y-axis is on the log10 scale, and, therefore, LB and KC permeabilities

differ by one to two orders of magnitude. This is the reason that the KC equation often

requires a fitting parameter. The figure also shows that, prior to the correction, the Kozeny-

Carman equation is invalid particularly in the sinusoidal pipe examples. As porosity

increases and pore throat size decreases in sinusoidal pipes, LB permeability decreases

while KC permeability increases. For most samples, the original KC permeability is always

greater than or equal to the LB permeability by orders of magnitude.

When we applied the correction (Figure 6-8), the permeability prediction from the

KC equation improves significantly. For this figure, we used unsorted pore size distribution

along the streamline using the distance map. For simple cubic packs (SCP) and Face-

centered cubic packs (FCP), the inaccurate permeability predictions are mostly for the

realizations with high value of grain dilation (the realization with low porosity and,

therefore, low permeability).

85

Figure 6-7: Lattice Boltzmann (LB) permeability vs. the Kozeny-Carman (KC) predicted permeability
using flux-weighted average tortuosity and a geometric factor (B) of 0.5. For most samples, KC

permeability overpredicts permeability by orders of magnitude. Note that both axes are on the log10 scale.
The inaccuracy of KC permeability is prominent in sinusoidal pipes.

Figure 6-8: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted
permeability with unsorted pore size distribution along the streamlines. Note that both axes are on the log10

scale.

86

Figure 6-9 shows a comparison between Lattice Boltzmann (LB) permeability and

the revised Kozeny-Carman (KC) predicted permeability with sorted pore size distribution.

We found that the pore size distribution, sorted or unsorted, yields similar predicted

permeability. This confirms that knowing every detail of pore size distribution has minimal

impact on predicting permeability and allows us to model sorted pore size distribution

using various functions as mentioned before.

Figure 6-10 to Figure 6-14 show the permeability predicted using pore size

distribution extracted from multiple 2-D thin sections in various models. The results are

plotted without any empirical fitting. Although the prediction using only 2-D thin sections

is not as good as that using streamlines, compared to the original KC equation the plots

still show that the permeability prediction has improved significantly.

Figure 6-9: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted
permeability with sorted pore size distribution along the streamlines. Note that both axes are on the log10

scale.

87

Figure 6-10: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted
permeability with linear equation pore size distribution model.

Figure 6-11: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted
permeability with sinusoidal equation pore size distribution model.

88

Figure 6-12: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted
permeability with Gauss error equation pore size distribution model.

Figure 6-13: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted
permeability with sinusoidal reverse equation pore size distribution model.

89

Figure 6-14: Lattice Boltzmann (LB) permeability vs. the revised Kozeny-Carman (KC) predicted
permeability with Gauss error reverse equation pore size distribution.

90

6.5 CONCLUSION

We proposed a revised Kozeny-Carman (KC) equation, which is based on samples’

pore size distribution and apparent radius. This revised KC equation shows that the pore

size distribution is an essential parameter in the permeability estimation. It also solves the

problem of misusing either tortuosity or geometric factor as a fitting parameter in the KC

equation. The pore size distribution in the revised equation can be obtained from either 3-

D µXCT segmented binary images or 2-D thin sections. We showed that using these

models in the revised KC equation enhances the estimation of permeability without

introduce empirical fitting even though the inputs are from 2-D thin sections.

91

 Chapter 7

Machine Learning in Digital Rock

Physics

This chapter presents machine learning methods for predicting physical properties

from binary segmented images. Instead of using these conventional numerical simulations,

I developed machine learning methods and show that it is possible to predict 3-D transport

properties, by using geometrical features from both 2-D and 3-D µXCT binary segmented

images. Both multilayer neural network (MNN) and convolutional neural network (CNN)

algorithms are employed to predict permeability. Training is performed through both feed-

forward and back-propagation with Bayesian Regularization by using a gradient descent

algorithm. The inputs for MNN can be geometrical parameters such as Minkowski

Functionals (porosity, specific surface area, integral of mean curvature (for 3-D), and Euler

number). For CNN, the inputs are either 2-D or 3-D binary images.

92

7.1 INTRODUCTION

Permeability is one of the keys to understanding the nature of a hydrocarbon

reservoir and estimate its production capability. For single-phase fluid flow, the Lattice-

Boltzmann (LB) simulation is the established method for solving for absolute permeability.

The LB simulation approximates the Navier-Stokes equations at the pore scale, but the

calculation can be computationally expensive for large digital rock images (Keehm, 2003).

In contrast, geometric measurements and 2-D/3-D patterns are computationally

inexpensive even at larger scales, and they can provide insights into the structure of the

pores and perhaps into how the structure relates to the flow properties. In this project,

machine learning methods were applied to understand the relationship between geometry

(extracted features of rock images) and permeability, in the hope to improve accuracy and

reduce computational time of permeability calculation.

93

7.2 DATA PROCESSING

Data includes 3-D binary segmented images of Berea sandstone and Fontainebleau

sandstone. We subsampled the binary images to obtain more samples for machine learning

(64 images of size 50 voxels from Fontainebleau Sandstone and 1000 images of size 100

voxels from Berea Sandstone). Permeability was computed from the LB simulation for

each image to be used as the target in supervised learning. Raw inputs are binary segmented

3-D images, where at each voxel, the value 1 represents solid and 0 represents pore. Each

type of feature was extracted from 3 multi-scales: (a) original image, (b) 5x-upscaled image

(Figure 7-1), and (c) 10x-upscaled image. The upscaling was done by averaging. Upscaling

ensures that the convolution of the 2-D and 3-D patterns capture the global patterns in

addition to the local ones.

Figure 7-1: Example for the 5 times upscale in 2D images.

94

7.3 FEATURE EXTRACTION

 Minkowski Functionals

 Minkowski Functionals encompass standard geometric measurements for a binary

segmented image. For a d-dimensional space, there are d+1 associated Minkowski

measurements (Vogel et al., 2010). For example, a 2-D slice can be defined by 3

Minkowski measurements (area, perimeter, Euler characteristic), and a 3-D solid can be

defined by 4 Minkowski measurements (M0 - volume, M1 - surface area, M2 - integral of

mean curvature (mean breadth), and M3 - Euler characteristic). The units of Minkowski

measurements are L3, L2, L1, for M0, M1, M2, respectively, while M3 is dimensionless.

M0 - Volume (L3)

M0(X) = V(X)

M1 - Surface Area (L2)

M1(X) = ∫ ds = S(X)
δx

M2 - Integral of Mean Curvature (L)

M2(X) =
1

2
∫ [

1

r1
+

1

r2
] ds = C(X)

δx

M3 - Euler Characteristic (Unitless)

M3(X) = vertices - edges + faces – solid

 2-D Pattern Distribution

 2-D pattern distribution can be derived from the convolution between the pattern

and the image. For 2-D, patterns derived from a cross shape template such as that shown

in Figure 7-2 has been employed. Four pixels adjacent to the center form the template.

Thus, there are 24 = 16 combinations of the pattern (Figure 7-2). After convolution, the

95

number of times that the pattern appears in the image can be obtained directly by counting

the pixels that have the value that equals the number of pixels in the pattern (Figure 7-3).

If the inputs are from 3 multi-scales (original, 5x upscale, 10x upscale) then the total

number of 2-D patterns is 16*3 = 48 features.

 For 2-D patterns, if 3-D images are 50x50x50 pixels, then the 3-D images can be

sliced into 50 2-D images, and the pattern can be added from every 2-D image to form the

pattern distribution.

Figure 7-3: The convolution of a sample image and a pattern. After convolving, the pixel that has value 5
(the number of total pixel in the pattern) indicates the location of the pattern found in the image.

 3-D Pattern Distribution

 For 3-D patterns, there are 6 pixels adjacent to the center of the 3-D cross-shape

template, resulting in 26 = 64 combinations of pattern. If inputs are from 3 multi-scales

then the total number of 3-D pattern is 64*3 = 192 Features.

Figure 7-2: 16 2-D patterns derived from the cross-shape template.

96

7.4 METHODOLOGY

 To train the network, both multilayer neural network and convolutional neural

network can be used. I divided the data into a 3:1:1 ratio for the training, testing and

validation set. For 5 groups of data, if one group is selected to be the test set and the rest

of the data are training sets, this results in a 5-fold calculation. However, in both

methodologies, one validation data set is required to stop the training early, in order to

prevent over-fitting. Hence, there are a total of 20-fold combinations of cross-validation.

After 20-fold calculations, the mean square errors are calculated from the average of 20

cases. For each type of network, I varied the number of nodes (5,10,20) and hidden layers

(1 to 5).

 Multilayer Neural Network (MNN)

There are four steps for neural network design: (1) create a network, (2) configure

the network, (3) train the network, and (4) validate the network. Questions pertaining to

network configuration include how to divide data for training, testing, and validating the

network, and what would be an appropriate number of nodes in a hidden layer. Answers to

these questions are vital for deriving and constructing a better network.

97

Figure 7-4: Example of the network architecture (Demuth, 2002).

 I tested a tan-sigmoid function (a = tanh(x)) and a positive or rectified linear

function (a = max(0,x)) in the hidden layers, and I used a linear function (a = x) in the

output layers. I also tested the number of nodes and the number of hidden layers to obtain

the optimal network structure using the feed-forward neural net.

 Training is done through feed-forward and through back-propagation with

Bayesian Regularization by using a gradient descent algorithm. Bayesian Regularization

can be used to help achieve the goal of improved generalization. This can be done by

adding to the previous performance function another term that includes the mean of the

sum of the squares of the network weights and biases. To iteratively find weight and bias,

I employ the Levenberg-Marquardt algorithm, which is a combination of the Gauss-

Newton and the Steepest Descent algorithm. The combination ensures that the Hessian

matrix (H) is invertible. If µ = 0, the Levenberg-Marquardt algorithm is equivalent to the

Gauss-Newton algorithm and if µ → ∞, the equation approaches the Steepest Descent

algorithm:

χk+1 = χk − [H(xk) + μI]−1JT(xk)e(xk),

where e is the error vector, H is the Hessian Matrix, and J is the Jacobian matrix.

98

 The performance can be regularized to prevent over-fitting as follows:

msereg = (1 − δ) ∙
1

N
∑(ei)

2

N

i=1

+ δ ∙
1

M
∑(wi)

2

M

i=1

With this performance function, it is possible to minimize both mean square errors and

mean square weights. The function therefore forces the network to have a smaller weight

and bias, leading to smoother output.

 Convolutional Neural Network

 The convolutional neural network contains one extra layer (a convolution layer),

which appears before the general multilayer neural network that is described in the previous

section. For the convolutional layer, the features are 2-D and 3-D pattern distributions

extracted from original images and upscaled images.

99

7.5 RESULTS

Table 7-1 and Table 7-2 summarize the performance of neural networks through

mean-square errors (MSEs) for feed-forward (FF) and Bayesian Regularization (BR). For

both FF and BR networks, obtaining features in multi-scales helps to lower test MSEs

gradually, except for the case of multilayer neural networks (MNN) with Minkowski

Functionals. The convolution at a larger scale may help capture global geometry and pore

space connectivity from both 2-D and 3-D image inputs.

For FF networks, test MSEs of all cases are higher than train MSEs, as expected.

The advantage of FF networks is that less time is required to train them, as seen from the

number of iterations in Table 7-1. On the other hand, BR networks have test MSEs as good

as or better than train MSEs due to the regularization feature. The Bayesian regularization

algorithm prevents over-fitting by regularizing the function to minimize both weight and

error. As shown in Table 7-2, the exception to this case is 2-D and 3-D CNN with no multi-

scale, which are over-fitted as test MSEs are higher than train MSEs.

CNN with 2-D convolution with multi-scales (original, 5x upscale, 10x upscale)

shows the best testing result overall from both FF and BR. The highest test MSE is from

the Minkowski Functionals at the original scale, which is as expected since it contains only

4 features. The regression plots of the predicted data versus the target of features are shown

in Figure 7-5 and Figure 7-6. The permeability prediction is generally in agreement with

the target permeability.

Figure 7-7 shows both training and test MSE for each model and for different

network architectures from the feed-forward neural net, where the x axis represents the

number of nodes (5, 10, 20) and the y axis represents the number of hidden layers. There

100

is no unique network architecture for digital rock images as different types of features have

different optimum neurons and hidden layers. Although there is no unique answer, there

are two observable trends from the feed-forward test MSE: (1) CNNs with multi-scale

favor larger networks with a greater number of nodes in hidden layers and (2) MNN and

2-D CNN with only original images favor small and simple networks. This may be due to

the number of features supplied to the network being small.

101

7.6 CONCLUSION

Deep Learning algorithms such as MNN and CNN can provide insights into

important geometrical features in porous media. For example, obtaining cross-shape

features in multi-scales helps improve the prediction because the patterns from a larger

scale ensure that the neural network captures global pore connections in 2-D/3-D images.

 The results of using machine learning to predict permeability are promising,

especially for the case of 2-D CNN in multi-scales. As the cost of acquiring 2-D digital

images is lower than that of acquiring 3-D digital images, 2-D CNN offers a good

alternative for permeability prediction when 3-D images are too costly. In the future, we

plan to include more features, such as pore size distribution, which can be extracted directly

from the 2-D/3-D binary segmented images. Other interesting topological descriptors that

can be used in machine learning include lineal-path, chord-length density function, pore-

size function (Torquato, 2002; Lehmann et al., 2008) and Persistence (Zomorodian and

Carlsson, 2005).

102

Table 7-1: Results from Feed-Forward MNN using tan-sigmoid function.

Model from Feed Forward

Network

Features Train

MSE

Test MSE Iterations Correlation

Value R

MNN with Minkowski

Functionals

4 0.2953e4 3.4147e5 10 0.58684

MNN with Minkowski

Functionals (multi-scale)

504 1.4159e5 3.3678e5 10 0.87675

CNN with 2-D Convolution 16 1.6324e5 3.6123e5 16 0.50192

CNN with 2-D Convolution

(multi-scale)

48 0.8750e5 2.4307e5 13 0.92475

CNN with 3-D Convolution 64 1.6410e5 3.3144e5 11 0.63542

CNN with 3-D Convolution

(multi-scale)

192 0.6352e5 2.7400e5 10 0.90228

103

Table 7-2: Results from Bayesian Regularization MNN using rectified linear or positive linear function.

Model from Bayesian

Regularization Network

Features Train

MSE

Test MSE Iterations Correlation

Value R

MNN with Minkowski

Functionals

4 2.1379e5 1.1631e5 53 0.76999

MNN with Minkowski

Functionals (multi-scale)

504 4.6362e5 2.3999e5 416 0.96225

CNN with 2-D Convolution 16 1.6802e5 5.2754e4 50 0.88749

CNN with 2-D Convolution

(multi-scale)

48 1.1989e5 1.1049e5 77 0.95353

CNN with 3-D Convolution 64 2.1789e5 8.4937e4 57 0.86071

CNN with 3-D Convolution

(multi-scale)

192 4.6362e5 2.3999e5 283 0.97467

104

Figure 7-5: Regression plots of the predicted data on the y axis versus the target on the x axis for each
model. This data is from the feed-forward network. The multi-scale models have better regression since

they are near a 45 degree line.

 MNN MNN (multi-scale)

2-D CNN 2-D CNN (multi-scale)

3-D CNN 3-D CNN (multi-scale)

105

Figure 7-6: Regression plots of the predicted data on the y axis versus the target on the x axis for each
model. This data is from the Bayesian regularization network. The multi-scale models have better

regression since they are near a 45 degree line.

 MNN MNN (multi-scale)

2-D CNN 2-D CNN (multi-scale)

3-D CNN 3-D CNN (multi-scale)

106

Figure 7-7: Mean square error of each network architecture from Training set (left) and Test set (right). The
y axis is the number of hidden layers from 1 to 5, and the x axis is the number of nodes, where 1, 2, 3

correspond to 5, 10, 20 number of nodes.

107

 Chapter 8

Computation of Grain Size Distribution

in 2-D and 3-D binary images

Grain Size Distribution is one of the basic measurements for sediment classification.

The conventional methods for grain size distribution include the sieve method, the laser

diffraction method, and the point-count method. We aimed to develop a robust computer

code that simulates these conventional methods. The code can measure grain size

distribution on 2-D and 3-D binary images using a watershed algorithm to extract out

individual grains, and using principal component algorithms to find the principal axes. The

outputs include grain radius for different principal axes, grain volume, grain surface area,

principal axes inclinations and azimuths, and the number of contacts for each grain. The

calculated distribution can be volume-based, frequency-based, or grid-based. Digital

microstructures used in this study include (1) identical sphere packs including a simple

cubic pack and a Finney pack, and (2) natural rock geometry such as Berea sandstone,

Castlegate sandstone, and Fontainebleau sandstone. Furthermore, we employed this code

to provide additional value of information for the µXCT images by using µXCT to create

108

2-D to 3-D model of the grain size distribution, solving what is commonly known as

Wicksell’s corpuscle problem. We showed that our workflow successfully models a

generalized 2-D to 3-D grain size distribution for a particular set of natural rocks we include

in our study. We hope to be able to obtain more µXCT images in the future in order to

create a universal model covering most types of natural rocks.

109

8.1 INTRODUCTION

The aim of this study was to develop a robust code to digitally measure grain size

distribution on a 2-D or 3-D image. We also aimed to establish the workflow to estimate

the grain size distribution from 2-D thin sections through Wicksell’s corpuscle modeling

on the μXCT images. Furthermore, we improved the precision of the method by

incorporating principal component analysis to find the eigenvector of grain orientation.

This method enables us to extract more information from the digital image about the grain

size distribution such as the grain volume, grain surface area, grain principal axes

inclination and azimuth, and the coordination number.

Grain size distribution is the basic measurement needed for sediment classification.

It is defined as the distribution of the grains’ diameter and their sorting. The grain size

distribution can reveal information about the deposition process and sediment sources

(Visher, 1969). For low energy depositional environments, the distribution becomes wider,

signifying poorer sorting. For high energy depositional environments, the distribution

becomes narrower and the grain size tends to be larger (Guéguen and Palciauskas, 1994).

Well-known grain size classifications include Wentworth (1922) and Friedman and

Sanders (1978). The grain size distribution has a wide range from 2 µm in clay to 2048 mm

in cobbles.

Conventionally, grain size distribution is measured using the sieve method, the laser

diffraction method, or the point-count method. The sieve method defines a grain diameter

as the grain passes through a square hole in a sieve. Then, the volume of grains is measured.

Laser diffraction, on the other hand, is based on forward scattering of monochromatic

coherent light. This method is more accurate and repeatable (Konert and Vandenberghe,

110

1997). Our code can simulate these two methods of measurement by calculating volume-

based distribution to simulate the sieve method and by calculating frequency-based

distribution to simulate the laser diffraction method.

