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ABSTRACT

A well-known effect of attenuation is the change in frequency content and amplitude
ofa pulsé propagating through an attenuating medium. Another aspect of wave propagation
" in viscoelastic media is the presence of frequency dependent reflection coefficients. This
phenomenon is studied here in three differents ways.

The first way Is theoretical. Relative effects of different viscoelastic models of
attenuation on reflections are studied, and it is shown that all of the models verify the same
conclusions. Then a review of the theory of wave propagation in laterally homogeneous
viscoelastic media emphasizing the role of the quality factor Q is presented. The possibility
of a quality factor Q independent of frequency in two dimensions is axamined in detail.

in the second part of this study, a new method of generating lateraily homogeneous
synthetic seismograms by using wave equation extrapolation is derived. It takes into
account attenuation in the different media but is applicable only for layered media. The
attenuation model used is the so-called constant-Q model. The resuits of this computer simu-
lation show that the effect of attenuation contrast is noticeable only in cases of a large Q-
contrast relative to the chancé of elastic properties. In those situations one can observe a
relative increase in the amplitude of post-~critical reflections and a decrease in the amplitude
of the head-waves. No phase effects is cbserved except near the critical angles.

The third section deals with the experimental verification of this effect. The resuits
prove that attenuation contrast does have an important effect on reflections when the
acoustic impedances of the two considered media are very close. While it is a very common
property In the upper crust of the earth, this condition of very low acoustic impedance con-
trast is difficult to simulate in the laboratory and resuits in a high degree of inaccuracy in
the data. Nevertheless by using samples of polymer and silicon rubber we have shown that
with low acoustic impedance contrast and high attenuation an increase in the amplitude of
reflections due to Q-contrast is cbservable. We have also simulated the recorded axperi-
mental signais at different angles of incidence by using a model of attenuation for which the
Q quality factor Is independent of frequency. Finally we have shown that for a large angle of
incidence ( = 20 - 30 degrees ) the Q-contrast effect dies out when the elastic refiection
coefficient is very low. We always used angles lower than the critical angle to avoid prob-
lems due to the singularity of this zone. Theoretically according to the resuits of Part Il,
when the critical angle is low, the effects of attenuation occur at post-critical refiection
angies and are cbservable in head-wave amplitudes.
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INTRODUCTION

"It has been a frequent occurrence in the past decade that lithologic interpraetations
of selsmic sections have varied greatly from actual subsurface lithologies: traditional
methods in signal processing yield only geomeatrical views of the subsurface. This divergence
between the aim of seismic exploration and the results obtained has necessitated the
development of numerous interpretive techniques. For example, seismic stratigraphy is one
of them: its approach is qualitative dealing mainly with shapes of seismic interfaces and fre-
quency content of the recorded signals. Another example of these new techniques is Rock
Physics. In fact it is in itself a new domain trying to develop and understand physical pro~
perties of rocks ( velocities, attenuations, permeabilities, porosities, dielectric constants ).
and the effect of in situ conditions on these properties. Among these properties we focus
our interest on seismic wave attenuation in rocks and its application to seismic exploration.

What we call attenuation is the absorption and Irreversible conversion of wave
energy into heat. It is an important effect and it greatly affects the characteristics of the
racorded signals. For example, and because it is the m obvious fact to observe, one can
look at a seismic section and see ciearly that, as the wave propagates deeper and deeper in
the subsurface, the recorded signal looses its high frequencies and its resolution with
raspect to the seismic layers. indeed this loss of high frequenéles is not the only effect of
attenuation on waves propagating in lossy materials. These effects can be separated in two
different sets. One Involves all propagation effects (decrease in amplitude, broadening of
the puise, interferences). The other one, which is studied here in some detall, invoives the
fact that the reflections are occurring at interfaces between viscoelastic media. This situa-
tion implies an effect on the recorded signals which can be an indicator of the value of the
attenuation contrast ( and so can give an idea on the fluid content for example ) between
the two media invoived in the reflection. It is important to realize that we are interested in
what is called “Intrinsic” attenuation which Is a characteristic of a particular medium. Qther
types of "attenuation” do exist in seismic sections. They are a consequence of particular
wave-paths such as intrabed muitiples, scattering or such phenomena. The study of the
interface attenuation effect we describe here Is done using three different methods.

in Part |, we set up the equations necessary to understand this phenomenon. We use
linear viscoelasticity theory which seems to be a good theory to represent attenuation in



rocks: It is justified by the strain amplitudes involved in seismic explioration and by the
phenomena responsible for wave attenuation that is to say pore fluid related processes
(squirt flow mechanism , etc) . .

In Part i, a technique of computer simulation is developed avoiding as much as possible
any dispersion-lke grid dispersion which one cbserves when using finite differences
methods. The non-dispersion condition is important, because we are looking at tiny effects
which may be masked by any dispersive computer technique. This technique allows us to
introduce easily attenuation in ouwr modeis.

Finally in Part i1l to see If our theory is applicable we describe the apparatus we buiit
{0 simulate an earth-jike situation for acoustic impedances and attenuations and to deter-
mine whether the effect of Q-contrast on reflections is cbservable in the laboratory.

We expect these results to show that even If it is difficult to measure attenuation
" tn situ, this ditficulty is compensated by the possibility of getting some Insight into the
ithology of the subsurface. For Instance studying some side effects can give us an Idea of
the saturation, fluid content, etc of a given formation. o



PART |

ATTENUATION ON REFLECTIONS :

A THEORETICAL STUDY



A - THE EFFECT OF ATTENUATION ON REFLECTION
COEFFICIENTS : ONE-DIMENSIONAL CASE

INTRODUCTION

For plane waves, in elastic media, the reflection coefficient is a function of the densi-
ties and the velocities of the two media we are considering. For the one-dimensional cass,
at normal incidence, the reflection coefficient is given by the well-known formula:

pP2Ca—=p; Cy

R=
PaCz+p,C

(1.1.1)

pu Gy being the acoustic inpedance of medium i

This formula shows that if there is not contrast in acoustic impedance between the two
media, there is no reflection coefficient and therefore no reflection.

in fact actual media are not perfectly elastic, and a better way of describing them is by
using the concept of linear viscoelasticity. This concept implies a linear response of the
material to an applied load and a time-dependent relationship between stress and strain.

