Evaluating Strike-Slip Fault Evolution with
laboratory experiments and 2D-CNNs:
Identifying the Geohazard Zones?
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Geohazards Detection
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How offshore floating wind farms work

) Huge floating wind turbines — each about 600 feet @ Electricity from the Power station
tall — are grouped together and anchored tothe turbines is transmitted -~
ocean floor. \ W N \ to a floating substation. F

) 7 @ The electricity
i then flows through
a buried cable to
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an onshore power
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Early detection of incipient to through-going strike-slip faults.
* Floating wind farms, offshore floating rigs, etc. e



Motivation

250
Dataset : Claybox strike-slip experiments g confiting pressure 150 MPa
* Experiment: Full range of deformation stages E_
Approach : Deep learning g
* Inelastic deformation behavior is highly non-linear ‘_‘
* Directly predict deformation stages from data : " Weiand Anand, 2008
without explicitly solve for analytical solution % i 2 3 4

Strain (%)

Application : Time-lapse displacement data infer mechanical deformation

Cooke’s Umass Geomechanics Lab

('

_Crustal-Scale Example
Hilley et al., 2019 (in prep)




UMass Geomechanics — Claybox Experiments

Cooke’s Umass Geomechanics Lab

Strike-slip Fault Evolution - Uncut Distributed Deep o »




Claybox Experiments — full range of deformed stages

Cooke’s Umass Geomechanics Lab
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Stage 3
Through strike-slip
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Objective

Given a trained model,

: Prediction of fault stage
which has already seen all

from a single ‘current-

Goal:

fault stages from Claybox ;
experiments day’ surface data.

Output:
stage prediction (1digit float)
Stage O Stage 1

distributed shear Echelon faults

ROV Ly g

Input: —

—

— Au (slip)

Stage 2 Stage 3
Propagation Through strike-slip

t av (slip)




Workflow

Data Pipeline

e Stacked 3 physical values (.mat)
e Au, Ay, Strain rate
e Clipped to 128x32 sub-images
e ~7,500 sub-images per experiment
e Train: Dev: Test = {0.75: 0.15: 0.10}

Labeling Strategy

e Continuous Label
e Regression + Classification styles

Training

e Custom Loss Function
* Image Augmentation

* Model Architecture and
hyperparameter decisions

Evaluation

e Custom Loss Metric
e Grad-Cam Visualization




Data Pipeline: Raw Images
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Data Pipeline: Raw Images
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Data Pipeline: Raw




Data Pipeline: Raw Images
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Data Pi pe line T101 - T100 (ADisplacement/time)

0

I 1

Strain Rate : Geometry

Stacked input data 128x32
(X3 channels)

Per Experiment
=7,500 sub-images
=2,500 stacked-images

Split {Train: Dev: Test}
{0.75: 0.15: 0.10}

Pre-Augmentation



Labeling Strategy

Stage O

distributed shear

Stage 1

Echelon faults

¥ IR s

Stage 2

Propagation

Stage 3
Through strike-slip




Custom ‘Bracket’ Loss Function and ‘Bracket’ Accuracy
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ﬁ 15 i ' y<l1 : g0 = max(0,y — 1)
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————
Prediction

 MSE is a reasonable metrics for regression problem

e ‘Bracket Loss’ uses MSE with extra penalization to predictions that fall
outside their characteristic groups (g0, 1,82, g3)

e Co-efficient terms / order of magnitude are tuned during training.

Bracket Accuracy :
» Correct if prediction is in characteristic group as ground truth

* |ncorrect otherwise o



Model Architecture

* Both shallow and deeper CNNs are explored.

Shallow: x2
e lG  Deeper : x4

Input Image Pl
128x32x3 Convolution Network Layers FC Layers Prediction

(f'oa )
GRAD-CAM Attention J/

- 20



Image Augmentation force CNNs to ‘see’ faults
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** Shift

Randomly applied:

** Zoom
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Model Architecture

* Both shallow and deeper CNNs are explored.

» Deeper CNNs requires image augmentation and ~ Shallow: x2
G Deeper : x4 with dilation

dilation in architecture

Input Image -
128x32x3 Convolution Network Layers Pr?fdlctl)on
oa

GRAD-CAM Attention




Where CNNs look at while predicting?

GRAD_CAM Attention Map
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Use both near-field and far-field information to predict fault stages



Training and Evaluation Results

2D-CNN Shallower: 2D-CNN Deeper: Dilation, Augmentation, Bracket Loss
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Tested Models Params MSE Bracket Loss | Bracket Accuracy

Train | Test | Train | Test Train Test

2D CNN : shallower AdamOptimizer, 0.038 | 0.024 | 0.029 | 0.048 | 81.19% | 85.82%
Bracket Loss Lr — 58-3

2D CNN : deeper Epoch=50, 0.031 | 0.022 | 0.036 | 0.026 | 87.55% | 89.80%
Dilation + Augmentation + Bracket Loss Batch-size = 32

momentum = 0.8




Baseline Performance?

30

25

20

10

05

No existing ML, DL study on fault stage prediction

Linear Regression show extreme overfitting behaviors

Slightly improved generalization with added regularization (tuned ridge
regression). But model still does not perform on unseen data

Train Dev-Test Dev-Test
Regularization MSE MSE Bracket Accuracy
Linear Regression None 0.00 0.40 53%
Ridge Regression a=038 0.03 0.04 61%

Linear Regression Ridge Regression
Label VS Prediction Label VS Prediction
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Conclusions

The CNNs models

e Predict fault stages with accuracy of ~86% (shallower) ,~ 89% (deeper) from
CNNs, a significant improvement from linear regression baseline (60%).

* The deeper CNNS outperforms shallower CNNs, but required image
augmentation and dilation CNNs filters.

e Custom “Bracket” Loss improves training and test accuracy. Continuous
prediction that characterized pretty accurately into 4 groups.

GRAD CAM Attention

e Help finalizing architecture choices and selecting preferred CNNs among various
choices that make identical predictions

* Though, deeper CNNs perform better, the shallower CNNs’ attention maps are
more interpretable.

Successful workflow to predict at experimental scale

Time-lapse displacement infer mechanical deformation in different scale?
* Fault detection using modern seafloor topography offshore California?
e Empirical relationship in grain-scale mechanical deformation?
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