Alternatively, the grain size distribution can be measured by the point-count

method using the 2-D thin sections. This can be done by laying out a grid on the 2-D thin

sections. Then, a geologist measures the diameter of the grains at the grid intersections.

The accuracy of this method is compromised by its bias toward large grains since the large

grains have a higher probability of being on the grid intersections than small grains. We

also add the capability in our code to simulate the point-count method by creating a

specified grid and extract the grain size distribution only from grains that are on the grid

intersection.

The estimation of size distribution from lower dimensional sampling probes is one

of the classical problems in stereology known as Wicksell’s corpuscle problem (Wicksell,

1925; Exner, 1972; Cruz‐Orive, 1983). Ohser and Sandau (2000) presented an insightful

summary of the problem. They pointed out that Wicksell’s corpuscle problem is an ill-

posed inverse problem and approached this problem using an EM algorithm (Expectation-

Maximization) following Silverman et al. (1990). In this study, instead of solving an

inverse problem, we set up forward modeling and solve it as linear least squares problems.

111

8.2 DIGITAL MICROSTRUCTURES

We studied the grain size distribution of two types of digital microstructures: (1)

sphere packs for algorithm validation purposes, including a simple cubic pack (SCP), and

a Finney pack, and (2) natural rocks including Berea sandstone, Castlegate sandstone, and

Fontainebleau sandstone. Artificial and physical packs were created to validate the grain

size distribution algorithm since their attributes are known. For natural rocks, we also have

the scanned 2-D thin sections, which are in the RGB domain and have a resolution of 0.4

μm. Figure 8-1 shows the 3-D digital microstructures used in this study.

1. Simple cubic pack (SCP)

The SCP represents the loosest arrangement of sphere packs, with a porosity of 0.4764.

The image is 500x500x500 voxels, with a voxel edge length of 2 μm. The SCP image

contains 83 unit lattices; therefore, each sphere has a diameter of 62 voxels, which is

equivalent to 0.124 mm.

2. Finney pack

The Finney pack is a physical random close packing of identical spheres (Finney, 1970). It

is often considered a bridge between artificial sphere packs and a variety of natural rocks.

The location of each sphere in the Finney pack was digitally rendered in a 3-D Cartesian

coordinate system. The image is 500x500x500 voxels, with a voxel edge length of 2 μm.

Each sphere in the Finney pack we created has a diameter of 82 voxels, which is equivalent

to 0.164 mm.

3. Berea sandstone (Volume: B1 and B5)

112

The Berea sandstone is moderately well sorted, sub-angular to sub-rounded Mississippian

sandstone, with a mean grain size of approximately 240 µm from the laboratory

measurement. The segmented µXCT image is 1024x1024x1024 voxels, with a voxel edge

length of 2.114 μm.

4. Castlegate sandstone (Volume: CG1)

The Castlegate sandstone is moderately sorted, sub-angular to sub-rounded Mesozoic

sandstone, with a mean grain size of approximately 220 µm from the laboratory

measurement. The segmented µXCT image is 1024x1024x1024 voxels, with a voxel edge

length of 2.114 μm.

5. Fontainebleau sandstone (Volume: FB24)

The Fontainebleau sandstone is moderately well sorted, sub-rounded to rounded, with

cementation of approximately 20%. The segmented µXCT image is 1024x1024x1024

voxels, with a voxel edge length of 2.072 μm.

113

Figure 8-1: 3-D µXCT images in this study include a simple cubic pack (SCP), a Finney pack, Berea
sandstone (B1 and B5), Castlegate sandstone (CG1), and Fontainbleau sandstone (FB24), from top-left to

bottom-right respectively.

114

8.3 METHODS

In this section, we discuss our algorithm for grain size distribution measurement,

the workflow on 2-D thin sections segmentation, and 2-D to 3-D grain size distribution

modeling (Wicksell’s corpuscle problem).

 Grain size distribution

We developed MATLAB functions that can measure different grain properties from

2-D or 3-D binary segmented images (computeGSD.m). The analysis of grain properties

involves four major steps (1) employing a watershed algorithm to draw the boundary

between grains, (2) employing principal component analysis (PCA) to find the principal

axes unit vectors (eigenvectors) of the grains and extend these vectors to find the grain size,

(3) dilating the image of each grain to detect any contact with other grains, and (4)

removing grains at the boundary of the image.

For the first step, we employed MATLAB’s built-in watershed algorithm

(watershed.m). To do so, we first created the scalar distance image by calculating the

Euclidean distance from each solid voxel to its nearest pore voxel. We then employed the

H-minima transform (imhmin.m) to prevent the image from being oversegmented by the

watershed algorithm. The H-minima transform uses 8 connected neighborhoods for 2-D

images and 26 connected neighborhoods for 3-D images. In the distance image, the

algorithm suppresses all minima whose depth is less than the specified threshold. We set

the default minima suppression at 3 voxels. The watershed algorithm finds the ridge

between each pair of local minima in the distance image.

For the second step, we employed principal component analysis (PCA) to find the

grain sizes along the grains’ principal axes. We measured the size of grains on two

115

perpendicular axes (a total of 4 radii: (𝑟1 ||𝑟2)⊥(𝑟3 ||𝑟4)) for a 2D image and on three

perpendicular axes (a total of 6 radii: (𝑟1||𝑟2)⊥(𝑟3||𝑟4) ⊥(𝑟5||𝑟6)) for a 3D image Figure 8-2.

Apart from the grain sizes, we also calculated grains’ orientations. For a 2D image, we

calculated how far the azimuth of the principal axes deviated from the y-axis. For a 3D

image, we calculated the azimuth and inclination of the principal axes using spherical

coordinates following the physics ISO convention.

The radius 𝑟 is given by

𝑟 = √𝑥2 + 𝑦2 + 𝑧2.

The inclination from the z-axis (𝜃) is

𝜃 = arctan (
𝑦

𝑥
) .

The azimuthal angle from the x-axis in the counterclockwise direction is

𝜑 = arccos (
𝑧

𝑟
) .

For the third step, we dilated each grain by two pixels on the watershed image and

extracted the indices on each grain boundary. The number of unique indices on each grain

boundary is the number of contacts per grain (i.e. coordination number).

After measuring the different properties of grains, the last step is to impose

boundary conditions by removing grains at the boundary. We detected grains at the image

boundaries by using the shortest perpendicular distance from the grain centroid to the

boundary. If this distance was smaller than the radius of the grain, then the grain was at the

boundary.

116

The code outputs (1) grain centroid - a matrix of Cartesian coordinates for each

grain, (2) grain radius – a matrix of the radius measured from the grain centroid for each

grain, (3) grain azimuth, - a matrix of the azimuth of all principal axes, (4) grain inclination

– a matrix of the inclination of all principal axes, (5) grain volume – a vector of the volume

in voxel for each grain, and (6) the number of contacts - a vector of the number of adjacent

grains in contact. The code can also output the plot for the quality control process for the

2-D grain size distribution measurement. Figure 8-3 shows the example output for a 2-D

slice for natural rocks. The green circles denote the grains that are included in the

distribution since no part of them touches the edges of the image.

For 3-D µXCT images, we subdivided the image into the size 5003 voxels for the

faster running time of the watershed algorithm. After all of the simulations, the grain sizes

are added to form the single distribution.

The grain size distribution can be plotted in volume-based (computeHistVB.m) to

simulate the sieve method, in frequency-based (computeHistFB.m) to simulate the laser

diffraction method, or in point-count method (computeHistPC.m). The volume-based

calculation was done by adding up the grain volume in each bin as the volume fraction of

the distribution.

Figure 8-2: Principal Component Analysis (PCA) to find the grain sizes along principal axes. We measured
the size of grains on two perpendicular axes (4 radii) for a 2-D image and three perpendicular axes (6 radii)

for a 3-D image.

117

Figure 8-3: The plot for quality control in the grain size measurement in a 2-D slice of B1, B5, CG1, and
FB24. The scale is in voxels.

118

 2-D Thin Sections Segmentation

The scanned 2-D thin sections are in the RGB domain and have the resolution of

0.65μm. For each 2-D thin section, we subdivided the image into 5000x5000 pixels for the

purpose of parallel computing (Figure 8-4). The chosen size of the subdivision was ensured

to be larger than the largest grains in the 2-D thin sections. We then controlled the quality

of the measurements by removing any subimages that contained any stains in the physical

2-D thin sections.

The K-Means segmentation was performed to transform the 2-D thin sections in

the RGB domain into segmented binary images containing values 1 for solid and 0 for

pores. K-Means segmentation is a well-known method for data clustering in various fields

(Jain, 2010).

For each of the subimages, we randomly selected 10,000 pixels to form a training

set for K-Means segmentation. Adding up all the subimages, we had more than 2,100,000

pixels for the training set. Each pixel contained the set of values between 0-255 for each

channel in the RGB domain. Then, we selected only a unique set of values to prevent bias

toward more common colors in the 2-D thin sections. Figure 8-5 and Figure 8-6 show 2-D

thin sections before and after the segmentation process.

119

Figure 8-4: Example of a 2-D thin section with subdivision grid. The size of the each subimage is
5000x5000 pixels.

Figure 8-5: Cropped 2-D thin sections from B1, B5, CG1, and FB24 from top-left to bottom-right.

120

Figure 8-6: Cropped segmented 2-D thin sections from B1, B5, CG1, and FB24 from top-left to bottom-
right before image cleaning.

 2-D to 3-D grain size distribution modeling (Wicksell’s corpuscle problem)

Wicksell’s corpuscle modeling is a classic stereological problem addressing the

estimation of the size distribution using a lower dimensional sampling (Stoyan et al., 1995;

Ohser and Sandau, 2000). Finding the 3-D grain size distribution from a 2-D image is a

challenging problem since a 2-D image alone does not contain the complete information

on the distribution. For instance, a 2-D slice of closely packed equal spheres shows isolated

spheres unless the slice is cut right where the spheres are in contact. To solve this problem,

we modelled the 2-D to 3-D grain size distribution as a forward modeling problem. Since

we can obtain both 3-D and 2-D histogram vectors from a µXCT image, we can use the

µXCT image to understand better the relationship between the 2-D and 3-D grain size

distribution by constructing the transform matrix. First, we sorted the grain size into the

histogram using the same bin size for the 2-D and 3-D histogram (computeGSDHist.m).

We set up the bin size in the log 10 scale with a total of 49 bins. Given the 2-D histogram

121

vector 𝑥 and 3-D histogram vector 𝑦, we related these two vectors through the transform

matrix 𝑇 as 𝑦 = 𝑇𝑥, or in the matrix form

[

𝑦1.
.
.

𝑦𝑛

] = [

𝑡11
. . . 𝑡1𝑛.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
𝑡𝑛1

. . . 𝑡𝑛𝑛

] [

𝑥1.
.
.

𝑥𝑛

]

For each µXCT image, there is a single 3-D histogram vector 𝑦 and there are

multiple sets of 2-D histogram vectors 𝑥. We assumed that all of the 2-D histogram vectors

𝑥 contribute to each bin in the 3-D histogram vector independently as follows:

𝑦𝑖 = ∑ 𝑡𝑖𝑘
𝑛
𝑘=1 𝑥𝑘.

Then we combined the grain size distribution from different 2-D slices and

reformed the problem for the histogram bin 𝑖 of the 3-D grain size distribution histogram

as

[

𝑦𝑖.
.
.

𝑦𝑖.

] =

[

𝑥1

𝑠𝑙𝑖𝑐𝑒 1 . . . 𝑥𝑛
𝑠𝑙𝑖𝑐𝑒 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
𝑥1

𝑠𝑙𝑖𝑐𝑒 𝑚 . . . 𝑥𝑛
𝑠𝑙𝑖𝑐𝑒 𝑚]

[

𝑡𝑖1.
.
.

𝑡𝑖𝑛

]

This system of equations can be solved for the transform matrix of row 𝑖 through

the linear least-square method (lsqnonneg.m). The process is repeated until all the

coefficients in the transform matrix are solved. Furthermore, we added 2-D and 3-D grain

size distribution from other µXCT images to create a more generalized transform matrix.

For the 3-D grain size distribution prediction from 2-D thin sections, we created the

generalized transform matrix for all natural rocks: B1, B5, CG1, and FB24.

122

8.4 RESULTS AND DISCUSSIONS

 Grain Size Distribution

The grain size distribution code can be validated by using artificial and physical

sphere packs since their properties are known. The results show that the grain sizes from

the 3-D µXCT images are constant, which is consistent with their geometry since they are

packs with equal-sized spheres (Figure 8-7). For sphere packs with identical spheres, there

is no difference between calculating the grain size distribution using the volume-based

method, the frequency-based method, or the point-count method since all spheres have the

same size. For the grain size distribution from 2-D slices of the 3-D µXCT images, Figure

8-7 shows non-representative grain sizes when the slices are not at the center of the grains.

Figure 8-8 shows that the program reports the coordination number (number of

contacts per grain). The coordination number for a sample cubic pack is 6 which is equal

to its theoretical number. The correlation number from the Finney ranges from 2 to 6 in

our study. Figure 8-9 shows the coordination number for natural rocks computed from our

code. The coordination numbers of natural rocks ranges from 1 to 20.

For natural rocks, Figure 8-10 shows 3-D grain distribution using different methods

of calculating the distribution (volume-based, frequency-based, and point-count). We

observe that the small grains especially with diameters in the silt range are not represented

well in the volume-based method since their grains are small and do not have weight in the

distribution. However, it is also possible that these small grains really simply noise in the

digital images as well since their diameters are approximately 3 pixels. The most surprising

results are from the point-count grain size distributions. The point-count grid detects many

123

small grains. We previously expected that this method would have the higher mean than

other methods since there is higher probability that the grid will fall on the larger grains.

Figure 8-7: 3-D and 2-D Grain size distributions from the µXCT images of a simple cubic pack and a
Finney pack for algorithm validation. For these sphere packs, volume-based and frequency-based

distribution show the same results since they are packs of identical spheres. 2-D grain size distribution
clearly shows how 2-D slicing would result in apparent grain size measurements.

124

Figure 8-8: The coordination number (number of contacts per grain) from 3-D µXCT images of a simple
cubic pack and a Finney pack. The simple cubic pack shows the coordination number of 6, which is equal

to the theoretical number.

Figure 8-9: The coordination number (number of contacts per grain) from 3-D µXCT images of natural
rocks.

125

Figure 8-10: 3-D grain-size distributions with (1) volume-based (simulating the sieve method), (2)
frequency-based (simulating the laser diffraction method), (3) point-count (simulating the point-count

method on a 2-D thin section).

126

 2-D to 3-D grain size distribution modeling (Wicksell’s corpuscle problem)

We compared the predicted 3-D grain size distributions from thin sections to the 3-

D distributions from µXCT images in Figure 8-11 and Figure 8-12. We observed that the

mean diameters from 2-D thin sections are similar to laboratory measurement. However,

these numbers are all larger than the mean diameters from µXCT images. This could result

from the fact that µXCT images have smaller field of view than thin sections. We created

a transform matrix from all natural rocks in this study and still obtained a strong correlation

between the prediction and the target. However, when we investigated the transform matrix,

we found many missing coefficients that may require more µXCT images to model.

127

Figure 8-11: The comparison between 2-D volume-based grain size distribution from the thin section,
predicted 3-D volume-based grain size distribution, and the 3-D volume-based grain size distribution from

uXCT image for B1 and B5.

128

Figure 8-12: The comparison between 2-D volume-based grain size distribution from the thin section,
predicted 3-D volume-based grain size distribution, and the 3-D volume-based grain size distribution from

uXCT image for CG1 and FB24.

129

Figure 8-13: 2-D to 3-D grain size distribution transform matrix. The color yellow shows the coefficient
within the transform matrix that is greater than one.

130

8.5 CONCLUSION

The grain size distribution code is a robust method to find the grain size distribution

from either 2-D or 3-D binary images. We validated the code using identical sphere packs.

Using the code can reduce the time and increase the accuracy of acquiring the grain size

distribution. However, there are still challenges for extracting the grain size distribution

from digital images. These challenges include the segmentation process from 2-D thin

sections and the image processing steps to remove noise. Our code can also provide the

additional value of information to the µXCT images if they are used to create 2-D to 3-D

grain size distribution model. We showed that our workflow successfully models a

generalized 2-D to 3-D grain size distribution for a particular set of natural rocks we include

in our study. We hope to be able to obtain more µXCT images in the future in order to

create a universal model covering most types of natural rocks.

131

 Appendix A

Digital Microstructures

Digital microstructures used in this dissertation except ones in Chapter 8 include (1)

pipes of various cross-sections, (2) artificial and physical sphere packs, including simple

cubic packs (SCP), face-centered cubic packs, and Finney packs, and (3) natural rocks

including Fontainebleau sandstone, Bituminous sands, Berea sandstones, and Grosmont

carbonates.

132

A.1 PIPES OF VARIOUS CROSS-SECTIONS

We generated 3-D segmented binary image cubes containing straight pipes with

different cross-sections, parallel to the x-direction. All images are 200x100x100 voxels,

with a voxel edge length of 0.002 mm. We specified the center at y0 = 50 and z0 = 50. The

pipes of various cross-sections in this study are as follows (Figure A-1):

A.1.1 Round pipes

We created a total of 9 realizations of straight round pipes with different radii (r)

ranging from 4 to 36 pixels with increments of 4 pixels. The equation for creating a round

pipe is (𝑦 − 𝑦0)
2 + (𝑧 − 𝑧0)

2 < 𝑟2.

A.1.2 Elliptical pipes

We created a total of 9 realizations of elliptical pipes whose porosities match the

porosities of round pipes. The aspect ratio (𝐴𝑅) of elliptical pipes is 0.8. The equation for

an elliptical pipe is (𝑦−𝑦0

𝑎
)
2

+ (
𝑧−𝑧0

𝑏
)
2

< 𝑟2. To match the porosity of a round pipe, we

specified 𝑎 =
𝑟

√𝐴𝑅
 and 𝑏 = 𝑎 ∗ 𝐴𝑅.

A.1.3 Triangle pipes

We created a total of 9 realizations of equilateral triangle pipes whose porosities

match the porosities of round pipes. The equations for an equilateral triangle pipe with a

side length t is

(1) for 𝑦 < 𝑐𝑡, 𝑎𝑏𝑠(𝑧 − 𝑧0) <
√3𝑡

4
 𝑎𝑛𝑑 𝑧 < √3 (𝑦 − 𝑦0 +

𝑡

4
) + 𝑐𝑡 and

(2) for 𝑦 < 𝑐𝑡, 𝑎𝑏𝑠(𝑧 − 𝑧0) <
√3𝑡

4
 𝑎𝑛𝑑 𝑧 < −√3 (𝑦 − 𝑦0 +

𝑡

4
) + 𝑐𝑡.