This concept provides a good working hypothesis:

The linearity is implied, because in the earth we deal with very low ampli-
tude stresses whenever we move one or two wave-lengths away from the source.

Recent work (for example Winkler and Nur,1982) have shown that, at the
strain amplitudes concerned in seismic exploration ( <107%), the attenuation
bhenomenon is not due to friction but to the fluid content of the considered media.

The purpose of this paper is to calculate the effect of different types of viscoelasti-
city modeis on reflection coefficients at normal incidence. We show that, even with no con-
trast in acoustic impedance, there is a reflection depending on the contrast in attenuation
coefficients.



I-EFFECT OF ATTENUATION CONTRAST ON REFLECTION AMPLITUDES

The linear viscoelasticity hypothesis implies that the stress-strain relationship can
be written: :

o(t) =m(t)* e (t) (1.1.2)

where ¢ (2) Is the stress and ¢ () the strain.
Or in the Fourier domain:

(o) =H(w)E(w) - | (1.1.3)

In his thesis, Kjartansson (1879) studied some standard viscoelastic models. Figure
1-1 gives the schematic diagrams used to reprssent these modeis and the frequency
dependence of the modulus X( w ) relating stress and strain in the Fourler domain. We
generalize these modeis and calculate the frequency dependence of the quality factor Q
and the implied effect on the refiection coefficient for each of them. .

Table I-1 shows the resuits. In the column giving the reflection coefficient, we have
only written the first order approximation which is valid for large Q (Q & 10).
We have compared every resuit to the resuits given by the constant Q model
"derived by Kjartansson (1879) (CQ model in the following text). ’
Appendix A shows how the results of Table -1 are derived. Note that, for large Q
( @Q=10), the effect of G-contrast on the reflection coefficient is nearly independent of the
viscoelastic model considered; therefore studying this effect will not heip determine which
modal best represents the mechanism responsible for wave attenuation.

Due to the non-dependence of the reflection coefficient on the different viscoelas-
tic modeis, we use the formulation derived with the constant-Q model. We get:

p’C% [inl"" -
PCo |wo

R= >Co 1o 7= (1.1.4)
Tc—s:] +

where C and Cy” are the phase velocities at the reference frequency g, p and p’ the den-
sities, and 7y and y* parameters reiated to the quality factors by the relation

e Lol
4 e Q
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By using the development derived in Appendices A and B this equation may be written:

P'Co~pCo 1 [1 _1 ol i1 __ 1)
Rw + —]Log;;*+4[q, 5—]591:(0) (1.1.5)

p'Cho+pCqy 21rl?-— Q@
This approximation is valid even for very low Q (as small as 5).

This gives
1 & 1 {1 2
_ [?) 11
IRI— [1?01--2—"—[‘09 ;’ + 16 [Q, ‘Q-] (1.1-6)
p’Co=pCo
with Rg = ———
°T P Ch+r G

When R, is much bigger than I-;T- 13-‘ we can write:

|R|-|R°|=2‘—"-IE‘,,—-‘E{Log;°’;| it jo] =] vl (1.1.7)
IR] - ]R},[: 31?(:{%'—- ‘5]' it Jol=|wl (1.1.8)

Figures 1-2 to 1-4 show the dependence of IRI - |R.,|wlth respect to <, with g as
. 0

and

the center frequency of the signal. In these three figures the values of @ given are in fact

-1
the vaiues of [-Q!—- 15] . When @=0 this expression gives the value of @°.

In Figure 1-2 there is no acoustic impedance contrast and so F,=0.

In Figure 1-3 R3=0.01. The resiits show that, for a typical seismic signal for which
the spectrum width is about :L(QN = Nyquist frequency ) and the center frequency is %!—.
we have an observable éffect on the reflected amplitudes for @ around 70.

In Figure 1-4 R3=0.1. in this case, to observe any effect, we need a @ of the order
of 7 or smaller, which is uniikely in the earth.
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11-EFFECT OF ATTENUATION CONTRAST ON THE SHAPE OF THE TIME SIGNAL

Another interesting effect is that of the Q contrast on the shape of the signal. If
the reflector Is at a depth z and if the impulse response is k(z,t) we have :

y() = s(t) * k(z,t) * 7(t) * k(z,t) (1.1.9)

with
y(t) = recorded trace
s(t) = signal
r(t) = reflection coefficient which is a function of time when there is Q contrast.

We can write the Fourier Transform of the impulse response in the following form:

Klw)=e™ e-w% (1.1.10)

Then a and ¢ are given by the model we are considering. In our case we still use the CQ
model ( Kjartansson,1979). With this model we have: -

C=Co ”i’o-[' (1.1.11)
with
Mo‘lll
Co= 21 (1.1.12)
cos 5
I I
7= gtan ‘[5] (1.1.13)
Q= %tan[%’-] sgn(w) (1.1.148)

The results for a Dirac source traveling in an attenuating medium are given in Figures
1-5, 1-6 and 1-7. The plots are time plots of the signal recorded.

in Figure 1-6 thére is no impedance contrast, and we change the Q-contrast from
trace to trace. The middle trace is the trace without Q-contrast. The change of sign for Q-
contrast is equivalent to a change of phase on the signal.

