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Geohazards Detection

Early detection of incipient to through-going strike-slip faults.
• Floating wind farms, offshore floating rigs, etc.

Maier et al. 2017

MBARI 2018 Annual Report

Seafloor cables across 
San Gregorio Faults

NOAA



Motivation

Dataset : Claybox strike-slip experiments 
• Experiment: Full range of deformation stages

Approach : Deep learning
• Inelastic deformation behavior is highly non-linear
• Directly predict deformation stages from data 

without explicitly solve for analytical solution
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Claybox Experiment

Crustal-Scale Example

Application :  Time-lapse displacement data infer mechanical deformation

Wei and Anand, 2008 

Cooke’s Umass Geomechanics Lab

Hilley et al., 2019 (in prep)

Grain-Scale Example

40 Ma0 Ma 100 Ma

Gulf of California



Distributed Deep Uncut

Localized Shallow Cut   

UMass Geomechanics – Claybox Experiments
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Experiment Variation

Cooke’s Umass Geomechanics Lab

Base Plate

Rigid
Elastic



Claybox Experiments – full range of deformed stages
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Cooke’s Umass Geomechanics Lab

1/3: Stage 0

-- Stage 1 --

1/3: Stage 2

1/3: stage 3



Objective
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Given a trained model, 
which has already seen all 
fault stages from Claybox 

experiments

Prediction of fault stage
from a single ‘current-

day’ surface data. 
Goal: 

Shear Strain Rate 

∆𝒖𝒖 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)

∆𝒗𝒗 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)

Input: 

Stage 0
distributed shear

Stage 1
Echelon faults

Stage 2
Propagation

Stage 3
Through strike-slip

2.2

Output: 
stage prediction (1digit float) 



Workflow
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Data Pipeline
• Stacked 3 physical values (.mat)
•∆u,  ∆v, Strain rate

• Clipped to 128x32 sub-images 
• ~7,500 sub-images per experiment
• Train: Dev: Test = {0.75: 0.15: 0.10}

Labeling Strategy
• Continuous Label
• Regression + Classification styles

Training 
• Custom Loss Function
• Image Augmentation 
• Model Architecture and 

hyperparameter decisions 

Evaluation
• Custom Loss Metric
• Grad-Cam Visualization



550
Data Pipeline: Raw Images 



750
Data Pipeline: Raw Images 



800
Data Pipeline: Raw Images 



850
Data Pipeline: Raw Images 



900
Data Pipeline: Raw Images 



950
Data Pipeline: Raw Images 



1000
Data Pipeline: Raw Images 



1050
Data Pipeline: Raw Images 



1090
Data Pipeline: Raw Images 



Data Pipeline
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Stacked input data 128x32
(x3 channels)

Per Experiment
7,500 sub-images
2,500 stacked-images

Split {Train: Dev: Test}
{0.75: 0.15: 0.10}

--- Pre-Augmentation ---

T101 – T100 (∆Displacement/time)

∆u: slip ∆v: slip Strain Rate : Geometry
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Label
0.X

Label
2.X

Label
3.0
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Labeling Strategy
Stage 0
distributed shear

Stage 1
Echelon faults

Stage 2
Propagation

Stage 3
Through strike-slip

Curl    ∆U ∆V Curl    ∆U ∆V Curl    ∆U ∆V



ℒ = 𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑔𝑔𝑔)2+(𝑔𝑔𝑔)2+(𝑔𝑔𝑔)2+𝑔𝑔𝑔
y<1                    : g0 =  max 0, �𝑦𝑦 − 1
1 ≤ 𝑦𝑦 < 1.5 ∶ 𝑔𝑔𝑔 = max(max(1 − �𝑦𝑦,0), max(0, �𝑦𝑦 − 1.5))
1.5 ≤ 𝑦𝑦 < 3.0 ∶ 𝑔𝑔𝑔 = max(max(1.5 − �𝑦𝑦,0), max(0, �𝑦𝑦 − 3.0))
𝑦𝑦 = 3 ∶ 𝑔𝑔𝑔 = max (0, 3 − �𝑦𝑦)g0

g1

g2

g3

Custom ‘Bracket’ Loss Function and ’Bracket’ Accuracy

• MSE is a reasonable metrics for regression problem
• ‘Bracket Loss’ uses MSE with extra penalization to  predictions that fall 

outside their characteristic groups (g0, g1,g2, g3)
• Co-efficient terms / order of magnitude are tuned during training. 

Bracket Accuracy : 
• Correct if prediction is in characteristic group as ground truth
• Incorrect otherwise  
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Model Architecture

16x4@32 8x2@64

Convolution Network Layers
Input Image

128x32x3

64x16@8

32x8@16

FC Layers

Flatten  Dense  BN ReLU
2.2

Output
Prediction

(float) 

GRAD-CAM Attention

Conv2D

BatchNormalization

ReLU

MaxPooling

Shallow: x2
Deeper : x4

• Both shallow and deeper CNNs are explored.
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Image Augmentation force CNNs to ‘see’ faults
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Randomly applied: 
Horizontal Flip
Vertical Flip
Brightness
** Shift 
** Zoom 

Random Shift 
0- 20% 

Random Zoom
0- 25% 



Model Architecture

16x4@32 8x2@64

Convolution Network Layers
Input Image

128x32x3

64x16@8

32x8@16

FC Layers

Flatten  Dense  BN ReLU
1.2

Output
Prediction

(float) 

GRAD-CAM Attention

Conv2D

Conv2D + dilation

BatchNormalization
ReLU

MaxPooling

Shallow: x2
Deeper : x4 with dilation

• Both shallow and deeper CNNs are explored.
• Deeper CNNs requires image augmentation and 

dilation in architecture
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Where CNNs look at while predicting? 
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GRAD_CAM Attention Map

Use both near-field and far-field information to predict fault stages 



Training and Evaluation Results
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Baseline Performance? 
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• No existing ML, DL study on fault stage prediction
• Linear Regression show extreme overfitting behaviors
• Slightly improved generalization with added regularization (tuned ridge 

regression). But model still does not perform on unseen data



Conclusions
The CNNs models 

• Predict fault stages with accuracy of ~86% (shallower) ,~ 89% (deeper) from 
CNNs, a significant improvement from linear regression baseline (60%). 

• The deeper CNNS outperforms shallower CNNs, but required image 
augmentation and dilation CNNs filters. 

• Custom “Bracket” Loss  improves training and test accuracy. Continuous 
prediction that characterized pretty accurately into 4 groups. 

GRAD_CAM Attention 
• Help finalizing architecture choices and selecting preferred CNNs among various 

choices that make identical predictions 
• Though, deeper CNNs perform better, the shallower CNNs’ attention maps are 

more interpretable. 

Successful workflow to predict at experimental scale

Time-lapse displacement infer mechanical deformation in different scale?
• Fault detection using modern seafloor topography offshore California?
• Empirical relationship in grain-scale mechanical deformation? 
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