133

To match the porosity of a round pipe, we specified 𝑡 = √
4𝜋𝑟2

√3
 .

A.1.4 Square pipes

We created a total of 9 realizations of square pipes whose porosities match the

porosities of round pipes. The equations for a square pipe with a side length a is

𝑎𝑏𝑠(𝑦 − 𝑦0) <
𝑎

2
, and

𝑎𝑏𝑠(𝑧 − 𝑧0) <
𝑎

2
 .

To match the porosity of a round pipe, we specified 𝑎 = √𝜋𝑟2 .

A.1.5 Sinusoidal pipes

We created a total of 9 realizations of pipes with sinusoidally varying radius and

different fractional changes in radius (𝛿). The equation for creating sinusoidal cross-

sections is

(𝑦 − 𝑦0)
2 + (𝑧 − 𝑧0)

2 = 𝑟𝑠
2

, where 𝑟𝑠 = 𝑟0 (1 + 𝛿 ∙ sin (
𝑡

2𝑟0
)) and 𝑡 = 0: 2𝜋. We specified 𝑟0 to be 20 pixels.

A.1.6 k-cusps hypotrochoidal pipes

We created k-cusps hypotrochoidal pipes with k ranges from 3 to 7. For each

number of k, we created 9 realizations of k-cusps hypotrochoidal pipes whose porosities

match the porosities of round pipes. Therefore, there is a total of 45 realizations. The

equation for a k-cusps hypotrochoidal pipe is

𝑦(𝜃) = 𝑎 ∙ ((𝑘 − 1)𝑐𝑜𝑠(𝜃) + cos((𝑘 − 1)𝜃)) + 𝑦0

𝑧(𝜃) = 𝑎 ∙ ((𝑘 − 1)𝑠𝑖𝑛(𝜃) + sin((𝑘 − 1)𝜃)) + 𝑧0

134

, where 𝜃 = 0: 2𝜋. To match the porosity of a round pipe, we specified = 𝑟

√2
 .

135

Figure A-1: Pipes with different cross-sections from left to right: round pipes, elliptical pipes, triangle
pipes, square pipes, sinusoidal pipes, 3-cusps hypotrochoidal pipes, 4-cusps hypotrochoidal pipes, 5-cusps

hypotrochoidal pipes, 6-cusps hypotrochoidal pipes, 7-cusps hypotrochoidal pipes.

136

A.2 ARTIFICIAL AND PHYSICAL SPHERE PACKS

For effective elastic and transport properties, the close packing of identical spheres

has long been studied since it resembles realistic rock geometry. Graton and Fraser (1935)

studied systematic packings of spheres to form the empirical equation of flow through the

close packing. The close packing of identical spheres can be a common simple model of

granular media for both effective elastic and transport properties. Spherical packs can also

be created from granular dynamic simulations that fully reflect the compaction effect (Silin

et al., 2004; Sain, 2011). In this dissertation, we generated 3-D segmented binary image

cubes containing artificial and physical packings of spheres. All images are 200x200x200

voxels, with a voxel edge length of 12.5 μm. This voxel scale was chosen to make a sphere

of radius 10 voxels equivalent to fine sand (0.125 mm radius) and a sphere of radius 40

voxels equivalent to coarse sand (0.5 mm radius). The artificial and physical packings in

this study is as follows:

A.2.1 Simple cubic pack (SCP)

The SCP represents the loosest arrangement of sphere packs, with a porosity of

0.4764. We created a total of 8 realizations of SCP. The original image of a SCP contains

33 unit lattices; therefore, each sphere has a radius of 33 voxels. The other 7 realizations

were created by dilation of grains in the original image by increments of 5% (Figure A-2).

With grain dilation effects, the porosities of SCP range from 0.0685 to 0.4764.

A.2.2 Face-centered cubic pack (FCP)

The FCP represents the densest arrangement of sphere packs, with a porosity of

0.2595. We created a total of 8 realizations of a FCP. The original image of a FCP contains

23 unit lattices; therefore, each sphere has a radius of 35 voxels. The other 7 realizations

137

were created by grain dilation at increments of 5% (Figure A-2). With grain dilation effects,

the porosities of FCP range from 0.0001 to 0.2595.

A.2.3 Finney Pack

The Finney pack is a physical random close packing of identical spheres (Finney,

1970). The Finney pack consists of 4021 spheres, in which the location of each sphere was

digitally rendered in a 3-D Cartesian coordinate system. The Finney pack acts as a bridge

between artificial packing models and natural rocks, and it is used widely in computational

experiments (Jin et al., 2009; Richa, 2010; Sain, 2011; Dvorkin et al., 2012). For this

experiment, the Finney pack was also digitally altered by changing the radius of each

sphere (LX = 3,6,9,12) (Figure A-3). For LX equals 3, each sphere has a radius of 40 voxels

and is equivalent to coarse grain (0.5. For LX equals 12, each sphere has a radius of 10

voxels and it is equivalent to fine grain (0.125 mm). For each value of LX, we created 8

realizations of Finney packs with grain dilation at increments of 5%. Therefore, there are

a total of 24 realizations.

Figure A-2: Grain dilation effect on simple cubic pack (Top) and face-centered cubic pack (Bottom)

138

Figure A-3: Finney packs with different radii of spheres (LX = 3, 6, 9, 12 from left to right).

139

A.3 NATURAL ROCKS

For natural rocks, we subsampled all 3-D segmented binary images to the size

200x200x200 voxels in order to gain more samples and to test the variability of the

tortuosity. The subsamples are large enough to reach the representative elementary volume

since their calculated properties such as porosity and permeability are similar to these found

in laboratory measurements. The voxel edge lengths of each subsample are the same as the

voxel edge lengths of the original images. Natural rock samples in this study are as follows

(Figure A-4):

A.3.1 Fontainebleau sandstone

The original size of Fontainebleau sandstone is 288x288x288 voxels, with a voxel

edge length of 7.5 μm. We generated 8 subsamples of size 200x200x200 voxels. In this

case, the subsamples are overlapped. For Fontainebleau sandstone, the laboratory

measurements found a porosity of approximately 0.152, and a permeability of

approximately 1100 mD (Andrä et al., 2013a). In comparison, the subsamples have an

average porosity of 0.147 and a permeability range from 1541.3 mD (P10) to 2094.3 mD

(P90), with a median (P50) of 1798.6 mD.

A.3.2 Bituminous sand

The original size of the bituminous sand image is 400x400x400 voxels, with a voxel

edge length of 4 μm. We generated 8 subsamples of size 200x200x200 voxels. The

subsamples have an average porosity of 0.368 and a permeability range from 6520.1 mD

(P10) to 9300.7 mD (P90), with a median (P50) of 7428.2 mD. This sample was first

studied in substitution of two phases in a three phase multimineralic rock (Saxena, 2014).

140

A.3.3 Berea sandstone

The original size of Berea sandstone is 1024x1024x1024 voxels, with a voxel edge

length of 0.74 μm. We generated 125 subsamples of size 200x200x200 voxels. For Berea

sandstone, the laboratory measurements found a porosity of approximately 0.20, and a

permeability range from 200 to 500 mD (Andrä et al., 2013a). In comparison, the

subsamples have an average porosity of 0.19 and a permeability range from 15.9 mD (P10)

to 210.5 mD (P90), with a median (P50) of 70.2 mD.

A.3.4 Grosmont carbonate

The original size of Grosmont carbonate is 1024x1024x1024 voxels, with a voxel

edge length of 2.02 μm. We generated 125 subsamples of size 200x200x200 voxels. For

Grosmont carbonate, the laboratory measurements found a porosity of approximately 0.21,

and a permeability range from 150 to 470 mD (Andrä et al., 2013a). In comparison, 3-D

segmented binary samples have an average porosity of 0.19 and a permeability range from

6.7 mD (P10) to 1262.8 mD (P90), with a median (P50) of 149.4 mD

141

Figure A-4: From top-left to bottom-right, Fontainebleau sandstone, Bituminous sand, Berea sandstone,
Grosmont carbonate in their original sizes.

142

 Appendix B:

Numerical Simulations

This section describes different numerical simulations used in digital rock physics

such as the Lattice Boltzmann flow simulations and finite element method. I will also

discuss the effective of discretization in different numerical simulations.

143

B.1 LATTICE BOLTZMANN FLOW SIMULATION

Absolute permeability can be solved for numerically by using the Lattice

Boltzmann (LB) flow simulation, which is an approximation of the Navier-Stokes

equations for the pore space (Fredrich, 1999; Succi, 2001; Keehm, 2003). The LB

algorithm is implemented in Windows C++ wrapped in MATLAB. The input to the

algorithm is a 2-D or 3-D binary image, where 0 represents the pore space and 1 represents

the mineral skeleton in a 3-D rectangular matrix.

Four different versions of SRB’s LB simulation can be classified based on

algorithm (time-dependent/time-independent) and boundary conditions (fixed flow

rate/constant forcing with mirrored pore geometry) (Table B-1).

Time-dependent LB simulation utilizes collisions of imaginary particles and

recovers the Navier-Stokes equation for long timespans and large spatial scales (Chen et

al., 1992; Ladd, 1994). The algorithm involves three steps: (1) determination of the initial

state of the density distribution, (2) particle collision, and (3) particle propagation. The

time-independent (steady-state) computation, on the other hand, is done by formulating the

Lattice Botlzmann algorithm in matrix form and solving the resulting linear system of

equations (Verberg and Ladd, 1999).

On the side walls, no-flow boundary conditions are assumed. The fixed flow rate

scheme simulates the pressure gradient along the flow path (Fredrich et al., 1999; Zhang

and Zhang, 2000) and does not require mirroring of the pore space. Instead, it adds a buffer

zone 15 pixels deep to the inlet and outlet faces (Keehm, 2003). In contrast, the constant

forcing with mirrored pore geometry simulates the pressure gradient along the flow path

using a constant forcing scheme (Gunstensen et al., 1991; Ladd, 1994; Keehm and Bosl,

144

2003) (Figure B-1 and Figure B-2), which does require mirroring of the pore space

geometry. More details regarding this version of Lattice Boltzman simulation can be found

in “Comparison of different Lattice-Boltzmann flow simulation implementations:

efficiency, convergence and stability” (SRB Annual Meeting 2003).

Figure B-1: Steps of the Lattice-Boltzmann algorithm: (a) initial state of the density distribution, (b)
collision step, (c) propagation step (Keehm and Bosl, 2003).

Figure B-2: (Left) constant forcing scheme with mirrored pore space geometry; (right) fixed flow rate
scheme with a buffer zone of 15 pixels (Keehm and Bosl, 2003).

145

Table B-1: The four most current versions of the Lattice Boltzmann algorithm from Keehm (2003). The
versions can be classified based on algorithm (time dependent/time-independent) and boundary conditions

(fixed flow rate /constant forcing with mirrored pore geometry). Numbers in parentheses show the most
current version available in SRB Tools.

Time-dependent Time-independent

Constant forcing with
mirrored pore geometry

MR (3.1.0) IMR (1.0.0)

Fixed Flow Rate FP (2.0.0) IFP (1.1.0)

Table B-2: Summary of characteristics of four implementations for the LB flow simulation (adapted from
Keehm and Bosl, 2003).

Low High
Complexity
IMR/MR IFP/FP
Grid Resolution
IFP/FP IMR/MR
Memory
FP IFP MR IMR
Convergence
FP MR IFP IMR
Stability
IFP FP IMR MR

For complex porous media, Keehm and Bosl (2003) recommend using the LB FP

and IFP versions for accuracy, but for simple geometry, they recommend using the LB MR

and IMR versions (Table B-2). We tested our four LB versions and the COMSOL multi-

physics finite element program by generating 3-D geometries of straight circular cross-

sectional pipes with three different pipe lengths (100, 200, and 400 voxels) and computing

absolute permeability from these 3-D images.

Figure B-3 shows that the fixed flow rate LB simulations (FP and IFP versions)

predict absolute permeability closer to the theoretical value (blue line) as the pipes get

146

longer. On the other hand, for constant forcing with mirrored pore geometry LB

simulations (MR and IMR versions), the calculated absolute permeabilities do not depend

on the pipe length. The LB IMR version performs best since the calculated permeabilities

are the closest to the theoretical permeabilities, which assumes that the pipe is infinitely

long. Therefore, the LB IMR version is well suited for simplified pore space geometry with

high grid resolution. Figure B-4 shows that different SRB versions of the Lattice

Boltzmann program perform well in a realistic complex geometry (Keehm & Bosl, 2003).

The blue lines show the laboratory measurements of absolute permeability.

Figure B-3: Comparison of permeability predictions in a circular pipe from five different versions of the
Lattice Boltzmann program and the COMSOL finite element program. The blue line in each graph

represents the theoretical permeability value. In each graph, the length of the pipe is 100, 200, or 400
pixels.

147

Figure B-4: Calculated Permeability (mD) of Finney Pack (left) and Fontainebleau Sandstone (right) for
four different versions of the Lattice Boltzmann algorithm (MS = MR, F = FP, IM = IMR, IF = IFP) from

(Keehm and Bosl, 2003).

B.1.1 Usage Notes

We use the LB FP version in the MATLAB wrapper since it is suitable for complex

geometry. The LB simulation is performed by applying the pressure gradient along the x-

direction.

The image3D input can be either a 3-D matrix of a single 3-D porous image or a

cell array containing 3-D matrices of multiple 3-D porous images. The program will run

multiple simulations if a cell array containing 3-D matrices is the input. The value dx is the

voxel edge length (the length of 1 pixel in mm). The outputs are (1) a double for a single

porous image or a vector for multiple porous images and (2) local flux in a 4-D matrix or

a cell array containing 4-D matrices. The local flux can be used further for finding

streamlines. The order of indices in an image is (nx, ny, nz).

148

B.2 ELECTRICAL RESISTIVITY

We used a finite-element solver to compute elastic moduli and electrical resistivity

(Garboczi, 1998; Arns et al., 2002). The solver utilizes discrete forms of partial differential

equations on a regular Cartesian grid. The program (EC3D/ELECFEM3D) is available

from the National Institute of Standards and Technology (NIST). The output is the current

in amperes in the x, y, and z directions, which can be used to calculate the resistivity using

Ohm’s law. A potential difference of 1 volt across the sample is implemented, and the

boundary condition for the electric field is periodic. Material conductivity is shown in

Table B-3.

149

B.3 ELASTIC MODULI

The effective elastic moduli were also calculated using the NIST Finite element

programs (EMC3D/ELAS3D) (Garboczi, 1998) using a periodic boundary condition. The

program yields the effective linear elastic properties of the rocks including bulk modulus,

shear modulus, and density.

Since the purpose of this study is to investigate the influence of scale and resolution

on model results, material properties (conductivity, bulk modulus, shear modulus, and

density) are set to be constant for all digital samples, to focus only on changes to the scale

and the geometry of pore space, which is assumed to contain brine. The chosen properties

are listed in Table B-3.

Table B-3: A list of material properties used in the electrical resistivity and elastic moduli finite element
solver.

 Conductivity
(𝛺−1𝑚−1)

Bulk Modulus
(K) (GPa)

Shear
Modulus (G)

(GPa)

Density
(g/cm3)

Solid (1) – Quartz 0.5*10-14 36.6 44.0 2.65
Pore space (0) –

Brine
1 3.014 0 1.055

150

B.4 EFFECT OF DISCRETIZATION IN NUMERICAL SIMULATIONS

Since effective elastic and transport properties also depend on the discretization of

digital samples, we tested the influence of scale (the size of sample) and resolution (voxel

edge length) on Minkowski Functionals (porosity, specific surface area, integral of mean

curvature, and Euler number), absolute permeability, electrical resistivity, and effective

elastic properties. The appropriate scale and resolution were described using

autocorrelation (Keehm, 2003), yet the autocorrelation requires us to obtain the digital

sample first. This method then cannot be used as the feasibility test of appropriate digital

sample scale and resolution. In the future we suggest to evaluate appropriate scale and

resolution based on practical parameters such as grain size.

Figure B-5: 2-D representation of the Finney Pack, Fontainebleau sandstone, Berea sandstone, and
carbonate. The red line shows the method for extracting images to investigate the scale effect.

151

B.4.1 Scale

For investigating the effect of changes in scale, binary images of increasing size

were selected, ranging from 103 voxels to the maximum size of each sample (1403 or 2003

voxels) in 10 voxel increments. (Figure B-5).

The 2-D autocorrelation function can be obtained either from the MATLAB 2-D

cross correlation function (xcorr2.m) or by using Fourier transforms. For Fourier

transforms, the autocorrelation of distance h is as follows:

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟(ℎ) = 𝐹−1{𝐹(𝐴).∗ 𝐹∗(𝐴)}.

In this expression, A is a 2-D binary image, F denotes the Fourier transform, F*

denotes the conjugate of the Fourier transform, and F-1 denotes the inverse Fourier

transform (Keehm, 2003). Both methods yield a similar 2-D autocorrelation functions.

After obtaining a 2-D autocorrelation, 1-D horizontal and vertical autocorrelations can be

extracted from the center of the 2-D autocorrelation image to the boundary. Autocorrelation

152

length can be obtained by finding the distance from the origin at which the autocorrelation

function stops decreasing (Keehm, 2003).

Figure B-6: 1-D horizontal and vertical autocorrelation from xcorr2 function in MATLAB (top) compared
with Fourier transforms (bottom). Both methods yield similar autocorrelation length.

Approximate autocorrelation length

Figure B-7: The 1-D horizontal autocorrelation function of the Finney pack. The autocorrelation length increases as the
size of the sample increases. For example, for sample size 103 voxels, the autocorrelation length is approximately 10

voxels, and for sample size 1303 voxels, the autocorrelation length is approximately 20 voxels.

153

The representative elementary volume (REV) can be defined as the minimum

sample size that would yield the value representative of the entire rock (Bear, 1988). It

should be noted that autocorrelation length often increases as the size of sample increases,

even in the extremely homogeneous case of the Finney pack, which is a random pack of

identical spheres (Figure B-7). This raises the question of whether or not autocorrelation

length is a good measure of appropriate sample size. There are two arguments here: (1) one

needs to obtain the digital sample of appropriate size in order to estimate the appropriate

sample size, which defeats the purpose of saving time and resources, and (2) the larger the

sample size, the larger the REV derived from the sample, meaning that there is not one

solution for ideal sample size using this method. Using digital rock samples, the REV from

the physical properties can also be estimated by extracting the new sample images ranging

in size from 103 voxels to the maximum size (1403 or 2003 voxels) in 10 voxel increments

and running the simulation to obtain the physical properties of each image.

154

Figure B-8 shows the convergence of physical properties as the size of the sample

approaches the REV. The black dots in the graph show the REV value determined using

the following convergence criteria: if the physical property changes by less than 7% for 5

consecutive size steps after a given size, then that size is regarded as the REV value. The

REV values are summarized in Table B-4.