In Figure 1-8 there is a slight impedance contrast and the effect of different Q-
contrast on the puise may be seen. This figure has the same scale as figure 1-5. As in the
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pravious figure one can see the puilse without the Q- contrast which corresponds to the
well-known shape described by Kjartansson (1978) in his thesis.
in Figure 1-7 there is a bigger impedance contrast, and the effect of the Q-contrast
Is apparent only on the amplitudes. This figure has a different scale than the first two.
Wae shall show in Part Il (Experimental part ) the effect of the Q-contrast on a giver

signal.
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Co = 3800m/s p=p'=27g/cm?
C’s = 3800m/s Q=80
Q' =20
' Q'=38
Q =50
Q' =ga5
\/
Q' =80
tme
.

Fig.1-5 Effect of attenuation on a Dirac puise (one dimensional case). The wave Is
traveiing in a medium with a Q = §0 and is reflected at an viscoelastic interface, the second
medium quality factor being variable (=Q'). There is absolutely no acoustic impedance con-
trast Le Ro = 0. The third puise is the pulse recorded when there is no Q-contrast effect on
the reflection.
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Co = 3776m/s p=p' =27g/em?
C‘g = 3800m./ s . (- X ¥-1]

o' =20

L o ass

l Q' =580
Q =68
- —
Q' =80
P‘
tdme

Fig.1-8 Effect of attenuation on a Dirac puise (one dimensional case). The wave is
traveling in a medium with a Q = 50 and is reflected at an viscoelastic Interface , the second
medium quality factor Mg variable (=Q'). There is a very small acoustic impedance con=

trast Le Ro = 0.003. The third puise is the puise recorded when there is no Q-contrast
effect on the reflection.
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Co = 3700m/s p=p =279/cm?

C’o = 3800m/ s Q=80

L

Q'=10

Q' =30

Q =80

Q'=sT70

Q' =90

rrror

Fig.1-7 Effact of attenuation on a Dirac pulse (one dimensional case). The wave Is
traveling in a medium with a Q = 50 and is reflected at an viscoelastic interface , the second
medium quality factor being variable (=Q'). There Is a small acoustic impedance contrast i.e
Ro = 0.013. The third puise Is the puise recorded when there is no Q-contrast effect on the
reflection.
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APPENDIX A

Since the method of caiculating Q and its effect on the reflection coefficlent is simi-
lar for every viscoelastic modei, we derive the resuits for only one of them, the generaiized
Maxwell model. Do

The reiations we use are the following.

%) = !ﬂp&’L (1.1.16)
where C(w) Is the phase velocity and p the density. |
1.
ke ten(s) (1.1.18)

where § is the phase angle between stress and strain which are related In the Fourler
domain by the relation

(o) = M(w) E(w) (1.1.17)
We have ailso
_pC=pC
R o C +pC {1.1.18)

where R is the reflection coefficient and (oC) and (0°C") the acoustic impedances of the
two medias.

For the Maxwell model, we have
MHw) = Hq'{%" (1.1.19)
with
o = -;’—o- (1.1.20)
As
(i 7= |o, r’c‘m("" : (1.1.21)
we can write

H(w) = HoAw)e "™ (1.1.22)
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with
Alwy) = |0l i
Y l1 +2 Iolr:’z cos(nmy) + Ial r"_ll—”-
and
_ . ‘o, r’ ;in(m) ] _
o) = - tan T+ IQT cos(ﬂ"y)j sgn(w;)
So using (1.1.16) we obtain
19e)
Clw) = Cq AR w)e 2
with

and using (1.1.16) and (1.1.17) we have
Q= cotl‘dl

This gives

2y
Q = cot(my) + —Ii—

sin(my)

To obtain R, we use (1.1.15) and (1.1.18) and a resulit, proved in Appendix B:

xy =1 z-1 1
W rl S z+1 T 2%

So then we have
L°.C _,
R=-—LE
.L'_C_'_.l.‘]
pC
or

p’'Ca A'(Ol Nl %(‘0'-“) -1
_ pC [Alw) ¢

p:coo A'(ol)ltae';'(" -9) 1

pPCy A(Ul)J

(1.1.23)

(1.1.24)

(1.1.25)

(1.1.26)

(1.1.27)

(1.1.28)

(1.1.29)

(1.1.30)

(1.1.31)
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This can be written
_ P Co=pCq . 1 Aw,) i—{d - ] .
R= #Co+5Cq + -;-Loy————-A(m) +Z () = %ey) (1.1.32)
with

"lﬂ

A(ey) = va r(_, a1+ 2|o, r'cos(ﬂ-/) + l”‘

A(wy) 1+ 2'0, r?eos(trf) + lo, (1.1.33)

and

oy | [ o |
.+ I"" mry’] 1+ lo,rﬁmryj

¥°(w,) = ¥w,;) = sgn(w)im(y’'—y) - tan™! "

(1.1.34)

When Q and Q' mlargo(z1o)wocanshowﬂnt.7add7‘msmall,mdsowo
can deveiop the preceding expressions:

Ay I"l lt(r-y) _ 1 + 2yLog l”x'

Al  + 2y oy l""l (1.1.36)
#(0y) - 8wy) ¥ sgnle) L2 (1.1.36)
. .
~ %%:—:E;-;—%—+ %(7’-7)1;09 Iol | + %ér(synv)(‘r’ -) (1.1.37)
We use the same type of approximations for Q and we obtain
=2 (1.1.38)

™y

To compare with the constant Q model we must compare ¥ for different modeis but for the
umomodhm.ﬂmtlstouy,thesmq

We find that

Qe = " . . (1.1.39)

7R
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The subscript CQ means Constant Q Model. And

2
= 1.1.40
Quzv) P ( )
The subscript M.W. indicates the Maxwell Model. So
Yur) = 2ycq) - (1.1.41)

And so in terms of Q,R(cq) and Ry y.) have the same frequency dependence at a first order

approximation:
;|
111 -1 1 1
R=Fot ﬁ‘[ﬁ]“g o | + Z‘l?‘?]s""‘“" (1-142
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APPENDIX B

