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Dissolution by CO2 Rich Water
(Vanorio, Nur & Ebert, 2011)
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Salt Precipitation
(Vanorio, Nur & Ebert, 2011)
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Permeability – Porosity Evolution
(Vanorio, Nur & Ebert, 2011)
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Previous Work
Pore-scale simulation of carbonate dissolution in micro-CT images. Nunes, Blunt 2016.

q κ: Navier-Stokes flow model.

q C: Advection-diffusion equation.

q Diffusive term with a random walk.

q Dissolution as particle tracking.

q Dissolution rate, number of
particles that hit a voxel, with a
threshold φ.
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Previous Work
Pore-scale simulation of carbonate dissolution in micro-CT images. Nunes, Blunt 2016.
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Micro-CT scan scale
Berea Sandstone ≈ 500µm
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Present processing of CT-scan Data
N. Saxena(2017)
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Present Rock Geometry Representations
Indicator Function and Tetrahedral Meshes
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Other Ways to Express Rock Geometry
Implicit Functions and Point Clouds
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Distance Function
Osher, S., & Sethian, J. A. (1988). Journal of Computational Physics, 79(1)
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Propagating boundaries
The time view

The boundary value.
q F is the normal velocity field.
q T (~x) arrival time.
q |∇T |F = 1 with T = 0 on Γ
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Propagating Boundaries
Implicit Function view

Move the boundary with a velocity field ~v(t)

∂φ

∂t
+ ~v(~x , t) · ∇φ = 0

φ(~x ,0) = 0

q The solution is not a distance function.
q The starting function does not need to be a distance

function.(Barles, 1993).
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Fast Marching Methods
Using the time view
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Fast Marching Methods
Using the time view

Juan Pablo Daza • Dynamic Geometry in Rocks



19/32 Introduction Methodology Solving the Problem Results Conclusions

Fast Marching Methods
Using the time view
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Properties of the Distance Function

q The boundary is clearly defined at the zero distance.
q Unit normal is give by:

~N =
∇φ
|∇φ|

q The mean curvature is given by:

κ = −∇ ·
[
∇φ
|∇φ|

]
q The indicator function is readily available.
q The norm of the gradient is one:

|∇φ| = 1
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Moving the boundary
Osher, S., & Sethian, J. A. (1988). Journal of Computational Physics, 79(1)

Move the boundary with a velocity field ~v(t)

∂φ

∂t
+ ~v(~x , t) · ∇φ = 0

~v(~x , t) Can be defined as a function of the processes
present.

q The solution is not a distance function.
q The starting function does not need to be a distance

function.(Barles, 1993).
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~v = ±c n̂
Dissolution and Deposition, Berea Sandstone 200µm
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Advection by Surface Curvature

∂φ

∂t
+ ~v(~x , t) · ∇φ = 0

~v = −
(
∇ ·

[
∇φ
|∇φ|

])
n̂

q Surface curvature is
implicit in the
chemical
potential(Miller 2016,
Personal
Communication)

q Berea Sandstone
200µm

Juan Pablo Daza • Dynamic Geometry in Rocks



24/32 Introduction Methodology Solving the Problem Results Conclusions

Surface Diffusion

q Preserves volume.
q Destroys the distance function.
q Fourth order derivative,

unstable.
q Implicit in space, explicit in time.
q Destroys the distance function.

~v = ∇sκn̂

~v = (∇−∂n)·(∇−∂n)

(
∇ ·

[
∇ψ
|∇ψ|

])
n̂
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Elastic and Electrical Properties
Motion at Constant Velocity
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Elastic and Electrical Properties
Motion proportional to Curvature
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Elastic and Electrical Properties
Comparison
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Transport Properties
Motion proportional to Curvature
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Future Work: Processes Present
Fluid Flow, Dissolution, Stress

~v(t) = ~v(~ν(~x , t), C(~x , t), σ(~x , t))

Where:
q ~ν(~x , t) is the fluid flow field.
q C(~x , t) is the chemical process that dissolves the

rock.
q σ(~x , t) is stress.

In more detail:
q C(~ν(~x , t), t)
q C(~ν(~x , t), σ(~x , t), t)
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Future Work: Dissolution C(~ν(~x , t), t)

CaCO3 + CO + H2O←→ Ca2+ + 2HCO−
3

Diffusion, Advection Advection, Dispersion Advection, Reaction

Pe =
d vdf

D
Pe,D =

Lcvdf

f (D)
Da =

αSr k(T )L
Ceqvdf

∂C
∂t

+ ν · ∇C = D∇2C + Keff(Ceq − C)
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Conclusions

q With this computational approach it is becoming possible to rigorously
simulate pore space diagenesis in rocks.

q Predict the associated changes of rock’s physical properties.
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