Mean Breadth and the Euler Number do not have convergence since these

properties grow as the size of the sample increases. Observe that elastic properties

generally have larger REV compared to other properties such as absolute permeability and

electrical resistivity.

Figure B-8: Physical properties vs. sample size for all benchmark digital rock samples. The properties are (1) porosity, (2)
specific surface area, (3) mean breadth, (4) Euler number, (5) permeability on a log 10 scale, (6) resistivity, (7) bulk

modulus, (8) shear modulus, and (9) density.

155

Table B-4: REV in length of the cube (in voxel units) for each physical property of the benchmark digital
rocks.

Po
ro

si
ty

Sp
ec

ifi
c

Su
rf

ac
e

A
re

a

M
ea

n
B

re
ad

th

Eu
le

r N
um

be
r

A
bs

ol
ut

e
Pe

rm
ea

bi
lit

y

R
es

is
tiv

ity

B
ul

k
M

od
ul

us

(K
)

Sh
ea

r M
od

ul
us

(G

)

D
en

si
ty

 (R
ho

)

Finney 50 40 0 0 20 70 50 80 30
Fontainebleau 60 60 0 0 60 0 60 60 10

Berea 60 0 0 0 60 80 60 0 50
Carbonate 80 40 0 0 70 0 80 0 20

B.4.2 Resolution

We investigated the resolution effect by increasing voxel edge length (dx), or the

length per pixel, which has the effect of decreasing resolution. For each image, dx is

artificially increased by averaging the image in a specified window. For example, an image

with ½ the resolution of the original image can be created by averaging 23 voxels into 1

larger voxel. If the averaged value is greater than 0.5, the new voxel is assigned a value of

1 to represent the solid. Table B-5 shows the dx associated with new images at 1/2x, 1/4x,

and 1/8x resolutions. Figure B-9 shows visualization of the new images. At 1/8x resolution,

the images hardly resemble the original pore space geometry.

Table B-5: dx for each resolution on the benchmark digital rock.

Resolution Finney dx(mm) Fontainebleau
dx(mm)

Berea dx(mm) Carbonate
dx(mm)

1x 0.07 0.0075 0.00074 0.00202
1/2 x 0.14 0.015 0.00148 0.00404
1/4 x 0.28 0.03 0.00296 0.00808
1/8 x 0.56 0.06 0.00592 0.01616

156

After producing lower resolution digital samples, we can then use the numerical

simulation techniques discussed above to determine the effect of voxel size on the results

(Figure B-10). As the resolution decreases, the porosity tends to become lower and the

specific surface area (SSA) increases. The mean breadth and the Euler number of a sample

are smaller because lower resolution images show fewer distinct grains. The numerical

simulations of absolute permeability perform relatively well in low resolution images, but

they begin to perform poorly at 1/8x resolution. The effect of resolution on electrical

resistivity is similar. This is because these properties largely depend on the pore-filling

fluid conductivity and the connectivity of pore space as in general the solid is less

conductive than the pore fluid. In conclusion, the reductions in resolution begin to have an

effect on transport properties only when major connected flow paths begin to disappear.

Effective elastic moduli are governed by mineral components and mechanics at the grain

contacts. As resolution decreases, the geometry of pore space is oversimplified and grain

contacts becomes larger, leading to a stiffer simulated rock frame. As a result, both the

bulk and shear moduli are highly sensitive to the resolution of digital sample. For numerical

simulation involving effective elastic moduli, the resolution of digital images should be as

high as possible.

157

Figure B-9: Images of benchmark digital rock sample in 1x, 1/2x, 1/4x, 1/8x resolutions.

158

Figure B-10: Physical properties vs. resolution of each sample. The properties are (1) porosity, (2) specific surface area, (3)
mean breadth, (4) Euler number, (5) permeability in log 10 scale, (6) resistivity, (7) bulk modulus, (8) shear modulus, and (9)

density.

159

Appendix C:

Codes

160

function [image3D] = createCylinder(nx,ny,nz,r,ct)
%createCylinder creates a 3-D binary image of a round pipe
%
% Input Arguments
% - nx : an integer, number of pixel in x-direction
% - ny : an integer, number of pixel in y-direction
% - nz : an integer, number of pixel in z-direction
% - r0 : an integer, radius of a cylinder pipe
% - ct : an integer, center of a cylinder pipe
%
% Output Arguments
% - image3D : a (ny*nx*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
%
% Note:
% In order to run this code, qCBinary.m file is needed.

% Revision 1: August 2014 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program
% Create the image
[x y z] = meshgrid(1:ny, 1:nx, 1:nz);
tempImage = sqrt((x-ct).^2 + (z-ct).^2) < r;
tempImage = qCBinary(tempImage);

% Output
image3D = abs(1-tempImage);
end

function [image3D] = createEllipse(nx,ny,nz,a,b,ct)
%createEllipse creates a 3-D binary image of an elliptic pipe
%
% Input Arguments
% - nx : an integer, number of pixel in x-direction
% - ny : an integer, number of pixel in y-direction
% - nz : an integer, number of pixel in z-direction
% - a : an integer, semi-major axes
% - b : an integer, semi-minor axes
% - ct : an integer, center of a cylinder pipe
%
% Output Arguments
% - image3D : a (ny*nx*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
%
% Note:
% In order to run this code, qCBinary.m file is needed.

% Revision 1: August 2014 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

161

%% Program
% Create the image
[x y z] = meshgrid(1:nx, 1:ny, 1:nz);
temp = ((x-ct)./a).^2 + ((z-ct)./b).^2 < 1;
temp = QCbinary(temp);

% Output
image3D = abs(1-temp);

end

function [image3D] = createEqTriangle(nx,ny,nz,t,ct)
%createEqTriangle creates a 3-D binary image of an equilateral

triangle pipe
%
% Input Arguments
% - nx : an integer, number of pixel in x-direction
% - ny : an integer, number of pixel in y-direction
% - nz : an integer, number of pixel in z-direction
% - t : an integer, length of equilateral triangle
% - ct : an integer, center of a cylinder pipe
%
% Output Arguments
% - image3D : a (ny*nx*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
%
% Note:
% In order to run this code, qCBinary.m file is needed.

% Revision 1: August 2014 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program

% Create the image
[x y z] = meshgrid(1:nx, 1:ny, 1:nz);
c = t/2;
d = sqrt(3)*t/2;
temp1 = and(and(abs(x-ct+t/4)<c/2,abs(z-ct)<d/2),z < d/c*(x-ct+t/4) +

ct);
temp2 = and(and(abs(x-ct-t/4+1)<c/2,abs(z-ct)<d/2),z < -d/c*(x-ct-t/4)

+ ct);
temp = temp1+temp2;
temp = qCBinary(temp);

% Output
image3D = abs(1-temp);
end

162

function [image3D] = createCrescent(nx,ny,nz,r0,phi,ct)
%createCrescent creates a 3-D binary image of a crescent pipe
%
% Input Arguments
% - nx : an integer, number of pixel in x-direction
% - ny : an integer, number of pixel in y-direction
% - nz : an integer, number of pixel in z-direction
% - r0 : an integer, radius of a cylinder pipe that is required

..
% to change the size of crescent pipe
% - ct : an integer, center of the pipe
% - phi : an integer, angle governing how curve the crescent pipe

is
%
%
% Output Arguments
% - image3D : a (ny*nx*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
%
% Note
% (1) In order to run this code, qCBinary.m file is needed.
% (2) the largest r within nx,nz = 100 is 24
% Example
% [Crescent] = createCrescent(100,200,100,24,pi/4,50);

% Revision 1: August 2014 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program
% Initialziation
[x y z] = meshgrid(1:nx, 1:ny, 1:nz);
Area = pi*r0^2;
b = sqrt(Area./((2-(2.*cos(phi)).^2).*phi+sin(2.*phi))); %verified to

give the same porosity
eps = cos(phi).*2;
a = b.*eps;

% Create the image
temp1 = sqrt((x-ct+b).^2 + (z-ct).^2) < a;
temp2 = sqrt((x-ct).^2 + (z-ct).^2) < b;
temp = temp2 - temp1;
temp = qCBinary(temp);

% Output
image3D = abs(1-temp);
end

function [image3D] = createRectangle(nx,ny,nz,a,b,ct)
%createRectangle creates a 3-D binary image of a rectangle pipe
%

163

% Input Arguments
% - nx : an integer, number of pixel in x-direction
% - ny : an integer, number of pixel in y-direction
% - nz : an integer, number of pixel in z-direction
% - a : an integer, semi-major axes
% - b : an integer, semi-minor axes
% - ct : an integer, center of a cylinder pipe
%
% Output Arguments
% - image3D : a (ny*nx*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
%
% Note:
% In order to run this code, qCBinary.m file is needed.

% Revision 1: August 2014 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program

% Create the image
[x y z] = meshgrid(1:nx, 1:ny, 1:nz);
temp = and(abs(x-ct)<a/2,abs(z-ct)<b/2);
temp = qCBinary(temp);

% Output
image3D = abs(1-temp);

end

function [image3D] = createHypotrochoid(nx,ny,nz,r,k,ct)
%createHypotrochoid create a 3-D binary image of a hypotrochoidal pipe
%
% Input Arguments
% - nx : an integer, number of pixel in x-direction
% - ny : an integer, number of pixel in y-direction
% - nz : an integer, number of pixel in z-direction
% - r : an integer, radius of the hypotrochoid
% - k : an integer, number of sides
% - ct : an integer, center of a cylinder pipe
%
% Output Arguments
% - image3D : a (ny*nx*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
%
% Note:
% (1) In order to run this code, qCBinary.m file is needed.
% (2) For more information,

http://mathworld.wolfram.com/Hypocycloid.html

% Revision 1: August 2014 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

164

%% Program
% Create the image
[x y z] = meshgrid(1:nx, 1:ny, 1:nz);
theta = linspace(0,2*pi,200);

a = sqrt(1/2).*r; % valid for k =3;
for t=1:ny
 xv(t) = (k-1)*a*cos(theta(t)) + a*cos((k-1)*theta(t)) + ct;
 zv(t) = (k-1)*a*sin(theta(t)) - a*sin((k-1)*theta(t)) + ct;
end

for j = 1:ny
 temp(:,j,:) = inpolygon(x(:,j,:),z(:,j,:),xv,zv);
end
temp = qCBinary(temp);

% Output
image3D = abs(1-temp);

end

function [image3D] = createSinusoidalPipe(nx,ny,nz,r0,ct,delta)
%createSinusoidalPipe creates a 3-D binary image of a sinusoidal pipe
%
% Input Arguments
% - nx : an integer, number of pixel in x-direction
% - ny : an integer, number of pixel in y-direction
% - nz : an integer, number of pixel in z-direction
% - r0 : an integer, initial radius
% - ct : an integer, center of the pipe
% - delta : an integer, fractional change in radius
%
% Output Arguments
% - image3D : a (nx*ny*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)

% Revision 1: April 2016 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program

% Initialization
lambda = 2*r0;

% Grid meshing
[x, z] = meshgrid(1:nx, 1:nz);

t = linspace(0,4*pi*lambda,200);

165

% Equation
rr = r0*(1 + delta*sin(t./lambda));

for iSlice = 1:ny
 temp(iSlice,:,:) = sqrt((x - ct).^2 + (z - ct).^2) < rr(iSlice);
end

temp = qCBinary(temp);
image3D = abs(1-temp);

end

function [image3DQC] = qCBinary(image3D)
%qCBinary QC the image after any mathematical operation that it is

binary.
%
% Input Arguments
% - image3D : a (nx*ny*nz) uint8 matrix, 3-D binary image of
% pore space to be checked (0 = pore, 1 = grain)
%
% Output Arguments
% - image3DQC : a (nx*ny*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)

% Revision 2: December 2015 Nattavadee Srisutthiyakorn (more

efficient)
% Revision 1: September 2014 Nattavadee Srisutthiyakorn (QCbinary.m)
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program
% Find the size
[nx, ny, nz] = size(image3D);

% Replace any value greater than 1 with 1
tempImage = image3D(:);
tempImage(tempImage > 1) = 1;

% Reshape back into the same shape
image3DQC = reshape(tempImage,[nx, ny, nz]);

function [image3D] = createSCP(cubeLength, nUnitCell,

grainDilationRatio)
%createSCP creates a 3D image of simple cubic pack
%
% Input Arguments
% - cubeLength : an integer, length of a 3D image cube in pixel
% (cubeLength = nx = ny = nz)
% - nUnitCell : an integer, number of unit cell of the size,

166

% for example, nUnitcell = 2 resulting in 2^3 unit

cells
% in 3-D images
% (Default: 1 for unit cell of SCP)
% - grainDilationRatio
% : an integer, the size of sphere in relation to
% the original one. If it's greater than 1 then the
% spheres overlap
% (Default: 1 = using the original radius of

spheres)
%
% Output Arguments
% - image3D : a (nx*ny*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
%
% Note
% - need to use qCBinary.m

% Revision 1: December 2015 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)
%% QC Inputs
if nargin < 2
 nUnitCell = 1;
 grainDilationRatio = 1;
end

%% Initialization
unitCellLength = ceil(cubeLength./nUnitCell);

sphereRadius = unitCellLength/2;
endpt = unitCellLength;

CT = [0 0 0;
 endpt 0 0;
 0 endpt 0;
 0 0 endpt;
 endpt endpt 0;
 endpt 0 endpt;
 0 endpt endpt;
 endpt endpt endpt];

% Create a mesh
[x, y, z] = meshgrid(1:unitCellLength, 1:unitCellLength,

1:unitCellLength);

image3DUnit = zeros(unitCellLength, unitCellLength, unitCellLength);

% Filling in the identical spheres
for iSphere = 1:8
 tempImage = sqrt((x - CT(iSphere,1)).^2 + (y - CT(iSphere,2)).^2

...
 + (z - CT(iSphere,3)).^2) <

sphereRadius.*grainDilationRatio;
 image3DUnit = image3DUnit + tempImage;

167

end

% QC the overlap
image3DUnit = qCBinary(image3DUnit);

% Expand the unit cell
if nUnitCell > 1
 image3D = expandUnitCell(image3DUnit, nUnitCell);
 image3D = image3D(1:cubeLength,1:cubeLength,1:cubeLength);
else
 image3D = image3DUnit;
end

end

function [image3D] = createFCP(cubeLength, nUnitCell,

grainDilationRatio)
%createFCP creates a 3D image face-centered cubic pack
%
% Input Arguments
% - cubeLength : an integer, length of a 3D image cube in pixel
% (cubeLength = nx = ny = nz)
% - nUnitCell : an integer, number of unit cell of the size,
% for example, nUnitcell = 2 resulting in 2^3 unit

cells
% in 3-D images
% (Default: 1 for unit cell of SCP)
% - grainDilationRatio
% : an integer, the size of sphere in relation to
% the original one. If it's greater than 1 then the
% spheres overlap
% (Default: 1 = using the original radius of

spheres)
%
% Output Arguments
% - image3D : a (nx*ny*nz) uint8 matrix, 3-D binary image of a
% face-centered cubic pack (0 = pore, 1 = grain)
%
% Note
% - need to use qCBinary.m

% Revision 1: March 2016 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)
%% QC Inputs
if nargin < 2
 nUnitCell = 1;
 grainDilationRatio = 1;
end
if nargin < 3
 grainDilationRatio = 1;
end

168

%% Initialization
unitCellLength = ceil(cubeLength./nUnitCell);

sphereRadius = ceil(unitCellLength./(2*sqrt(2)));
midpt = floor(unitCellLength/2);
endpt = unitCellLength;

edgeCT = [0 0 0;
 endpt 0 0;
 0 endpt 0;
 0 0 endpt;
 endpt endpt 0;
 endpt 0 endpt;
 0 endpt endpt;
 endpt endpt endpt];

midCT = [0 midpt midpt;
 midpt 0 midpt;
 midpt midpt 0;
 endpt midpt midpt;
 midpt endpt midpt;
 midpt midpt endpt;];

% Create a mesh
[x, y, z] = meshgrid(1:unitCellLength, 1:unitCellLength,

1:unitCellLength);

image3DUnit = zeros(unitCellLength, unitCellLength, unitCellLength);

% Filling in spheres at the edge
for iSphere = 1:8
 tempImage = sqrt((x - edgeCT(iSphere,1)).^2 + (y -

edgeCT(iSphere,2)).^2 ...
 + (z - edgeCT(iSphere,3)).^2) <

sphereRadius.*grainDilationRatio;
 image3DUnit = image3DUnit + tempImage;
end

% Filling in spheres at the middle
for iSphere = 1:6
 tempImage = sqrt((x - midCT(iSphere,1)).^2 + (y -

midCT(iSphere,2)).^2 ...
 + (z - midCT(iSphere,3)).^2) <

sphereRadius.*grainDilationRatio;
 image3DUnit = image3DUnit + tempImage;
end

% QC the overlap
image3DUnit = qCBinary(image3DUnit);

% Expand the unit cell
if nUnitCell > 1
 image3D = expandUnitCell(image3DUnit, nUnitCell);
 image3D = image3D(1:cubeLength,1:cubeLength,1:cubeLength);

169

else
 image3D = image3DUnit;
end

end

function [image3D] = createSphericalPack(locationX, locationY,

locationZ,...
 radius, cubeSize)
%createSphericalPack creates a 3-D binary image of a sphere pack
%
% Input Arguments
% - locX : a (nSph*1) double vector, x coordinate location
% - locY : a (nSph*1) double vector, y coordinate location
% - locZ : a (nSph*1) double vector, z coordinate location
% - radius : a (nSph*1) double vector, radius of a sphere
% - cubeSize : an integer, size of the pack
% (Example: cubeSize = 200 -> 200^3 px cube;
%
% Output Arguments
% - image3D : a (nx*ny*nz) int8 matrix, 3-D binary image of a
% rock (0 = pore, 1 = grain)
%
% Revision 1: January 2016 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program
% Initialization
bufferZone = 10;
nz = cubeSize + bufferZone*2;

% Find the dimension of this pack
minVec = [min(locationX) min(locationY) min(locationZ)];
maxVec = [max(locationX) max(locationY) max(locationZ)];

% Scaling the cube size
locationX = locationX.*nz./maxVec(1);
locationY = locationY.*nz./maxVec(2);
locationZ = locationZ.*nz./maxVec(3);
radius = radius.*nz./maxVec(1);

% Create the geometry
[x, y, z] = meshgrid(1:nz, 1:nz, 1:nz);
tempImage = zeros(nz,nz,nz);

for iSph = 1:size(radius,1)
 tempSph = sqrt((x - locationX(iSph)).^2 ...
 + (y - locationY(iSph)).^2 ...
 + (z - locationZ(iSph)).^2) < radius(iSph);
 tempImage = tempImage + tempSph;
end