We want to look at the accuracy of the following formula

-1 _=

zy +1 z+

_z=1.1
= 1+-2-Lagy

The power series axpression of the inverse function of tanh~!(r) is

tanh"(‘r)" (—') f+-a—-+r5°
if we take
z-1
e+l
which is equivalent to
~1+r
2Ey=r
Then we cbtain |
-,(2-1) z=1_ z—‘ll z—‘ll
tanh z+1) =z+1 _{z+1 _[z-n
in the same way, we have :

1 -1 .1 —1)
E@m=w+1+a—{:gy-ﬁ-]+ ....... =

By combining (1.1.46) and (1.1.47), we obtain

- - - 138
y-1_=2 1+1—Logy+1(z 1)

= =1

2y+1 z+1 2 3l(z +1)9
As we are looking at smalil effects, we can write

y=1+e

N o
g

[gy-ﬂ [2-14-:-.-]’_[1+

:y-l-‘lj z+1+ez]

with ¢ small

£ represents in our case the ratio

Then

(zy +1)3

8ez
22 -1

4+ v

1

1—Loyz + —logy

2

veoe]

(1.1.43)

(1.1.449)

(1.1.45)

(1.1.45b)

(1.1.48)

(1.1.47)

(1.1.48)

(1.1.49)

(1.1.50)
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And the error cbtained in applying the approximate formula given by {1) becomes

Sfz-1 @), @12
A= 5-[(2.'.1)3 (zy+1)aj"253(z+1)4 (1-1.51)

It is interesting to give some values to what is the practical accuracy of this formula. A
if we take a huge value for a reflection coefficient that is to say:

_z-1_
r= P 0.4 (1.1.62)
Then we get
1%-'-: 0.17¢ (1.1.53)

If now we take for ¢ a value of 10 % (which is very important too ) we are getting

T

This is a good approximation.

A more reasonable, but still large, for r will be 0.1 . Then

-l%-l-_-= .06¢ (1.1.54)

For £ we can take 5% and so we get

lél-= 25%

The formula is then very accurate.
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B - REFLECTION AND TRANSMISSION IN ATTENUATING
MEDIA

INTRODUCTION

In this chapter we look at the reflection and transmission of plane waves in a
laterally homogeneous attenuating space. To be more precise the space we work with is
linear and viscoelastic. This hypothesis as an earth-model has already been justified in Part
I-A.

We examine two cases:

1) solid-solid interface
2) liquid-solid interface

Our Incident waves are either SV-waves or P-waves. The problem can be set up in
exactly the same way for SH-waves and is simplier because there is no conversion from P to
SV-waves or vice versa.

This paper is not innovative with respect to ‘the material included but is an attempt
to synthesize previous works and to define notations to be used subsequently (cf Part 1-C
Constant-Q Model in Two-Dimensions ? "' ).

I=- GENERAL THEORY OF VISCOELASTICITY

The linear viscoelasticity hypothesis can be expressed by a generalized Hooke's law
relating the stresses ¢ to the strains .

a“(t) = G (L) * 2y(t)
which Is equivalent to
og(t) = Capu(t) * en(2) (1.2.1)

where Cyy = Gy In these equations, Einstein's notation Is used ( ie summation on
repeated Indices). This notation will be employed throughout this thesis.
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~

It is important to note that the matrix of "elasticity” is now time dependent. In the iso-
tropic case the stress strain relation reduces to

cv(t) = 6@[]((‘) - g%t)—] ‘Gu(t) + 2;4(‘) . Gq(t) | (1.2.2)
with éy = Kronecker symbol
K(t) = Bulk Moduius
ut) = Shear Modulus

Here also the moduli are time-dependent. In the elastic case they may be written:
K(t)=Kob(t) (1.2.3a)
wt)=pqb(t) (1.2.3b)

where 5(¢) is the Dirac distribution.
The equations of motion are obtained by conservation of mass and iinear momentum

O0y4 + fi = piig (1.24)

with f; = body force per unit volume
and y; = i** component of the dispiacement

As we consider seismic waves, we use the approximation of Infinitesimal strains.
Strain amplitudes found in seismic exploration are very small: one or two wave-iength from
the source, the strain amplitude is of the order of 10-% or smaller.

2y = 3405 + duy) (1.26)
Combining equations (1.2.4) and (1.2.5) into (1.2.2) we obtain
piiy = cqpr(t) - g“a(—t)-] 9 auy + u(2) * Py uy + ult) ® G'gu, (1.2.8)

in this equation u is a function of time and spatial coordinates.
if we take a time dependent u of the form e'%¢, equation (1.2.8) can be written:

ot = a‘,[km = ZL‘%-} (6% th 0% + te) * [[a*,,m-»aﬂ, U,]c‘"‘] (1.27)

in this equation U/ is a function of spatial coordinataes only.
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This can be 'rewritten using the following relationship:

m(£)*0% Uy €%t] = H(w) 8%, U o%ct T (1.28)

This gives

=pa? Uy = [K(G)) - g%]azﬂ Ue + y(u)az” Ui (1.2.9)

We can rewrite this equation in terms of vectors instead of coordinates. We can also come
back to a displacement function of time and spatial coordinates. This gives

[K(o) + a"’) V9 + w(w)VPi = pil (1.2.10)

with 3 3 volumetric dilation = V-

This equation is the familiar form of the wave equation for elastic media. The only
difference is that now we are dealing with frequency dependent modull. To insure the
causality of these moduli in the time domain they need to be complex in the frequency
domain. We can now continue our theoretical development as for normal elastlélty.