170

tempImage = qCBinary(tempImage);

% Output
image3D = int8(tempImage(11:cubeSize + bufferZone, ...
 11:cubeSize + bufferZone, ...
 11:cubeSize + bufferZone));

end

function [image3DConnected] = createConnectedPorespace(image3D)
%createConnectedPorespace creates a 3-D binary image of connected pore

space
%
% Input Arguments
% - image3D : a (nx*ny*nz) uint8 matrix, 3-D binary image

of
% pore space (0 = pore, 1 = grain)
%
% Output Arguments
% - image3DConnected : a (nx*ny*nz) uint8 matrix, 3-D binary image

of
% effective (connected) pore space
% (0 = pore, 1 = grain)

% Revision 1: October 2015 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Initialization
[nx, ny, nz] = size(image3D);
image3DConnected = ones(nx, ny, nz);

% Step 1: Labeling the pores
% Inverse grains <-> pores
image3DInverse = abs(1 - image3D);
poreLabel = bwconncomp(image3DInverse);
image3DInverseLabel = labelmatrix(poreLabel);

% Step 2: Find the label number that exist on both ends
tempFirstSlide = image3DInverseLabel(:,:,1);
tempLastSlide = image3DInverseLabel(:,:,end);

labelFirstSlide = unique(tempFirstSlide);
labelLastSlide = unique(tempLastSlide);
labelEffective = intersect(labelFirstSlide, labelLastSlide);

% Step 3: Create connected pore space

171

nLabel = length(labelEffective);
for iLabel = 1:nLabel
 label = labelEffective(iLabel);
 if label >= 1 % Pore = 1+ -> 0
 image3DConnected(image3DInverseLabel == label) = 0;
 else % Grain = 0 -> 1
 image3DConnected(image3DInverseLabel == label) = 1;
 end
end

end

function [porosity, specificSurfaceArea, meanBreadth, eulerNumber]

...
 = computeMinkowski3D(image3D, option)
%computeMinkowski3D porosity, specific surface area, mean breadth,

eulerNo
%
% Input Arguments
% - image3D : Two types of inputs are possible
% (1) a single digital rock
% a (nx*ny*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
% ---- or ----
% (2) a cell array of digital rocks
% a cell array containing matrix as specified above
% - option : an integer, 0 for nConnection (6) and nDirection

(3)
% 1 for nConnection (26) and nDirection

(13)
%
% Output Arguments
% - porosity : a vector (nImage*1), porosity
% - specificSurfaceArea : a vector (nImage*1), surface area/length^3
% - meanBreadth : a vector (nImage*1), mean breadth
% - eulerNumber : a vector (nImage*1), Euler's number
%
% Example
% [BereaFRS200_Results.Original.porosity, ...
% BereaFRS200_Results.Original.specificSurfaceArea, ...
% BereaFRS200_Results.Original.meanBreadth, ...
% BereaFRS200_Results.Original.eulerNumber] ...
% = computeMinkowski3D(BereaFRS200, 1)
% Note
% In order to run this code, imMinkowski files are needed.
% "Computation of Minkowski measures on 2D and 3D binary

images".
% David Legland, Kien Kieu and Marie-Francoise Devaux (2007)
% Image Analysis and Stereology, Vol 26(2), June 2007
% web: http://www.ias-iss.org/ojs/IAS/article/view/811

% Revision 3: April 2016 Nattavadee Srisutthiyakorn

172

% Revision 2: August 2015 Nattavadee Srisutthiyakorn
% Revision 1: June 2014 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% QC Inputs

if nargin < 2
 option = 1;
end

%% Check whether the input is a matrix or a cell array of matrices

if iscell(image3D)

 % Initialization
 nImage = length(image3D);
 porosity = zeros(nImage, 1);
 specificSurfaceArea = zeros(nImage, 1);
 meanBreadth = zeros(nImage, 1);
 eulerNumber = zeros(nImage, 1);

 for iImage = 1:nImage

 disp(['Current image:

(',num2str(iImage),'/',num2str(nImage),')'])

 try
 [porosity(iImage), specificSurfaceArea(iImage),...
 meanBreadth(iImage), eulerNumber(iImage)] ...
 = computeMK3D(image3D{iImage}, option);
 end

 % Save every 50 iteration
 if nImage > 50 && floor(iImage/50) == iImage/50
 save('tempMinkowski','porosity','specificSurfaceArea',...
 'meanBreadth','eulerNumber');
 end

 end

else
 [porosity, specificSurfaceArea, meanBreadth, eulerNumber] ...
 = computeMK3D(image3D, option);
end

end

173

function [porosity, specificSurfaceArea, meanBreadth, eulerNumber]

...
 = computeMK3D(image3D, option)
%% QC Inputs
[~, ~, nZ] = size(image3D);

% Check inputs
if nZ < 2
 help(mfilename);
 error('Error: image3d input is required to be 3-D')
end

%% Create reverse image(s)
image3DInverse = abs(1-image3D);

%% Run Minkowski Functionals
switch option
 case 0
 nConnectivity = 6;
 nDirection = 3;
 case 1
 nConnectivity = 26;
 nDirection = 13;
end

% Perform a check whether it's all solid or all pore space
checkOriginal = any(any(any(image3D,3)));
checkReverse = any(any(any(image3DInverse,3)));

if and(checkOriginal, checkReverse)
 % Porosity
 try
 porosity = 1 - imVolumeDensity(image3D);
 catch
 porosity = NaN;
 end

 % Specific Surface Area (Surface Estimate/Length^3)
 try
 specificSurfaceArea = imSurfaceDensity(image3D, nDirection);
 catch
 specificSurfaceArea = NaN;
 end

 % Mean Breadth
 try
 meanBreadth = imMeanBreadth(image3D, nDirection);
 catch
 meanBreadth = NaN;
 end
 % Euler Number
 try

174

 eulerNumber = imEuler3d(image3D, nConnectivity);
 catch
 eulerNumber = NaN;
 end
 % Warning if number of element > 1
 if numel(porosity) > 1
 warning(['WARNING: imMinkowski yileds the number'...
 ' of element greater than 1'])
 end

end

end

function [Proximity2D, Proximity3D] ...
 = compute2D3DProximity(image3D)
%computeStreamlines2D3DProximity extracts proximity to the nearest

solid
%
% Input Arguments
% - image3D : a (nx*ny*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
%
% Output Arguments
% - Proximity2D : a (nx*ny*nz) uint8 matrix, 3-D double image of
% 2-D proximity (0 = pore, 1 = grain)
% - Proximity3D : a (nx*ny*nz) uint8 matrix, 3-D double image of
% 3-D proximity (0 = pore, 1 = grain)

% Revision 1: April 2016 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program
% Rotate matrix into the the flow along x direction
[nx, ny, nz] = size(image3D);
for iSlice = 1:nx
 image3DRot(:,:,iSlice) = reshape(image3D(iSlice,1:ny,1:nz),ny,nz);
end

% Find the distance matrix in 2D, 3D
Proximity3D = bwdist(image3DRot,'euclidean');
Proximity2D = zeros(ny, nz, nx);

for iSlice = 1:nx
 image2D = image3DRot(:,:,iSlice);
 Proximity2D(:,:,iSlice) = bwdist(image2D,'euclidean');
end

175

function [StreamlinesXYZ, StreamlinesAbsFlux, totalDistance,

totalTime, ...
 totalFlux, tortuosity, tortuosityMin, tortuosityMean,

tortuosityMax, ...
 tortuosityFluxWeighted, tortuosityStd] ...
 = computeStreamlines(localFlux)
%computeStreamlines compute streamlines from a local flux matrix
%
% Input Arguments
% - localFlux : a (nx*ny*nz*3) matrix, local flux in x, y, z

direction.
% This is an output from latticeBoltzmannFP3D.m
% ---- or ----
% a cell array containing matrix as specified above
%
% Output Arguments
% for a single localFlux matrix,
% - StreamlinesXYZ : a cell array (nStreamline*1), x, y, z

locations of
% each streamline
% - StreamlinesAbsFlux : a cell array (nStreamline*1),
% flux along streamline
% - totalDistance : a vector (nStreamline,1), distance
% - totalTime : a vector (nStreamline,1), distance/velocity
% - totalFlux : a vector (nStreamline,1), total flux of each

flow path
% - tortuosity : a vector (nStreamline,1), distance/nz of each

flow path
% - tortuosityMin : a double, minimum tortuosity of all

streamlines
% - tortuosityMean : a double, mean tortuosity of all streamlines
% - tortuosityMax : a double, maximum tortuosity of all

streamlines
% - tortuosityFluxWeighted : a double, flux weighted mean tortuosity

of
% all streamlines
% - tortuosityStd : a double, standard deviation tortuosity of all
% streamlines

% Revision 5: April 2016 Nattavadee Srisutthiyakorn
% Revision 4: February 2016 Nattavadee Srisutthiyakorn
% Revision 3: December 2015 Nattavadee Srisutthiyakorn
% Revision 2: August 2015 Nattavadee Srisutthiyakorn
% Revision 1: February 2015 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program
% Internal Option
cleanPath = 1;

% Check whether the input is a matrix or a cell array of matrices

if iscell(localFlux)

176

 % Initialize
 nFlux = size(localFlux, 2);

 for iFlux = 1:nFlux

 disp(['Current flux:

(',num2str(iFlux),'/',num2str(nFlux),')'])

 try
 [StreamlinesXYZ{iFlux}, StreamlinesAbsFlux{iFlux}, ...
 totalDistance{iFlux}, totalTime{iFlux}, ...
 totalFlux{iFlux}, tortuosity{iFlux}, ...
 tortuosityMin(iFlux,:), tortuosityMean(iFlux,:), ...
 tortuosityMax(iFlux,:),

tortuosityFluxWeighted(iFlux,:), ...
 tortuosityStd(iFlux,:)] ...
 = computeIndividalStreamlines(localFlux{iFlux},

cleanPath);

 % Save every 50 iteration
 if nFlux > 50 && floor(iFlux/50) == iFlux/50
 save('tempFlowPath', 'StreamlinesXYZ', 'tortuosity',

...
 'totalTime', 'Stats');
 end
 end
 end

else
 [StreamlinesXYZ, StreamlinesAbsFlux, totalDistance, totalTime,

...
 totalFlux, tortuosity, tortuosityMin, tortuosityMean,

tortuosityMax, ...
 tortuosityFluxWeighted, tortuosityStd] ...
 = computeIndividalStreamlines(localFlux, cleanPath);
end

end

function [StreamlinesXYZ, StreamlinesAbsFlux, totalDistance,

totalTime, ...
 totalFlux, tortuosity, tortuosityMin, tortuosityMean,

tortuosityMax, ...
 tortuosityFluxWeighted, tortuosityStd] ...
 = computeIndividalStreamlines(localFlux, cleanPath)
%% QC Inputs
[~, ~, ~, type] = size(localFlux);
if type < 2
 help(mfilename)
 error('Incorrect Flux Type')

177

end

%% Extracting flow paths
uXRaw = localFlux(:,:,:,1);
uYRaw = localFlux(:,:,:,2);
uZRaw = localFlux(:,:,:,3);
[nx, ny, nz] = size(uXRaw);

% %% Rearrange x axis to z axis for interpolation
% % Initialization

uX = zeros(ny,nz,nx);
uY = zeros(ny,nz,nx);
uZ = zeros(ny,nz,nx);

for iSlice = 1:nx
 uX(:,:,iSlice) = reshape(uXRaw(iSlice,1:ny,1:nz),ny,nz);
 uY(:,:,iSlice) = reshape(uYRaw(iSlice,1:ny,1:nz),ny,nz);
 uZ(:,:,iSlice) = reshape(uZRaw(iSlice,1:ny,1:nz),ny,nz);
end

% % QC Plots
% figure
% subplot(1,3,1)
% imagesc(uX(:,:,1))
% subplot(1,3,2)
% imagesc(uY(:,:,1))
% subplot(1,3,3)
% imagesc(uZ(:,:,1))

%% Interpolation to find location and flux of each streamline
% as of now each streamline is stored in grid (for matrix calculation)

% Initialization
streamlinesLocY = zeros(ny,nz,nx);
streamlinesLocZ = zeros(ny,nz,nx);
streamlinesuX = zeros(ny,nz,nx);
streamlinesuY = zeros(ny,nz,nx);
streamlinesuZ = zeros(ny,nz,nx);

% Z axis -> X axis when plotted (start from top left)
[Z,Y] = meshgrid(1:nz,1:ny);

for jSlice = 1:nx
 tempuX = uX(:,:,jSlice);
 tempuY = uY(:,:,jSlice);
 tempuZ = uZ(:,:,jSlice);

 if jSlice == 1

178

 % Find new location (Beware of NaN)
 diffX = 1;
 diffY = (tempuY./tempuX);

 streamlinesLocY(:,:,1) = diffY + Y;
 streamlinesLocZ(:,:,1) = (tempuZ) ./ (sqrt(tempuX.^2 +

tempuY.^2)) ...
 .* (sqrt(diffX.^2 + diffY.^2)) + Z;

 else
 % Find new location (Beware of NaN)
 tempvX = streamlinesuX(:,:,jSlice - 1);
 tempvY = streamlinesuY(:,:,jSlice - 1);
 tempvZ = streamlinesuZ(:,:,jSlice - 1);

 diffX = 1;
 diffY = (tempvY ./ tempvX);
 streamlinesLocY(:,:,jSlice) = diffY +

streamlinesLocY(:,:,jSlice-1);
 streamlinesLocZ(:,:,jSlice) = (tempvZ) ./ (sqrt(tempvX.^2 +

tempvY.^2)) ...
 .* (sqrt(diffX.^2+diffY.^2)) ...
 + streamlinesLocZ(:,:,jSlice - 1);
 end

 % Interpolation to create velocity vector
 streamlinesuX(:,:,jSlice) = interp2(Z, Y, tempuX,

streamlinesLocZ(:,:,jSlice), ...
 streamlinesLocY(:,:,jSlice), 'linear');
 streamlinesuY(:,:,jSlice) = interp2(Z, Y, tempuY,

streamlinesLocZ(:,:,jSlice), ...
 streamlinesLocY(:,:,jSlice), 'linear');
 streamlinesuZ(:,:,jSlice) = interp2(Z, Y, tempuZ,

streamlinesLocZ(:,:,jSlice), ...
 streamlinesLocY(:,:,jSlice), 'linear');
end

% % QC Plots
% figure
% subplot(1,3,1)
% imagesc(streamlinesuX(:,:,1))
% subplot(1,3,2)
% imagesc(streamlinesuY(:,:,1))
% subplot(1,3,3)
% imagesc(streamlinesuZ(:,:,1))
%
% figure
% subplot(1,2,1)
% imagesc(streamlinesLocY(:,:,1))
% subplot(1,2,2)
% imagesc(streamlinesLocZ(:,:,1))

disp('Step 1: Interpolation')

179

%% Transform data into individual path
%Initialization
tempStreamlinesXYZ = cell(ny*nz,1);
tempStreamlinesFlux = cell(ny*nz,1);
count = 1;

for j = 1:ny
 for k = 1:nz

 tempStreamlinesXYZ{count}(:,1) = [1:nx]';
 tempStreamlinesXYZ{count}(:,2) = streamlinesLocY(j,k,:);
 tempStreamlinesXYZ{count}(:,3) = streamlinesLocZ(j,k,:);

 tempStreamlinesFlux{count}(:,1) = streamlinesuX(j,k,:);
 tempStreamlinesFlux{count}(:,2) = streamlinesuY(j,k,:);
 tempStreamlinesFlux{count}(:,3) = streamlinesuZ(j,k,:);

 count = count + 1;
 end
end

disp('Step 2: Extract individual paths')

%% Clean any path that contains NaN -> outside the boundary
if cleanPath
 nPath = numel(tempStreamlinesXYZ);
 count = 1;

 for i = 1:nPath
 if any(any(isnan(tempStreamlinesXYZ{i}))) == 0

 StreamlinesXYZ{count} = tempStreamlinesXYZ{i};
 StreamlinesFlux{count} = tempStreamlinesFlux{i};
 StreamlinesAbsFlux{count} =

sqrt(tempStreamlinesFlux{i}(:,1).^2 ...
 + tempStreamlinesFlux{i}(:,2).^2 ...
 + tempStreamlinesFlux{i}(:,3).^2);
 count = count + 1;

 end
 end
else
 StreamlinesXYZ = tempStreamlinesXYZ;
 StreamlinesFlux = tempStreamlinesFlux;
end

disp('Step 3: Clean paths with NaN')

%% Find Tortuosity
% Initialization
nFlowPathClean = numel(StreamlinesXYZ);
totalDistance = zeros(1, nFlowPathClean);
totalTime = zeros(1, nFlowPathClean);
totalFlux = zeros(1, nFlowPathClean);

180

for i = 1:numel(StreamlinesXYZ)

 pathX = StreamlinesXYZ{i}(:,1);
 pathY = StreamlinesXYZ{i}(:,2);
 pathZ = StreamlinesXYZ{i}(:,3);

 velocityX = StreamlinesFlux{i}(:,1);
 velocityY = StreamlinesFlux{i}(:,2);
 velocityZ = StreamlinesFlux{i}(:,3);

 % Initialization
 flowDistance = zeros(size(pathX,1)-1, 1);
 flowAvgVelocity = zeros(size(pathX,1)-1, 1);
 flowTime = zeros(size(pathX,1)-1, 1);

 for j = 1:size(pathX,1) - 1
 if and(any(StreamlinesXYZ{i}(j,:)) ~= 0, ...
 any(StreamlinesXYZ{i}(j+1,:)) ~= 0)

 flowDistance(j) = sqrt((pathX(j+1)-pathX(j)).^2 + ...
 (pathY(j+1)-pathY(j)).^2 + ...
 (pathZ(j+1)-pathZ(j)).^2);

 flowAvgVelocity(j) ...
 = (sqrt(velocityX(j+1).^2 + velocityY(j+1).^2 + ...
 velocityZ(j+1).^2) + ...
 sqrt(velocityX(j).^2 + velocityY(j).^2 + ...
 velocityZ(j).^2))./2;

 flowTime(j) = flowDistance(j)./flowAvgVelocity(j);

 end
 end

 % For each path
 totalDistance(1,i) = sum(flowDistance);
 totalTime(1,i) = sum(flowTime);
 totalFlux(1,i) = sum(flowAvgVelocity);
end

tortuosity = (totalDistance./(nx));

% Find the major statistics
tortuosityMin = nanmin(tortuosity);
tortuosityMean = nanmean(tortuosity);
tortuosityMax = nanmax(tortuosity);
tortuosityFluxWeighted =

nansum(totalDistance.*totalFlux)./nansum(totalFlux)./nx;
tortuosityStd = nanstd(tortuosity);

disp('Step 4: Calculate tortuosity')