We can transform equation (1.2.14) by using the Helmholitz form for i
a = V8 + Uxd ' (1.2.11)

with V- 20
Combining equation (1.2.11) into (1.2.10), we obtain the two well-known wave
equations in elasticity theory '

Vo +k2D=0 (1.2.12a)

v +k2d =0 (1.2.12b)

with ky =

®|e 8 e

In which

(1.2.13c)



28

/8
8= [E-] (1.2.134d)
P . .
The general plane wave solution of equations of type (1.2.12) is
& = foeilet -53) (1.2.148)
E is a complex vector and @,aeanplaxeonsun_t
We can write
E=P-ia (1.2.18)
with
13= propagation vector
d = attenuation vector

And the solution to equation (1.2.14) becomes

&= %.-8.4(4 -B (1.2.18)

Since we do not want the amplitude of the wave to increase in the direction of pro-
maﬂmﬂteangleybctwmﬁandﬁmtsaﬂsfy

r

-057<2

The existence of this angle 7 and its difference from O imply that the planes of eon-
stant phase and the planes of constant amplitude are not parallel. Figure 1-8 shows what
happens to a plane wave front at a fiquid-liquid interface if there is different attenuation in
the two liquids.

The waves one usually work with are ones for which planes of constant phase are
parallel to planes of constant amplitude, ¥ =0 . These waves are called homogeneous
waves. When >0, it is natural to cail these new waves inhomogensous waves.

Equations (1.2.15) and (1.2.16) give us

1E] = g-= k, (1.2.17)

where v =( ;f_;ll'
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Fig.1-8 Reflection and transmission of a plane wave in a viscoelastic medium.The length
of the arrows is proportional to the amplitude of the displacement. Letters A and P indicate
respectively the attenuating and the propagating vectors.
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Fig.1-9 Reflection and transmission of a P-wave at a liquid-solid interface. The nota-
tions are the ones used in the text.
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and where I is the elastic modulus:

for P-waves M=K+-4-3&

for S-waves H=p
From (1.2.15) and (1.2.18) we also obtain :

|P| = [%-[Rek,,z + %Rek,,z)z + ('%:’fi}mnm ' (1.2.18a)
|d] = [;—[-Rek,,z + [(Rele,?)z + ('T“"":%)z-]m]]m (1.2.18b)

We can also calculate the phase velocity which is given by

Following Borcherdt (1973), one can show, by using equations (1.2.18a) and (1.2.18b),
that this velocity is greater for homogeneous waves than for inhomogeneous waves.

1l. ENERGY EQUATION

We have seen that the displacement vector was il. In fact the actual displacement
vector is u}} and verifies the following equation derived from equation (1.2.10) .

p-u,; =(Kp + Ea'-e-)e‘!,g + p.gvz‘u} + :’—{(K[ + ‘;—l)eﬂg + ;L]Ve‘ll; (1.2.20)

in this equation and all the following ones the subscripts K and / indicates respectively the
real and imaginary parts of the complex function involved.

To obtain an energy equation, we form the dot product with 11; ( Lindsay , 1960 ).
After transformation ( Borcherdt , 1973 ) we obtain

N 1 M 91
-:T[%ugz + E(I(R + ?R')‘!’Rz + -Z-#Ra,um.a,,ugj]
+ L + By 2 Uptl (1.2.21)
o+ 3= + pr0;Upyipy .

= [(1’(,, + ‘—g—’—)ﬂga} + 1;(1{, + L;L){s,,a}] + v{ug(a}.w}) + ;—m(u}.vu})]



32

By integrating equation (1.2.21) over a volume V we obtain an equation of the form

2. Bdv + [ Ddv =~ [ 18 . 1.2.22)

with : E'= Kinetic and potential energy ( in density ).
D= Rate of energy dissipation per unit volume .
I= Energy flux per unit time .
Then, we can define the attenuation coefficient. This definition must be compatible
with the one-dimension case. We apply the same definition as Borcherdt (1977) :

Loss in energy density per cycle of forced oscillation
Peak energy density stored during cycle

By using equation (1.2.22) we can caiculate this ratio. A complete development can be
found In Borcherdt (1873). it gives

2n@t = (1.2.23)

For P-SV waves
M
Hy +m—M-—z-tll'lz7 :
= L J- - (1.2.24)

The subscripts | , R are indicating the imaginary and real part respectively .
The varisble i has a different expression for P and Sv waves:

ForP-waves : M =A+2u=K+ %ﬁ

For SV-waves : i = u

For SH-waves

P m‘ "'

(1.2.25)
1+ ——m-y'| B i I :

These formulas are studied in more detall in the naxt chapter called, ” Constant Q Model in
Two~Dimensions * (Part I-C)

I"R1+
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Ill. REFLECTION AND TRANSMISSION

Unlike the elastic case, four parameters are necessary to define completely each
homogeneous wave:

1. The angle of propagation

2. The intensity of the propagation vector

3. The angle between the propagation vector and the attenuation vector
4. The intensity of the attenuation vector

These parameters are shown in a schematic way in Figure (1-9) for a liquid-liquid
interface .

We are going to set up the equations that must be solved to get the transmission
and reflection coefficients. In the following equations, the time dependence is omitted and
understood to be gt<* ,

_ The equations are set in the case where the incident wave is a combination of P and
- SV-waves, and the solution to equation (1.2.10) is expressed as a-'functlon of potential
solutions of equations (1.2.12a) and (1.2.12b) . :

In all the following equations we have:
Subscript 1 indicating the incident waves
Subscript 2 indicating the reflected waves
Superscript ‘ indicating the transmitted waves

So the problem can be expressed in the following way:
d =8, + 3, = 4,e t=ds) 4 4,q-i(kards)
¥ =¥, + ¥, = Bye~t=-12) 4 p,g-tlka+ss)
& = Arg—tl'z—d's)
¥ = pre=ta-ra) (1.2.26)

with



o | (1.227)

in all these equations the constants (4,,58,, - ' - ), the variables (k .d,f, - - - ), the velocities
(a, .), the modul{ X ,u, - - - ) are complex valued quantities.

At the boundary, we have to express the continuity of stresses and displacements .
Two cases must be considered :

1. SOLID-SOLID CASE .
displacements u, =u’
Uy S’
Om = 0’

gy = O0g’

2. LIQUID-SOLID CASE

(The wave goes from a liquid to a solid .)
displacements Uy = Uy’
stresses O=0m’

Ogs = 0gg’

We emphasize the second case, and we take as the incident wave a homogeneocus
P-wave, a P-wave for which attenuation and propagation are parailel vectors.

The solid-solid case can be treated the same way . Figure (1-8) shows the notation
we use. System (1.2.26) reduces to :

§ = Ay a-ilm—ds) ;. 4 g —i(h+de) .
_ ¥=0

$’ = A’e—th's—¥'s)

W = pog-ivs-ss) (1.2.28)
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By definitions we have
P, = kg# = dp? = (kp,0,~dg) = (P,sind,,0,—P;cosv,) . (1.2.282)
d) = (~k1,0,dy) = (a,sind,,0,~a,cosv,) (1.2.29b)
P” = (k’p0,~d’g) = (P’sin¥’p,0,—P cosd’p) (1.2.29¢)
a” = (—k",0,~d") = [a’sin(8' —7'5),0,~acos(3, 7)) (1.2.29d)

and so on for the other vectors f;z,ﬂ..g,s..',b" . The subscripts R and | stand for real and ima-
ginary parts respectively . The letters F,;,a,.... without arrows stand for the moduli
U';ltl YY) P

By using equations (1.2.18a) and (1.2.18b), we show that for an incident homogene-
ous wave we have: '

‘ 1/2
Py=kap= ﬁ"’; %—[Iﬁ- -g—p + Kp + g'#l?] (1.2.30)
+ 5“
1/8
ay =~k = W; ;—{K«P -g-p.l -Kp - g-y.g] (1.2.31)
+ ?ﬂ
By using the boundary conditions we obtain :
k=k’ _ (1.2.32)
This relationship Is important, because it is in fact a generallied Snell's law.
The boundary conditions also give us the following system:
d(A, - A3) =Ad’ - B’k
2d°kA” + B(f2-k¥H=0
pR(4, + 4p) = p‘p'er( 72 —-k2 -2kt 'E'] (1.2.33)

From these equations we can calculate the reflection coefficient which is given by the
well-known formula (Ewing et al, 1957):

]
|
-

R = (1.2.34)

LY kS
lllu
L]
+
-

in which
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z= %'—:-,%"[(f" - k?)? + 4k?d’s ] (1.2.36)

These boundary conditions show that for reflected waves we have
7P‘ = 7P. ! . (1 '2'36.)
“p‘ = 'Gp. (1.2.38b)

and for transmitted waves , we cbtain

Vekp ]
* = tan™! 1.2.37a)
% (llz." -k‘l + Real(k,® — lc?))w] (
/2y ] (1.2.372)

7" = 1", -tan"‘[( lk..,g _kﬂl - R.Gl(k.‘a - kﬂ))l/l]

and similar formulas for 9°, and 7%, .
The resuits are shown in Figures 1-10 to 1-14. In each figure we show the usual
case ( no attenuation ) for comparison with the attenuating case. -

-
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C - CONSTANT Q MODEL IN TWO DIMENSIONS ?

INTRODUCTION

Elnar Kjartansson (1979) derived a rigorously constant-Q model for the one-
dimensional case. Since in the previous chapter (Part 1-B) we have derived the energy
equation for wave propagation in viscoelastic media and the formulas for attenuation in a
2-D space, now we are going to study the possibility of deriving a rigorously constant Q
(CQ) model in two dimensions and.

{. RECALLS

In the previous chapter (Part I1-B "Reflection and transmission in linear viscoelastic
media " ), following Borcherdt (1977), we have defined the quality factor by the following
ratio :

2nQt = Loss in energy per cycle of forced oscillations
Peak energy density stored during the cycle

This has given to us

(\r + 2u)?
(\r +2u7) + g Ti—:—a-:l-z—tanz'yp

@' =
O\ + 2u7)
(\p + 2up) + up ﬁa—ﬁ"l—ztanzyp

(1.3.1)

l"’] + l,::?Iz tﬂ"z'fsv

KR + -ER—“F—tanz'rsv

2|u)?

ey = (1.3.2)

uf “
1+ l——z-taﬂz‘rsy
“l ‘a' ' (1 -303)

uf
Ve s

1+




The subscripts P,SH,SV indicate the type of wave we are looking at.
The subscripts R,/ indicate the real and imaginary parts respectively.

The angles ¥ are the angles between the propagation and the attenuation vectors
as defined previously. '

lnaiidmlmwohavon =vs = ysg = 0 and this gives the well-known for-

mulas
=1 - _M_+2_“_£_
@ = T (1.3.9)
Qs = %: Q3 (1.3.6)

Figures 1-165, 1-16 and 1-17 show @51,Q57, Q52 as functions of the.angles .

One can ses that the effect is amall even for the large attenuations that have been
piotted. As a rule of thumb, one can say that the effect begins to be cbservable for y>72°.

We have seen in Part |-B that yp may reach values greater than 72° when the
incidence angie gets ciose to the critical one. So we hava'to take into account this varia-
tion of @ as a function of y to derive a rigorously constant-Q model. On another hand we
must remember that the ¥ dependence is very small which implies that Q may be considered
as nearly constant and equai to the 1-D value as soon when we stay under the critical
angle.

We need to racall also the results derived by Einar Kjartansson (1978) for the con-
stant Q model in one dimension.