181

end

function [StreamlinesProximity2D, StreamlinesProximity3D, ...
 StreamlinesProximity2DNorm, StreamlinesProximity3DNorm, ...
 Proximity2DMin, Proximity2DMean, Proximity2DMax, Proximity2DStd,

...
 Proximity3DMin, Proximity3DMean, Proximity3DMax, Proximity3DStd]

...
 = computeStreamlines2D3DProximity(image3D, StreamlinesXYZ)
%computeStreamlines2D3DProximity extract proximity to the nearest

solid
%
% Input Arguments
% - image3D : a (nx*ny*nz) uint8 matrix, 3-D binary image of
% pore space (0 = pore, 1 = grain)
% ---- or ----
% a cell array containing matrix as specified

above
%
% - StreamlinesXYZ : a cell array (nStreamline*1), x, y, z

locations of
% each streamline (output from

computeStreamlines)
% ---- or ----
% a cell array containing cell array as

specified above
%
% Output Arguments
% - StreamlinesProximity2D : a cell array (nStreamline*1) containing
% vector (nx*1) of nearest distance to

solid
% in 2-D slice.
% - StreamlinesProximity3D : a cell array (nStreamline*1) containing
% vector (nx*1) of nearest distance to

solid
% in 3-D slice.
% - StreamlinesProximity2DNorm : a cell array (nStreamline*1)

containing
% vector (nx*1) of nearest distance to

solid
% in 2-D slice normalized with the

maximum.
% - StreamlinesProximity3DNorm : a cell array (nStreamline*1)

containing
% vector (nx*1) of nearest distance to

solid
% in 3-D slice normalized with the

maximum.
% - Proximity2DMin : a vector (nStreamlines*1) containing a minimum

value
% of 2D proximity along each streamline
% - Proximity2DMean : a vector (nStreamlines*1) containing a mean

value
% of 2D proximity along each streamline

182

% - Proximity2DMax : a vector (nStreamlines*1) containing a maximum

value
% of 2D proximity along each streamline
% - Proximity2DStd : a vector (nStreamlines*1) containing a std

value
% of 2D proximity along each streamline
% - Proximity3DMin : a vector (nStreamlines*1) containing a minimum

value
% of 3D proximity along each streamline
% - Proximity3DMean : a vector (nStreamlines*1) containing a mean

value
% of 3D proximity along each streamline
% - Proximity3DMax : a vector (nStreamlines*1) containing a maximum

value
% of 3D proximity along each streamline
% - Proximity3DStd : a vector (nStreamlines*1) containing a std

value
% of 3D proximity along each streamline

% Revision 1: April 2016 Nattavadee Srisutthiyakorn
% Stanford Rock Physics and Borehole Geophysics Project (SRB)

%% Program

if iscell(image3D)
 % Initialization
 nImage = length(image3D);
 for iImage = 1:nImage

 disp(['Current image:

(',num2str(iImage),'/',num2str(nImage),')'])

 try
 [StreamlinesProximity2D{iImage},

StreamlinesProximity3D{iImage}, ...
 StreamlinesProximity2DNorm{iImage},

StreamlinesProximity3DNorm{iImage},...
 Proximity2DMin{iImage}, Proximity2DMean{iImage}, ...
 Proximity2DMax{iImage}, Proximity2DStd{iImage}, ...
 Proximity3DMin{iImage}, Proximity3DMean{iImage}, ...
 Proximity3DMax{iImage}, Proximity3DStd{iImage}] ...
 = computeSTL2D3DProximity(image3D{iImage},

StreamlinesXYZ{iImage});
 end
 end

else
 [StreamlinesProximity2D, StreamlinesProximity3D, ...
 StreamlinesProximity2DNorm, StreamlinesProximity3DNorm, ...
 Proximity2DMin, Proximity2DMean, Proximity2DMax,

Proximity2DStd, ...
 Proximity3DMin, Proximity3DMean, Proximity3DMax,

Proximity3DStd] ...

183

 = computeSTL2D3DProximity(image3D, StreamlinesXYZ);
end

end

function [StreamlinesProximity2D, StreamlinesProximity3D, ...
 StreamlinesProximity2DNorm, StreamlinesProximity3DNorm, ...
 Proximity2DMin, Proximity2DMean, Proximity2DMax, Proximity2DStd,

...
 Proximity3DMin, Proximity3DMean, Proximity3DMax, Proximity3DStd]

...
 = computeSTL2D3DProximity(image3D, StreamlinesXYZ)

% Rotate matrix into the the flow along x direction
[nx, ny, nz] = size(image3D);
for iSlice = 1:nx
 image3DRot(:,:,iSlice) = reshape(image3D(iSlice,1:ny,1:nz),ny,nz);
end

% Find the distance matrix in 2D, 3D
Proximity3D = bwdist(image3DRot,'euclidean');
Proximity2D = zeros(ny, nz, nx);

for iSlice = 1:nx
 image2D = image3DRot(:,:,iSlice);
 Proximity2D(:,:,iSlice) = bwdist(image2D,'euclidean');
end

% Find the distance from the flow path
nStreamline = length(StreamlinesXYZ);

for iStreamline = 1:nStreamline
 % Initialization
 x = StreamlinesXYZ{iStreamline}(:,1);
 y = StreamlinesXYZ{iStreamline}(:,2);
 z = StreamlinesXYZ{iStreamline}(:,3);

 for iSlice = 1:nx
 StreamlinesProximity2D{iStreamline}(iSlice) ...
 =

Proximity2D(round(y(iSlice)),round(z(iSlice)),round(x(iSlice)));
 StreamlinesProximity3D{iStreamline}(iSlice) ...
 =

Proximity3D(round(y(iSlice)),round(z(iSlice)),round(x(iSlice)));
 end

 % Analyze the statistics of proximity
 Proximity2DMin(iStreamline) =

min(StreamlinesProximity2D{iStreamline});
 Proximity2DMean(iStreamline) =

mean(StreamlinesProximity2D{iStreamline});

184

 Proximity2DMax(iStreamline) =

max(StreamlinesProximity2D{iStreamline});
 Proximity2DStd(iStreamline) =

std(StreamlinesProximity2D{iStreamline});
 StreamlinesProximity2DNorm{iStreamline} ...
 =

StreamlinesProximity2D{iStreamline}./Proximity2DMax(iStreamline);

 Proximity3DMin(iStreamline) =

min(StreamlinesProximity3D{iStreamline});
 Proximity3DMean(iStreamline) =

mean(StreamlinesProximity3D{iStreamline});
 Proximity3DMax(iStreamline) =

max(StreamlinesProximity3D{iStreamline});
 Proximity3DStd(iStreamline) =

std(StreamlinesProximity3D{iStreamline});
 StreamlinesProximity3DNorm{iStreamline} ...
 =

StreamlinesProximity3D{iStreamline}./Proximity3DMax(iStreamline);

end

end

function [PSD] = modelPSD(nX, yMin, yMax)
%modelPSD create different model of pore size distribution

% model 1 straight line
PSD{1} = linspace(yMin, yMax, nX);

% model 2 sinusoidal
xRange = linspace(3*pi/2, 5*pi/2, nX);
yEqn = sin(xRange);
% transpose the equation to the specified range
PSD{2} = ((yMax-yMin)/(max(yEqn) - min(yEqn))*(yEqn - min(yEqn))) +

yMin;

% model 3 gauss error equation
xRange = linspace(-2,2,nX);
yEqn = erf(xRange);
% transpose the equation to the specified range
PSD{3} = ((yMax-yMin)/(max(yEqn) - min(yEqn))*(yEqn - min(yEqn))) +

yMin;

% model 4 sinusoidal
xRange = linspace(2*pi/2, 4*pi/2, nX);
yEqn = sin(xRange);
% transpose the equation to the specified range
PSD{4} = -(PSD{2} - PSD{1}) + PSD{1};

185

% model 5 gauss err flip curvature
PSD{5} = -(PSD{3} - PSD{1}) + PSD{1};

end

function [KCcorrection, phi_ssa] = computeKCcorrection(PSD)
%computeKCcorrection compute the correction for the Kozeny-Carman

equation
% Input Argument
% - PSD : a vector (nVoxel), the pore size distribution

along
% the flow path
% Output Argument
% - KCcorrection : a double, the value needed for correction from
% Kozeny-Carman permeability to Lattice Boltzmann
% Permeability
% Note

%% Program
% Initialization
PSD = PSD(:);
% Remove the number 0
PSD = PSD(PSD ~= 0);
nPSD = length(PSD);

% compute the approximate surface area using a frustum formula
for iPSD = 2:nPSD
 r1 = PSD(iPSD-1);
 r2 = PSD(iPSD);
 saSlice(iPSD-1) = pi.*(r2 + r1).*sqrt((r2-r1).^2 + 1^2);
 % The discretization is 1 voxel at a time
end

pv = pi.*sum(PSD.^2); % Pore volume
sa = sum(saSlice); % Surface Area

phi_ssa = pv/sa; % Pore volume/Surface area ratio

% calculate the hydraulic radius
rH = 2.*pv./sa;

% calculate the equivalent radius of a circular pipe that has the same
% porosity
rC = sqrt(sum(PSD.^2)/nPSD);

% calculate the apparent radius (same definition as the Kozeny-Carman)
rA = sqrt(rH.*rC);

% calculate permeability ratio
% Definition:
% permTheo = pi*L/(8*A*l*sum(1./(rr*dl).^4))*m2tomD;

186

% permKC = pi.*(rA.*dl).^4./(8.*A).*m2tomD;

permTheo = nPSD./(sum(1./PSD.^4));
permKC = (rA).^4;

% the correction
KCcorrection = permTheo./permKC;

end

function [grainCentroid, grainRadius, grainAzimuth, grainInclination,

...
 grainVolume, nContact, grainSurfaceArea] ...
 = computeGSD(image, minThres, bc, qcPlot)
%computeGSD compute grain size distribution
% Input Arguments
% - image : an (nx*ny) or (nx*ny*nz) uint8 matrix, 2-D or 3-D

binary
% image of porespace (1 = grain, 0 = pore)
% - minThres : an integer, a threshold to suppress all minima in

the
% intensity image whose depth is less than this

number
% - bc : an integer, boundary condition
% 0: impose no boundary condition
% 1: remove grains that are close to the boundary
% - qcPlot : an integer, plot the QC image
% 1: show plot
%
% Output Arguments
% - grainCentroid : a (nGrain*2) or (nGrain*3) integer matrix, xy

or xyz
% location of the grain in voxel
% - grainRadius : a (nGrain*4) or (nGrain*6) double matrix,

radius
% of each grain in voxel. The vector is based

on the
% principal component analysis
% - grainAzimuth : a (nGrain*4) or (nGrain*6) double matrix,
% azimuth on each axis of radius based on
% spherical cooridnate (ISO physics).
% - grainInclination : (For 3D), a (nGrain*6) double matrix,
% inclination on each axis of radius based on
% spherical cooridnate (ISO physics).
% - grainVolume : a (nGrain*1) vector, the volume of grain in

voxel
% - nContact : a (nGrain*1) vector, the number of contact of

each
% grain
% - grainSurfaceArea : a (nGrain*1) vector, the surface area of

grain in voxel

187

% Revision 3: Nov 2017 Natt Srisutthiyakorn - Add spherical
% coordinate/qc3D
% Revision 2: Oct 2017 Natt Srisutthiyakorn - Add grain contact

%% Program
% Default parameters
if nargin < 2
 minThres = 1;
 bc = 1;
 qcPlot = 0;
end

% Determine whether it is 2-D or 3-D image
[imSize(1), imSize(2), imSize(3)] = size(image);

%% Watershed algorithm
% Create the distance map image (100+ s for 1024^3 voxels)
disp('Step 1: Create distance map - find the distance of each point to

the nearest solid')
imageDistGrain = bwdist(~image);
imageDistGrain = -imageDistGrain;
imageDistGrain(~image) = -Inf;

% Impose height threshold (500+ s for 1024^3 voxels) if applicable
if minThres > 1
 imageDistGrain = imhmin(imageDistGrain,minThres);
end

% Watershed algorithm (3500+ s for 1024^3 voxels)
disp('Step 2: Apply watershed algorithm')
imageGrainIdx = watershed(imageDistGrain);

% QC pore (component 0 is boundary and now pore)
imageGrainIdx(~image) = 0;

% Find region properties (100+ s for 1024^3 voxels)
disp('Step 3: Find center of mass and volume')
stats = regionprops('table', imageGrainIdx, 'Centroid', 'Area');
componentNo = unique(imageGrainIdx);

% Get grain properties (exclude 0)
grainNo = componentNo(componentNo ~= 0);
grainNo = grainNo(grainNo ~= 1);
grainNo = grainNo(grainNo ~= 2); % Noise in 1-2?
nGrain = length(grainNo);
allGrainCentroid = round(stats.Centroid(grainNo,:));
allGrainVolume = round(stats.Area(grainNo,:));

188

nTotalSize = length(imageGrainIdx(:));
if imSize(3) == 1 % 2D--

 grainRadius = zeros(nGrain,4);
 grainAzimuth = zeros(nGrain,4);
 grainInclination = zeros(nGrain,4);
elseif imSize(3) > 1 % 3D--

 grainRadius = zeros(nGrain,6);
 grainAzimuth = zeros(nGrain,6);
 grainInclination = zeros(nGrain,6);
end

% QC
%imageGrainIdx(:,:,1)
%[vol, idx] = max(allGrainVolume)

% QC Plot
if qcPlot
 if imSize(3) == 1 % 2D--

 figure
 subplot(1,3,1)
 imagesc(image);
 axis equal; xlim([0 imSize(2)]); ylim([0 imSize(1)]);
 colormap(flipud(gray))
 title('Original')

 subplot(1,3,2)
 imagesc(imageGrainIdx)
 title('Watershed')
 axis equal; xlim([0 imSize(2)]); ylim([0 imSize(1)]);

 subplot(1,3,3)
 imagesc(imageGrainIdx)
 title('Measurement')
 axis equal; xlim([0 imSize(2)]); ylim([0 imSize(1)]);
 elseif imSize(3) > 1 % 3D--

 figure
 colors = jet(nGrain);
 colors = colors(randperm(length(colors)),:); % Randomize the

color

 for iGrain = 1:nGrain
 idxSingleGrain = (imageGrainIdx(:) == grainNo(iGrain));
 imageGrain = zeros(nTotalSize,1);
 imageGrain(idxSingleGrain) = 1;
 imageGrain = reshape(imageGrain,[imSize(1),

imSize(2), imSize(3)]);

 fv = isosurface(imageGrain,0);
 patch(fv,'EdgeColor','none','facecolor',colors(iGrain,:));
 box on;
 view(45,45);axis equal

189

 alpha(0.2)
 hold on
 end
 end
end

%% Find the surface area of each grain using the isosurface
grainSurfaceArea = zeros(nGrain,1);
tic
for iGrain = 1:nGrain
 if iGrain/100 == round(iGrain/100)
 disp(['Step 4: Measure grain surface area (', num2str(iGrain),...
 '/',num2str(nGrain), ')'])
 end
 idxSingleGrain = (imageGrainIdx(:) == grainNo(iGrain));
 imageGrain = zeros(nTotalSize,1);
 imageGrain(idxSingleGrain) = 1;

 if imSize(3) > 1
 imageGrain = reshape(imageGrain,[imSize(1), imSize(2),

imSize(3)]);
 % Extract the surface surface
 fv = isosurface(imageGrain,0);
 % p = patch(fv,'facecolor','cyan','EdgeColor','none'); - QC

plots
 % verts = get(p, 'Vertices');
 % faces = get(p, 'Faces');
 % close all;

 % Find the surface area
 vertices = fv.vertices;
 faces = fv.faces;
 a = vertices(faces(:, 2), :) - vertices(faces(:, 1), :);
 b = vertices(faces(:, 3), :) - vertices(faces(:, 1), :);
 c = cross(a, b, 2);
 grainSurfaceArea(iGrain) = 1/2 * sum(sqrt(sum(c.^2, 2)));
 end

end
toc

%% Find the number of contact
nContact = zeros(nGrain,1);

for iGrain = 1:nGrain
 if iGrain/100 == round(iGrain/100)
 disp(['Step 5: Measure number of contact(', num2str(iGrain),...
 '/',num2str(nGrain), ')'])
 end
 idxSingleGrain = (imageGrainIdx(:) == grainNo(iGrain));
 imageGrain = zeros(nTotalSize,1);

190

 imageGrain(idxSingleGrain) = 1;

 if imSize(3) == 1
 imageGrain = reshape(imageGrain,[imSize(1), imSize(2)]);
 % Dilate the grain first to get the outer boundary.
 imageGrain = bwmorph(imageGrain,'dilate');
 imageGrain = bwmorph(imageGrain,'dilate');
 % Find boundary of a grain
 grainBound = bwboundaries(imageGrain,'noholes');
 linearInd = sub2ind([imSize(1),imSize(2)],

grainBound{1}(:,1), grainBound{1}(:,2));
 contactIdx = unique(imageGrainIdx(linearInd));
 elseif imSize(3) > 1
 contactIdx = [];
 imageGrain = reshape(imageGrain,[imSize(1), imSize(2),

imSize(3)]);
 for iz = 1:imSize(3)
 % Dilate the grain first to get the outer boundary.
 imageGrain(:,:,iz) = bwmorph(imageGrain(:,:,iz),'dilate');
 imageGrain(:,:,iz) = bwmorph(imageGrain(:,:,iz),'dilate');
 % Find boundary of a grain
 grainBound = bwboundaries(imageGrain(:,:,iz),'noholes');
 if length(grainBound) == 1
 linearInd = sub2ind([imSize(1),imSize(2)],

grainBound{1}(:,1), grainBound{1}(:,2));
 contactIdx = [contactIdx; imageGrainIdx(linearInd)];
 end
 end
 end

 % Find the unique index that is not 0 (the pore) and the itself.
 contactIdx = unique(contactIdx);
 contactIdx = contactIdx(contactIdx ~= 0);
 contactIdx = contactIdx(contactIdx ~= grainNo(iGrain));
 nContact(iGrain) = length(contactIdx);
end

%% Measure the grain size
for iGrain = 1:nGrain
 if iGrain/100 == round(iGrain/100)
 disp(['Step 6: Measure grain size (', num2str(iGrain),...
 '/',num2str(nGrain), ')'])
 end
 idxSingleGrain = (imageGrainIdx(:) == grainNo(iGrain));
 imageGrain = zeros(nTotalSize,1);
 imageGrain(idxSingleGrain) = 1;

 if imSize(3) == 1 % 2D--

 imageGrain = reshape(imageGrain,[imSize(2), imSize(1)]);
 [idxXX, idxYY] = find(imageGrainIdx == grainNo(iGrain));

191

 % Obtain principal direction
 [coeff] = pca([idxXX idxYY]);

 nVec = size(coeff,2);
 X0 = allGrainCentroid(iGrain,1);
 Y0 = allGrainCentroid(iGrain,2);

 for iVec = 1:nVec
 clear temp*

 % Find index of a straight line in both direction on

principal axis
 a = coeff(1,iVec);
 b = coeff(2,iVec);

 if a >= b
 tempX1 = [X0:imSize(2)]';
 tempX2 = [X0:-1:1]';
 nL1 = ones(length(tempX1),1);
 nL2 = ones(length(tempX2),1);
 tempY1 = nL1.*round(b./a.*(tempX1-X0) + Y0);
 tempY2 = nL2.*round(b./a.*(tempX2-X0) + Y0);
 elseif b > a
 tempY1 = [Y0:imSize(1)]';
 tempY2 = [Y0:-1:1]';
 nL1 = ones(length(tempY1),1);
 nL2 = ones(length(tempY2),1);
 tempX1 = nL1.*round(a./b.*(tempY1-Y0) + X0);
 tempX2 = nL2.*round(a./b.*(tempY2-Y0) + X0);
 end

 % Initialization of lines for measurement
 nLine1 = length(tempX1);
 nLine2 = length(tempX2);
 tempLine1 = zeros(nLine1,1);
 tempLine2 = zeros(nLine2,1);

 for iLine1 = 1:nLine1
 try % instead of checking boundary
 tempLine1(iLine1,1) = imageGrain(tempY1(iLine1),...

tempX1(iLine1));
 end
 end

 for iLine2 = 1:nLine2
 try
 tempLine2(iLine2,1) = imageGrain(tempY2(iLine2),...

tempX2(iLine2));
 end
 end

 % Find the boundary wihtin the lines
 bound1 = find(tempLine1 == 0, 1, 'first');

192

 if isempty(bound1)
 bound1 = nLine1;
 end

 bound2 = find(tempLine2 == 0, 1, 'first');
 if isempty(bound2)
 bound2 = nLine2;
 end

 % Calculate grain size to the boundary
 dX1 = tempX1(bound1) - tempX1(1);
 dY1 = tempY1(bound1) - tempY1(1);
 dX2 = tempX2(bound2) - tempX2(1);
 dY2 = tempY2(bound2) - tempY2(1);

 % Compute 2 radius from PCA at a time
 grainRadius(iGrain,2.*(iVec-1) + 1) ...
 = sqrt(dX1^2 + dY1^2);
 grainRadius(iGrain,2.*(iVec-1) + 2) ...
 = sqrt(dX2^2 + dY2^2);

 grainAzimuth(iGrain,2.*(iVec-1) + 1) ...
 = atan(dX1/dY1)*180/pi;
 grainAzimuth(iGrain,2.*(iVec-1) + 2) ...
 = atan(dX2/dY2)*180/pi;

 if qcPlot
 if imSize(3) == 1
 hold on

plot(tempX1(1:bound1),tempY1(1:bound1),'r','LineWidth',2)

plot(tempX2(1:bound2),tempY2(1:bound2),'r','LineWidth',2)
 end
 end

 end

 elseif imSize(3) > 1 % 3D---

 imageGrain ...
 = reshape(imageGrain,[imSize(1), imSize(2), imSize(3)]);

 [idxXX, idxYY, idxZZ] = find(imageGrainIdx ==

grainNo(iGrain));

 % principal component analysis to get principal direction

(each column
 % = one principal component
 [coeff] = pca([idxXX idxYY idxZZ]);
 nVec = size(coeff,2);

 % Centroid

193

 X0 = allGrainCentroid(iGrain,1);
 Y0 = allGrainCentroid(iGrain,2);
 Z0 = allGrainCentroid(iGrain,3);

 for iVec = 1:nVec
 clear temp*

 % Obtain the value of secondary and tertiary direction
 a = coeff(1,iVec);
 b = coeff(2,iVec);
 c = coeff(3,iVec);

 [~,idxMax] = max([a,b,c]);

 if idxMax == 1;
 tempX1 = [X0:imSize(1)]';
 tempX2 = [X0:-1:1]';
 nL1 = ones(length(tempX1),1);
 nL2 = ones(length(tempX2),1);
 tempY1 = nL1.*round(b./a.*(tempX1-X0) + Y0);
 tempY2 = nL2.*round(b./a.*(tempX2-X0) + Y0);
 tempZ1 = nL1.*round(c./a.*(tempX1-X0) + Z0);
 tempZ2 = nL2.*round(c./a.*(tempX2-X0) + Z0);
 elseif idxMax == 2;
 tempY1 = [Y0:imSize(2)]';
 tempY2 = [Y0:-1:1]';
 nL1 = ones(length(tempY1),1);
 nL2 = ones(length(tempY2),1);
 tempX1 = nL1.*round(a./b.*(tempY1-Y0) + X0);
 tempX2 = nL2.*round(a./b.*(tempY2-Y0) + X0);
 tempZ1 = nL1.*round(c./b.*(tempY1-Y0) + Z0);
 tempZ2 = nL2.*round(c./b.*(tempY2-Y0) + Z0);
 elseif idxMax == 3;
 tempZ1 = [Z0:imSize(3)]';
 tempZ2 = [Z0:-1:1]';
 nL1 = ones(length(tempZ1),1);
 nL2 = ones(length(tempZ2),1);
 tempX1 = nL1.*round(a./c.*(tempZ1-Z0) + X0);
 tempX2 = nL2.*round(a./c.*(tempZ2-Z0) + X0);
 tempY1 = nL1.*round(c./c.*(tempZ1-Z0) + Y0);
 tempY2 = nL2.*round(c./c.*(tempZ2-Z0) + Y0);
 end

 % Initialization of lines for measurement
 nLine1 = length(tempX1);
 nLine2 = length(tempX2);
 tempLine1 = zeros(nLine1,1);
 tempLine2 = zeros(nLine2,1);

 for iLine1 = 1:nLine1
 try % instead of checking boundary
 tempLine1(iLine1,1) ...
 = imageGrain(tempY1(iLine1),...
 tempX1(iLine1),...
 tempZ1(iLine1));

194

 end
 end

 for iLine2 = 1:nLine2
 try
 tempLine2(iLine2,1) ...
 = imageGrain(tempY2(iLine2),...
 tempX2(iLine2),...
 tempZ2(iLine2));
 end
 end

 % Find the boundary wihtin the lines
 bound1 = find(tempLine1 == 0, 1, 'first');
 if isempty(bound1)
 bound1 = nLine1;
 end

 bound2 = find(tempLine2 == 0, 1, 'first');
 if isempty(bound2)
 bound2 = nLine2;
 end

 % Calculate grain size to the boundary
 dX1 = tempX1(bound1) - tempX1(1);
 dY1 = tempY1(bound1) - tempY1(1);
 dZ1 = tempZ1(bound1) - tempZ1(1);
 dX2 = tempX2(bound2) - tempX2(1);
 dY2 = tempY2(bound2) - tempY2(1);
 dZ2 = tempZ2(bound2) - tempZ2(1);

 grainRadius(iGrain,2.*(iVec-1) + 1) ...
 = sqrt((dX1)^2 + (dY1)^2 + (dZ1)^2);
 grainRadius(iGrain,2.*(iVec-1) + 2) ...
 = sqrt((dX2)^2 + (dY2)^2 + (dZ2)^2);

 grainAzimuth(iGrain,2.*(iVec-1) + 1) ...
 = acos(dZ1/grainRadius(iGrain,2.*(iVec-1) + 1));
 grainAzimuth(iGrain,2.*(iVec-1) + 2) ...
 = acos(dZ2/grainRadius(iGrain,2.*(iVec-1) + 2));

 grainInclination(iGrain,2.*(iVec-1) + 1) ...
 = atan(dY1/dX1)*180/pi;
 grainInclination(iGrain,2.*(iVec-1) + 2) ...
 = atan(dY2/dX2)*180/pi;

 end
 end
end

%% Output
% Clean 0 data

195

idxNonZero = all(grainRadius,2);
grainRadius = grainRadius(idxNonZero,:);
grainCentroid = allGrainCentroid(idxNonZero,:);
grainVolume = allGrainVolume(idxNonZero,:);
grainAzimuth = grainAzimuth(idxNonZero,:);
grainInclination = grainInclination(idxNonZero,:);
nContact = nContact(idxNonZero,:);
grainSurfaceArea = grainSurfaceArea(idxNonZero,:);

%% Boundary condition Exclude grains at the boundary
if bc
 radius = max(grainRadius,[],2);
 nGrain = length(radius);
 idxAccept = [];
 idxReject = [];

 if imSize(3) == 1 %2D---

 % Define all the corner points
 c1 = [1, 1];
 c2 = [imSize(1), 1];
 c3 = [1, imSize(1)];
 c4 = [imSize(1), imSize(1)];

 % Calculate the distance from a point to a line for each

centroid
 for iGrain = 1:nGrain
 p = grainCentroid(iGrain,:);
 distanceLine1 = abs(det([c2 - c1; p - c2])/sqrt(sum((c2 -

c1).^2)));
 distanceLine2 = abs(det([c3 - c1; p - c3])/sqrt(sum((c3 -

c1).^2)));
 distanceLine3 = abs(det([c4 - c3; p - c3])/sqrt(sum((c4 -

c3).^2)));
 distanceLine4 = abs(det([c4 - c2; p - c2])/sqrt(sum((c4 -

c2).^2)));
 if (distanceLine1 > radius(iGrain) && distanceLine2 >

radius(iGrain) &&...
 distanceLine3 > radius(iGrain) && distanceLine4 >

radius(iGrain))
 idxAccept = [idxAccept, iGrain];
 else
 idxReject = [idxReject, iGrain];
 end

 end

 elseif imSize(3) > 1 %3D--

 % Define the corner points
 corner = [1 1 1;
 1 imSize(1) 1;
 1 1 imSize(1);
 1 imSize(1) imSize(1);
 imSize(1) 1 1;
 imSize(1) imSize(1) 1;

196

 imSize(1) 1 imSize(1);
 imSize(1) imSize(1) imSize(1)];

 % Define 6 different planes from corners point
 plane = [1 2 3;
 1 3 5;
 3 4 7;
 2 4 6;
 1 2 5;
 5 6 7];
 % Calculate the distance from a point to a line for each

centroid
 for iGrain = 1:nGrain
 point = grainCentroid(iGrain,:);

 for iPlane = 1:6
 c1 = corner(plane(iPlane,1),:);
 c2 = corner(plane(iPlane,2),:);
 c3 = corner(plane(iPlane,3),:);

 normal = cross(c1 - c2, c1 - c3);

 d = dot(normal, c1);

 % Find the closest distance from a point to plane
 distance(iGrain,iPlane) = (dot(normal, point) -

d)./sqrt(dot(normal,normal));
 end

 if min(abs(distance(iGrain,:))) > radius(iGrain)
 idxAccept = [idxAccept, iGrain];
 else
 idxReject = [idxReject, iGrain];
 end

 end

 end

 % Screen the data to the number
 grainRadius = grainRadius(idxAccept,:);
 grainCentroid = grainCentroid(idxAccept,:);
 grainVolume = grainVolume(idxAccept,:);
 grainAzimuth = grainAzimuth(idxAccept,:);
 grainInclination = grainInclination(idxAccept,:);
 nContact = nContact(idxAccept,:);
 grainSurfaceArea = grainSurfaceArea(idxAccept,:);

 if qcPlot
 if imSize(3) == 1
 scatter(grainCentroid(:,1), grainCentroid(:,2),'go')
 end
 end

197

end

function [grainDiameter] = computeGrainDiameter(grainRadius,

measureOption)
%computeGrainDiameter compute grain diameter
% Input Arguments
% - grainRadius : a (nGrain*6) or (nGrain*4) double matrix,
% radius of each grain [r1 r2 r3 r4 r5 r6] or
% [r1 r2 r3 r4] in Micron
% - measureOption : a string, compute the distribution using
% "max" grain size
% "mean" grain size
%
% Output Arguments
% - grainDiameter : a (nGrain*1) double matrix,
% a max diameter of each grain

% Revision 1: May 2018 Nattavadee Srisutthiyakorn

%%
if (~exist('measureOption', 'var'))
 measureOption = "max";
end

[~, nRadius]= size(grainRadius);
% Add to get the grain diameter instead of the radius.
if nRadius == 6
 grainDiameter(:,1) = grainRadius(:,1) + grainRadius(:,2);
 grainDiameter(:,2) = grainRadius(:,3) + grainRadius(:,4);
 grainDiameter(:,3) = grainRadius(:,5) + grainRadius(:,6);
elseif nRadius == 4
 grainDiameter(:,1) = grainRadius(:,1) + grainRadius(:,2);
 grainDiameter(:,2) = grainRadius(:,3) + grainRadius(:,4);
end

% Use the find the average grain size or max grain size for sieving
if measureOption == "mean"
 grainDiameter = mean(grainDiameter,2);
elseif measureOption == "max"
 grainDiameter = max(grainDiameter,[],2);
end

end

function [histFB, binCenter, statGSD] ...

198

 = computeHistFB(grainProp, binEdge)
%computeHistFB compute frequency-based histogram of the different

properties of GSD
% Input Arguments
% - grainProp : a (nGrain*1) double vector, grain properties

such as
% maximum diameter, nContact, and etc.
% - binEdge : (optional) a vector, histogram bin edge
%
% Output Arguments
% - histFB : a (nBin*1) vector, probability distribution

function (PDF)
% - binCenter : a (nBin*1) vector, bin center in mm as specified

in the code
% - statGSD : a struct, containing grain size distribution
% statistics
%
% Notes
% - Beware that the output from computeGSD is the voxel,
% please multiply by the resolution in micron for maximum grain

radius and
% multiply by resolution.^3 for grain volume
% grainProp = grainProp.*dx./1000;

% Revision 1: May 2018 Nattavadee Srisutthiyakorn

%% Program
if (~exist('binEdge', 'var'))
 % Prefixed Histogram bin in mm due to the plot nature in log scale
 % for grain diameter
 binEdge = fliplr([4.0000 3.3600 2.8300 2.3800 2.0000 1.6800 1.4100

1.1900 1.0000 ...
 0.8500 0.7100 0.6000 0.5000 0.4200 0.3500 0.2970 0.2500

0.2100 ...
 0.1770 0.1490 0.1250 0.1050 0.0880 0.0740 0.0620 0.0530

0.0440 ...
 0.0370 0.0310 0.0260 0.0220 0.0190 0.0160 0.0130 0.0110

0.0093 ...
 0.0078 0.0065 0.0055 0.0046 0.0039 0.0033 0.0028 0.0023

0.0019 ...
 0.0016 0.0014 0.0012 0.0010]);
end

% Sort data into histogram bin
nEdge = length(binEdge);
nBin = nEdge - 1;
histFB = zeros(nEdge - 1, 1);
binCenter(1) = binEdge(1);

for iEdge = 1:nEdge - 1
 [index{iEdge}] = find(and(grainProp <= binEdge(iEdge + 1),...
 grainProp > binEdge(iEdge)));
 binCenter(iEdge) = (binEdge(iEdge + 1) + binEdge(iEdge))./2;
end

for iBin = 1:nBin

199

 histFB(iBin) = length(index{iBin});
end

% Normalized to get the PDF
nGrainCheck = sum(histFB);
histFB = histFB./nGrainCheck;

% Export the statistics
statGSD.mean = mean(grainProp);
statGSD.std = std(grainProp);

% Find the cumulative density function
% histCDF = cumsum((histFB))./sum(histFB);

function [histVB, binCenter, statGSD] ...
 = computeHistVB(grainProp, grainVolume, binEdge)
%computeHistVB computes volume-based histogram of the different

properties of GSD
% Input Arguments
% - grainProp : a (nGrain*1) double vector, grain properties

such as
% maximum diameter, nContact, and etc.
% - grainVolume : a (nGrain*1) double vector, volume of each grain

or
% other weight
% *** Beware that the output from computeGSD is

the
% voxel, please multiply grainVolume*resolution.^3
% - binEdge : (optional) a vector, histogram bin edge
%
% Output Arguments
% - histVB : a (nBin*1) vector, probability distribution

function (PDF)
% - binCenter : a (nBin*1) vector, bin center in mm as specified

in the code
% - statGSD : a struct, containing grain size distribution
% statistics
%
% Notes
% - Beware that the output from computeGSD is the voxel,
% please multiply by the resolution in micron for maximum grain

radius and
% multiply by resolution.^3 for grain volume
% grainProp = grainProp.*dx./1000;

% Revision 1: May 2018 Nattavadee Srisutthiyakorn

%% Program
if (~exist('binEdge', 'var'))
 % Prefixed Histogram bin in mm due to the plot nature in log scale
 % for grain diameter
 binEdge = fliplr([4.0000 3.3600 2.8300 2.3800 2.0000 1.6800 1.4100

1.1900 1.0000 ...

200

 0.8500 0.7100 0.6000 0.5000 0.4200 0.3500 0.2970 0.2500

0.2100 ...
 0.1770 0.1490 0.1250 0.1050 0.0880 0.0740 0.0620 0.0530

0.0440 ...
 0.0370 0.0310 0.0260 0.0220 0.0190 0.0160 0.0130 0.0110

0.0093 ...
 0.0078 0.0065 0.0055 0.0046 0.0039 0.0033 0.0028 0.0023

0.0019 ...
 0.0016 0.0014 0.0012 0.0010]);
end

% Sort data into histogram bin
nEdge = length(binEdge);
nBin = nEdge - 1;
histVB = zeros(nEdge - 1, 1);
binCenter(1) = binEdge(1);

for iEdge = 1:nEdge - 1
 [index{iEdge}] = find(and(grainProp <= binEdge(iEdge + 1),...
 grainProp > binEdge(iEdge)));
 binCenter(iEdge) = (binEdge(iEdge + 1) + binEdge(iEdge))./2;
end

% Find the weight/volume/area of each bin in order to plot the

percentage
for iBin = 1:nBin
 histVB(iBin) = sum(grainVolume(index{iBin}))./sum(grainVolume);
end

% Normalized to get the PDF
nGrainCheck = sum(histVB);
histVB = histVB./nGrainCheck;

% Export the statistics
statGSD.mean = sum(grainProp.*grainVolume)./sum(grainVolume);
statGSD.std = std(grainProp, grainVolume);

% Find the cumulative density function
% histCDF = cumsum((histVF))./sum(histVF);

function [histPC, binCenter, statGSD, idxSelectedGrain] ...
 = computeHistPC(grainProp, grainCentroid, gridPC, binEdge)
%computeHistPC compute frequency-based histogram of the different

properties of GSD
% Input Arguments
% - grainProp : a (nGrain*1) double vector, grain properties

such as
% maximum diameter, nContact, and etc.
% - grainCentroid : a (nGrain*2) or (nGrain*3) integer matrix, xy or

xyz
% location of the grain in voxel

201

% - gridPC : (optional) a vector, for creating a grid for

point
% count
% - binEdge : (optional) a vector, histogram bin edge
%
% Output Arguments
% - histFB : a (nBin*1) vector, probability distribution

function (PDF)
% - binCenter : a (nBin*1) vector, bin center in mm as specified

in the code
% - statGSD : a struct, containing grain size distribution
% statistics
% - idxSelectedGrain : a (nSelectedGrains*1), the index of the grain

that
% is closest to the grid.
%
% Notes
% - Beware that the output from computeGSD is the voxel,
% please multiply by the resolution in micron for maximum grain

radius and
% multiply by resolution.^3 for grain volume
% grainProp = grainProp.*dx./1000;

% Revision 1: May 2018 Nattavadee Srisutthiyakorn

%% Program
if (~exist('binEdge', 'var'))
 % Prefixed Histogram bin in mm due to the plot nature in log scale
 % for grain diameter
 binEdge = fliplr([4.0000 3.3600 2.8300 2.3800 2.0000 1.6800 1.4100

1.1900 1.0000 ...
 0.8500 0.7100 0.6000 0.5000 0.4200 0.3500 0.2970 0.2500

0.2100 ...
 0.1770 0.1490 0.1250 0.1050 0.0880 0.0740 0.0620 0.0530

0.0440 ...
 0.0370 0.0310 0.0260 0.0220 0.0190 0.0160 0.0130 0.0110

0.0093 ...
 0.0078 0.0065 0.0055 0.0046 0.0039 0.0033 0.0028 0.0023

0.0019 ...
 0.0016 0.0014 0.0012 0.0010]);
end
if (~exist('gridPC', 'var'))
 maxPixel = max(max(grainCentroid));
 maxNumGrain = length(grainProp);
 nSampling = round((maxNumGrain./10).^(1/3)); % The total of

nSampling*nSampling samples for 2-D and
 % and nSampling*nSampling*nSampling samples for

3-D will be taken from point count
 gridPC = linspace(1, maxPixel, nSampling);
 gridPC = round(gridPC);
end

% Create the grid
[x, y, z] = meshgrid(gridPC);
gridCentroid = [x(:) y(:) z(:)];
idxSelectedGrain = dsearchn(grainCentroid, gridCentroid);

202

% Select only the index
grainProp = grainProp(idxSelectedGrain);

% Sort data into histogram bin
nEdge = length(binEdge);
nBin = nEdge - 1;
histPC = zeros(nEdge - 1, 1);
binCenter(1) = binEdge(1);

for iEdge = 1:nEdge - 1
 [index{iEdge}] = find(and(grainProp <= binEdge(iEdge + 1),...
 grainProp > binEdge(iEdge)));
 binCenter(iEdge) = (binEdge(iEdge + 1) + binEdge(iEdge))./2;
end

for iBin = 1:nBin
 histPC(iBin) = length(index{iBin});
end

% Normalized to get the PDF
nGrainCheck = sum(histPC);
histPC = histPC./nGrainCheck;

% Export the statistics
statGSD.mean = mean(grainProp);
statGSD.std = std(grainProp);

% Find the cumulative density function
% histCDF = cumsum((histFB))./sum(histFB);

203

Bibliography

Adler, P. M., C. G. Jacquin, and J. A. Quiblier, 1990, Flow in simulated porous media,

691–712.

Ahmadi, M. M., S. Mohammadi, and A. N. Hayati, 2011, Analytical derivation of

tortuosity and permeability of monosized spheres: a volume averaging approach.,

Physical review. E, Statistical, nonlinear, and soft matter physics, 83, no. 2 Pt 2,

026312.

Andrä, H. et al., 2013a, Digital rock physics benchmarks—Part I: Imaging and

segmentation, Computers & Geosciences, 50, 25–32.

Andrä, H. et al., 2013b, Digital rock physics benchmarks—part II: Computing effective

properties, Computers & Geosciences, 50, 33–43.

Arch, J., and A. Maltman, 1990, Anisotropic permeability and tortuosity in deformed wet

sediments, JOURNAL OF GEOPHYSICAL RESEARCH, 95, no. 10, 9035–9045.

Arns, C. H., M. A. Knackstedt, W. V. Pinczewski, and E. E. J. Garboczi, 2002,

Computation of linear elastic properties from microtomographic images:

Methodology and agreement between theory and experiment, Geophysics, 67, no. 5,

1396.

Bear, J., 1988, Dynamics of fluids in porous media.

Berryman, J. G., and S. C. Blair, 1986, Use of digital image analysis to estimate fluid

permeability of porous materials: Application of two-point correlation functions,

204

Journal of Applied Physics, 60, no. 6, 1930–1938.

Carman, P. C., 1937, Fluid flow through granular beds, Chemical Engineering Research

and Design, 75, S32–S48.

Carrier, W. D., 2003, Goodbye, Hazen; Hello, Kozeny-Carman, Journal of Geotechnical

and Geoenvironmental Engineering, 129, no. 11, 1054–1056.

Chen, H., S. Chen, and W. Matthaeus, 1992, Recovery of the Navier-Stokes equations

using a lattice-gas Boltzmann method, Physical Review A.

Chilingar, G. V, 1979, Principles of Sedimentology, Wiley, 184–185.

Clennell, M. B., 1997, Tortuosity: a guide through the maze, Geological Society, London,

Special Publications, 122, no. 1, 299–344.

Cruz‐Orive, L. M., 1983, Distribution‐free estimation of sphere size distributions from

slabs showing overprojection and truncation, with a review of previous methods,

Journal of Microscopy, 131, no. 3, 265–290.

Dullien, F., 1991, Porous media: fluid transport and pore structure, Academic press.

Dvorkin, J., 2009, Kozeny-Carman Equation Revisited.

Dvorkin, J., 2008, Some exact solutions for viscous fluid flow.

Dvorkin, J., M. Armbruster, C. Baldwin, Q. Fang, N. Derzhi, C. Gomez, B. Nur, A. Nur,

and Y. Mu, 2008, The future of rock physics: Computational methods vs. lab testing,

First Break, 26, no. 9, 63–68.

Dvorkin, J., N. Derzhi, E. Diaz, and Q. Fang, 2011, Relevance of computational rock

205

physics, Geophysics, 76, no. 5, E141–E153.

Dvorkin, J., Q. Fang, and N. Derzhi, 2012, Etudes in computational rock physics:

Alterations and benchmarking, GEOPHYSICS, 77, no. 3, D45–D52.

Exner, H. E., 1972, Analysis of Grain- and Particle-Size Distributions in Metallic Materials,

International Materials Reviews, 17, no. 1, 25–42.

Finney, J. L., 1970, Random Packings and the Structure of Simple Liquids. I. The

Geometry of Random Close Packing, Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 319, no. 1539, 479–493.

Flavio S. Anselmetti, 2 Stefan Luthi, 1998, Quantitative Characterization of Carbonate

Pore Systems by Digital Image Analysis.

Fredrich, J. T. J., D. D. R. Noble, R. R. M. O’Connor, W. Lindquist, D. D. R. Noble, and

R. R. M. O’Connor, 1999, Development, implementation, and experimental

validation of the Lattice Boltzmann method for modeling three-dimensional complex

flows.

Garboczi, E., 1998, Finite element and finite difference programs for computing the linear

electric and elastic properties of digital images of random materials, Building and Fire

Research Laboratory, National Institute of Standards and Technology.

Ghanbarian, B., A. G. Hunt, R. P. Ewing, and M. Sahimi, 2013, Tortuosity in Porous Media:

A Critical Review, Soil Science Society of America Journal, 77, no. 5, 1461.

Gomez, C. T., J. Dvorkin, and T. Vanorio, 2010, Laboratory measurements of porosity,

permeability, resistivity, and velocity on Fontainebleau sandstones, GEOPHYSICS,

206

75, no. 6, E191–E204.

Graton, L. C., and H. J. Fraser, 1935, Systematic Packing of Spheres: With Particular

Relation to Porosity and Permeability, 785–909.

Guardiano, F., and R. Srivastava, 1993, Multivariate geostatistics: beyond bivariate

moments.

Guéguen, Y., and V. Palciauskas, 1994, Introduction to the Physics of Rocks.

Gunstensen, A. K., D. H. Rothman, S. Zaleski, and G. Zanetti, 1991, Lattice Boltzmann

model of immiscible fluids, Physical Review A, 43, no. 8, 4320–4327.

Jain, A. K., 2010, Data clustering: 50 years beyond K-means, Pattern Recognition Letters,

31, no. 8, 651–666.

Jin, G., T. W. Patzek, and D. B. Silin, 2003, Physics-based Reconstruction of Sedimentary

Rocks, in SPE Western Regional/AAPG Pacific Section Joint Meeting, Society of

Petroleum Engineers.

Jin, G., T. W. Patzek, and D. B. Silin, 2008, Reconstruction of Sedimentary Rock Based

on Mechanical Properties, Lawrence Berkeley National Laboratory.

Jin, G., C. Torres-Verdín, and E. Toumelin, 2009, Comparison of NMR simulations of

porous media derived from analytical and voxelized representations, Journal of

Magnetic Resonance, 200, no. 2, 313–320.

Kainourgiakis, M. E., E. S. Kikkinides, A. Galani, G. C. Charalambopoulou, and A. K.

Stubos, 2005, Digitally reconstructed porous media: Transport and sorption properties,

in Upscaling Multiphase Flow in Porous Media: From Pore to Core and Beyond, 43–

207

62.

Keehm, Y., 2003, Computational rock physics: transport properties in porous media and

applications, Stanford University.

Keehm, Y., 2004, Permeability prediction from thin sections: 3D reconstruction and

Lattice-Boltzmann flow simulation, Geophysical Research Letters, 31, no. 4, L04606.

Keehm, Y., and W. J. Bosl, 2003, Comparison Of Different Lattice-Boltzmann Flow

Simulation Implementations: Efficiency, Convergence And Stability.

Keehm, Y., T. Mukerji, and A. Nur, 2001, Computational rock physics at the pore scale:

Transport properties and diagenesis in realistic pore geometries, The Leading Edge.

Konert, M., and J. Vandenberghe, 1997, Comparison of laser grain size analysis with

pipette and sieve analysis: A solution for the underestimation of the clay fraction,

523–535.

Koponen, A., M. Kataja, and J. Timonen, 1997, Permeability and effective porosity of

porous media, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related

Interdisciplinary Topics, 56, no. 3, 3319–3325.

Ladd, A., 1994, Numerical simulations of particulate suspensions via a discretized

Boltzmann equation. Part 1. Theoretical foundation, Journal of Fluid Mechanics.

Legland, D., K. Kiêu, and M. Devaux, 2007, Computation of Minkowski measures on 2D

and 3D binary images, Image Analysis & Stereology.

Lehmann, P., M. Berchtold, B. Ahrenholz, J. Tölke, A. Kaestner, M. Krafczyk, H. Flühler,

and H. R. Künsch, 2008, Impact of geometrical properties on permeability and fluid

208

phase distribution in porous media, Advances in Water Resources, 31, no. 9, 1188–

1204.

Lock, P. A., X. Jing, R. W. Zimmerman, and E. M. Schlueter, 2002, Predicting the

permeability of sandstone from image analysis of pore structure, Journal of Applied

Physics, 92, no. 10, 6311–6319.

Manwart, C., S. Torquato, and R. Hilfer, 2000, Stochastic reconstruction of sandstones,

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary

Topics, 62, no. 1 B, 893–899.

Mariethoz, P. G., and P. J. Caers, 2014, Multiple-point Geostatistics: Stochastic Modeling

with Training Images, Wiley.

Mariethoz, G., P. Renard, and J. Straubhaar, 2010, The direct sampling method to perform

multiple-point geostatistical simulations, Water Resources Research, 46, no. 11.

Mason, G., and N. R. Morrow, 1991, Capillary behavior of a perfectly wetting liquid in

irregular triangular tubes, 262–274.

Mauret, E., and M. Renaud, 1997, Transport phenomena in multi-particle systems - I.

Limits of applicability of capillary model in high voidage beds-application to fixed

beds of fibers and fluidized beds of spheres, Chemical Engineering Science, 52, no.

11, 1807–1817.

Mavko, G., T. Mukerji, and J. Dvorkin, 2009a, The rock physics handbook: Tools for

seismic analysis of porous media, Cambridge University Press.

Mavko, G., T. Mukerji, and J. Dvorkin, 2009b, The rock physics handbook, Cambridge

209

University press.

Mavko, G., and A. Nur, 1997, The effect of a percolation threshold in the Kozeny‐Carman

relation, GEOPHYSICS, 62, no. 5, 1480–1482.

Mota, M., J. A. Teixeira, W. R. Bowen, and A. Yelshin, 2001, Binary spherical particle

mixed beds: porosity and permeability relationship measurement, 101–106.

Ohser, J., and K. Sandau, 2000, Considerations About the Estimation ofthe Size

Distribution in Wicksell’s Corpuscle Problem, in Statistical Physics and Spatial

Statistics, 185–202.

Okabe, H., and M. J. Blunt, 2005, Pore space reconstruction using multiple-point statistics,

Journal of Petroleum Science and Engineering, 46, no. 1–2, 121–137.

Okabe, H., and M. J. Blunt, 2004, Prediction of permeability for porous media

reconstructed using multiple-point statistics, Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics, 70, no. 6 2.

Øren, P. E., and S. Bakke, 2002, Process based reconstruction of sandstones and prediction

of transport properties, Transport in Porous Media, 46, no. 2–3, 311–343.

Osserman, R., 1987, A strong form of the isoperimetric inequality in R n, Complex

Variables, Theory and Application: An International Journal, 9, no. 2–3, 241–249.

Ozgumus, T., M. Mobedi, and U. Ozkol, 2014, Determination of Kozeny constant based

on porosity and pore to throat size ratio in porous medium with rectangular rods,

Engineering Applications of Computational Fluid Mechanics, 8, no. 2, 308–318.

Patzek, T. W., and J. G. Kristensen, 2001, Shape Factor Correlations of Hydraulic

210

Conductance in Noncircular Capillaries., Journal of colloid and interface science, 236,

no. 2, 305–317.

Pech, D., 1984, Etude de la perméabilité de lits compressibles constitués de copeaux de

bois partiellement destructurés, These de 36me cycle.

Du Plessis, J. P., and J. H. Masliyah, 1991, Flow through isotropic granular porous media,

Transport in Porous Media, 6, no. 3, 207–221.

Richa, 2010, Preservation of transport properties trends: computational rock physics

approach, Stanford University.

Sain, R., 2011, Numerical simulation of pore-scale heterogeneity and its effects on elastic,

electrical, and transport properties, Stanford University.

Saxena, N., 2014, The Impact of Grain-Scale Elastic and Viscoelastic Changes on Seismic

Wave Propagation, Stanford University.

Saxena, N., and G. Mavko, 2016, Estimating elastic moduli of rocks from thin sections:

Digital rock study of 3D properties from 2D images, Computers and Geosciences, 88,

9–21.

Saxena, N., G. Mavko, R. Hofmann, and N. Srisutthiyakorn, 2017, Estimating permeability

from thin sections without reconstruction: Digital rock study of 3D properties from

2D images, Computers and Geosciences, 102, 79–99.

Sezgin, M., and B. Sankur, 2004, Survey over image thresholding techniques and

quantitative performance evaluation, 146.

Shepard, J. S., 1993, Using a fractal model to compute the hydraulic conductivity function,

211

Soil Science Society of America Journal, 57, no. 2, 300–306.

Silin, D. B., G. D. Jin, and T. W. Patzek, 2004, Robust determination of the pore-space

morphology in sedimentary rocks, Journal of Petroleum Geology, 56, no. 5, 69–70.

Silverman, A. B. W., M. C. Jones, J. D. Wilson, D. W. Nychka, S. Journal, R. Statistical,

S. Series, and B. B. W. Silvermant, 1990, A Smoothed EM Approach to Indirect

Estimation Problems , with Particular , Reference to Stereology and Emission

Tomography, Journal of Royal Statistical Society, 52, no. 2, 271–324.

Sisavath, S., X. D. Jing, and R. W. Zimmerman, 2000, Effect of stress on the hydraulic

conductivity of rock pores, Physics and Chemistry of the Earth, Part A: Solid Earth

and Geodesy, 25, no. 2, 163–168.

Srisutthiyakorn, N., and G. M. Mavko, 2017, What is the role of tortuosity in the Kozeny-

Carman equation?, Interpretation, 5, no. 1, SB57-SB67.

Stoyan, D., W. S. Kendall, and J. Mecke, 1995, Stochastic geometry and its applications.

Strebelle, S., 2002, Conditional simulation of complex geological structures using

multiple-point statistics, Mathematical Geology, 34, no. 1, 1–21.

Strebelle, S., K. Payrazyan, and J. Caers, 2003, Modeling of a Deepwater Turbidite

Reservoir Conditional to Seismic Data Using Principal Component Analysis and

Multiple-Point Geostatistics.

T Bourbié, O Coussy, B. Z., 1987, Acoustics of porous media.

Tchelepi, H., 2015, Energy 221 Multiphase Flow in Porous Media, Stanford University.

Torquato, S., 2002, Statistical Description of Microstructures, Annual review of materials

212

research, 32, no. 1, 77–111.

Verberg, R., and A. Ladd, 1999, Simulation of low-Reynolds-number flow via a time-

independent lattice-Boltzmann method, methods.

Visher, G. S., 1969, Grain Size Distributions and Depositional Processes, Journal of

sedimentary petrology, 39, no. 3, 1074–1106.

Vogel, H. J., U. Weller, and S. Schlüter, 2010, Quantification of soil structure based on

Minkowski functions, Computers and Geosciences, 36, no. 10, 1236–1245.

Wentworth, C. K., 1922, A Scale of Grade and Class Terms for Clastic Sediments, The

Journal of Geology, 30, no. 5, 377–392.

Wicksell, S. D., 1925, Wicksell_The corpscle problem a mathematical study of a biometric

problem.pdf, Biometrika, 17, no. 1/2, 84–99.

Wu, K., M. I. J. Dijke, G. D. Couples, Z. Jiang, J. Ma, K. S. Sorbie, J. Crawford, I. Young,

and X. Zhang, 2006, 3D Stochastic Modelling of Heterogeneous Porous Media –

Applications to Reservoir Rocks, 443–467.

Yeong, C., and S. Torquato, 1998, Reconstructing random media. II. Three-dimensional

media from two-dimensional cuts, 224–233.

Zhang, D., and R. Zhang, 2000, Pore scale study of flow in porous media: Scale

dependency, REV, and statistical REV, Geophysical research ….

Zomorodian, A., and G. Carlsson, 2005, Computing persistent homology, Discrete and

Computational Geometry, 33, no. 2, 249–274.