The solution he gave is the foliowing:

Q Is a constant function of o if the viscoelastic modulus corresponding to the

considerad wave is glveq by
Lr. gimegn(v) (1.3.8)
Gy

. \2a
Il(o)=ﬂ.[!'5?-] = M,

Q! = tan(na) (1.3.7)

which gives for Q :

we being a reference frequency and M, = M(w,)
This resuit will be used in the next paragraph.
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-

I1.CONSTANT Q MODEL IN TWO DIMENSIONS

1. FIRST CASE - SH-WAVES
If we writez = :—;;—. using equation (1.3.3) we obtain:

o st

T 1+ 22

1_+[1+—’L-tan‘733]77

1+2°

-

Q3 = 2=z (1.3.8)

We look for @3} Independent of w for every value of ygy . Since this is true for every
value of @ , it will be true in particular for the value ysg = 0.

Ammwmdlﬂmfqué!ndepmdmtofobmhavoz=f—;—-hdepmdentof

Having z Independent of , insures that Q33 is independent of w for all ygz.
So in two dimensions, we have a constant Q mode! for SH-waves if and only if %ﬁs

independent of o . The solution is the one derived by Kjartansson:

2p
o M@’ﬂ-[ﬁ%} '

= £L - tan n8
&r

which implies that

and 30 gives

[+ sintmgtan®ysy] "
1+ [1 + sln’rrﬁtanz'y_m]”r

Qs34 = 2tan g (1.3.9)

which is in fact independent of c.

2. SECOND CASE - SV-WAVES

If, as in the first case, wa write z = ‘%—,uslng equation (1.3.2) we obtain

V 2
1+ ;-z—;tan‘ysy
Gl== tz (1.3.10)

o=»
—Z___tan
1+ 3 sy
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As In the previous case, to have Q) independent of w for all values of the angle Ysv . wWe
must have z independent of » . It is aiso, in this case, a necessary and sufficient condition.

So we have the foliowing resuit
It
2s
1) = o) [i‘i]
G
Then we get
= ﬁ'—;-: tan ng
which gives
: 1 + sin?rgtanygy
sU = 1.3.11
QS;; tan 78 T sinZm ﬁtaﬂz‘}'sv ( )
2
which is dependent of c. .
3. THIRD CASE - P-WAVES
Consider
z = My _ A +2u

Mp - Ap + 2up
" In terms of z , equation (1.3.1) becomes

Wr pp z?
7% MR 1+2°

2
1+ ———-—t1 KR z anzyp

2 Mp 1 + 2%

z+ tan®yp

(1.8.12)

Q! =

As before for having Q5! independent of w for all value of yp , a necessary condition is
obtained by putting ¥p to O in the previous equation. This implies that we must have

z= £'—-lm:le;:oendent of w.
Mp

, 2a
M) = M, [ﬁ] (1.3.13)
o

that is to say
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Now we can take amther particular case. When yp goes to 'zr—equaﬂon (1.3.12)
becomes '
1 - 2""1

Q?-r;- .

So to have 5! independent of w , another condition besides (1.3.1 3) is implied

£I_ndependent of .
T

which implles
28
HMo) = uy [’-:,2-] - (1.3.19)

Thmtwoeon_clltbm are not enough to insure that 5! is independent of w. If we
plug (1.3.13) and (1.3.14) in equation (1.3.12) we get

w'ma cot nf + mﬂn’naﬂ"’?r' z,g'l'(ﬁ-)

M, cosma

2+ £5 0038 12 otantyp | %lau-)

M, ocosma

Q5! = 2tanng (1.3.185)

Three different cases must be axamined

3-a: a=§

In this case we have

Q5 (yp=0) = Q5 (ysy=0)

which added to the two conditions

2a
M(w) = H, [:%]

H(w) = M) + 2u(w)
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assures that @5 Is independent of o and equal to

1+ %—dnznatanz-yp

Q! = tanma 2 | (1.3.18)

Ho in2
1+ -ZT'-C"I natanyp

3-b: tanmacotmf=2
Then 5! is dependent of w and

Q5! = 2tanng = tanma

Even more than constant, @5 is independent of ¥p.

8~¢: General case

In this case equation (1.3.15) can be written

| oo ] T, cosma sin“rra tan*ypl Q5! — 2tanng] + 2[ Q5! —tanna] =0

(1.3.17)

To verify this equation we must equate to zero the coefficient of | ;“’—1 2{p-a), Then by
]

eliminating the two cases already studied, we are left with the system
&—ggs—‘”ie’nzﬂ-a =0
M, cosra

Q5! = tanma

This system has no Interesting solutions. It shows that we have a constant @» model
only in the following cases

. 2a
- If we are In a liquid then Q5! = tanna , when M(w) = M, [:’—“’i
o

-t -}J:L= 0 which means that there is no dissipation for P-waves. This is
R

a trivial solution:
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&'=0

So for P-waves, one can see that we can derive a strict constant @p model in two
dimensions in very particular cases. In general thers Is no such thing as a strictly
constant-Q model in two dimensions for P-waves. Nevertheless, as already stated the
dependencs of Q on the angle 7 Is small and takes place only for angles approximatively
equal or larger than the critical angle; therefore we can assume a nearly constant-Q model
as s0on as we define the viscoelastic modull as functions of the type

iw ta
M(w) = 4, "

The resuits for all three types of waves are summarized in Table 1-2.
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PART Ul

SYNTHETIC SEISMOGRAMS

IN VISCOELASTIC MEDIA
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A - EFFECT OF REFLECTION COEFFICIENTS ON
SYNTHETIC SEISMOGRAMS

INTRODUCTION

Our aim in this paper is to derive the equations to be used in generating a 2-D synthetic
seismogram by wavefleld extrapolation with the wave equation. We work in the (w.k;)

domain because it is straightforward to include attenuation effects by specifying complex
frequency-dependent elastic modull. We derive the appropriate Green's function and an

expression for the reflection coefficient at a liquid-solid interface.
I. THEORY

1. Calculus of the Green's function for the wave equation.

Consider the wave equation when the driving force is a Dirac source at time ¢ = 0 and
at the point (z =0,z =0). Its solution Is the Green's function G(z,2,t) and It is given by:

® ¢ 1 @

az? = 222 u? Bt? Glz,2,t) = —2mé(z)é(z)é(t)

Taking the triple Fourier Transform of equation (2.1.1) using the definitions

Fleyky) = [ [ [ f(z2,t) e®* %" 7% gz dz dt

-k 3z +1iut

I(z.2,) = '(-2'1;)'3_[.[! Fleg kg ) e~ %* &k, dk, do

we obtain
[la’ +kf - 5’;-] Glieg ko) = 27

which gives for G(k,,k,,)

G(kzak’ W) = —3

(2.1.1)
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X
L)
zi
FiG. 2~1. Definition of ray parameter
o ks _ sind
Bydcﬂzlﬂonofﬂionypannntup(secﬂgmz-ﬂ,p-—;—- » we have

kg = %’-slm’. Therefore

and
an
Gy kig,0) = 178 | 7
T T
This gives :

‘o =ys
Gl 02) = [ = & = . (2.1.2)
. lk.-[;g—-k.’] Hk.+[;,—-lc.*];rl-

Since we want a causal function for G{k;,i»z), we take the following contour of
integration [ Figure 2-2 ]. The poles must be slightly under the real axis due to causality.

Using Cauchy's integral formula in equation (2.1.2), we get

Glky,z) = O ' 2 <0 (2.1.3)
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im x,
2< 0
: x - Re k,
.2 we 2
\ u’;Z"‘; VE'“‘ /I
\\ /
¥ >0
\\ /
FIG. 2-2. Path of integration for the Green's function
- [%-k'.llll. . %-k'..]lll.
Glky,,2) = im| = = —| 2>0
T T
v? 3 v

This formula contains the upcoming and downgoing wavaes. it Is necessary to separate

2 \we
them for every w in order to write G(k;,»,2) as a function of %[1 -[l-";}-] ] .
; _[kv_]’ ]ur
w

bS] (I
T s -BT

As we have

78
;”-;—-k.’] = Ssgno

we can rewrite G(k,,»,z) as

Glkyg,e2) = im

[~}
v
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which gives

el el

& )=
| SIR ”91_”’%7]17 o], uk,T
v v

Gllkey,c02) = Glky,—w,2)

and
(2.1.4)

(therefore G(k,..,2) is an even function of o ).
The downgoing wave (D¥) and the upcoming wave ( U¥W) are represented by the fol-

lowing parts of the total Green's function,
el

Dw:
9..1 _I
v @ |

FIRES
uw: -in 2

219 - ﬁ_'rr

v [~} )

W : We could have put the source at the point (z=xq,2 =24,f =f3) and the prob-
lem would not have been changed in principie. The Green's function solution of the fuil wave

esquation would have been

and in the (wk;,2) domain, the solution would have been
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G(k;,0,2) = O 4 z <29

P R P
Glky,0,2) = in | & e g ¥a%0 ~ivto

2)20

2. Synthetic seismogram for a liquid-solid interface.

We can model the effects of the reflection coefficient fo ¢ a liquid-solid interface with
the following experiment (Figure 2-3): put a source function s (z,t) at the sea-surface, go
to the sea-flcor by using the Green's function derived previous ly, multiply by the reflectivity
function and use wavefieid extrapolation to the surface to get the synthetic seismogram. In
our discussion we will consider the source function separatel y from the reflection coeffi-
clents. '

- o~ 1.
(a,f) \ /

ce wlid ()4, /)

N

FIG. 2-3. Schematic view of the studied interface

Adding the source function, the right-hand side of equatior:(2.1.1) becomes

i ® 1 _2@°

az? = 3z2 v? a¢e

&=z,2,t) = -~ 21w6(xz)d (z2)6(L)** s(z,t)

where ** denctes convolution in space and time.
The total Green's function becomes
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-“‘-

G (kgin2) = S(k,.o) in| < r— ‘k. ]
where S(k,,o) is the two-dhm:slonal Fourler transform of the source function, and
u'k,' i
ky = ;-'[

The Green's function for the downgoing wave is

 Goplkyee) = in SUe.0) ';'

To come back to the surface, we must multiply by the weli-known extrapolation func-
tion, which is
e
the total wavefieid will be a superposition of primary and multiple reflections. Since we .

know that the refiection coefficient at the air-water interface is very close to -1, we can
write the total wavefield as

1= 1
1+ Cliy0) :

S(k,,0) =

ks

. ) - Am -
= Sthky,w) | Clky,w) & - (ko) &

= (2.1.8)
* oo R
ky ky .
This series comes from the fact that the first sea-ficor multipie has traveled a dis~
tance 2Az while the primary has traveled only Az. Their amplitudes are, at each bounce,

muitiplied by the reflection cosfficient C{4(k,,w)), where sins = 3’-5'—

The aymhoﬂe seismogram is obtained by taking the inverse Fourier transform of equa~
tion (2.1.5),

J(z,2) =

- 4k A

- -Sk,ds . .
2(2‘11')2 If[c(kaﬁ) g T - %k, o) & E + o | Sy, e Ry ™) ke, de

o et
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3. Reflection coefficient, r

For a liquid —solid interface, the reflection coefficient is given in many books and arti-
cles (see for example Ewing af al, 1867). We give an outline of the derivation of this for-
mula. The notation is given in figure 2-4.

-0

liquid
(@)

?oli.d
’fvf )

(o

y Al

FIG. 2-4, Reflections and transmissions at a liquid-solid interface

in terms of P and S wave potentials we have for the incident, reflected and transmitted
waves

8 = A B (s nd+ 3 cond) —dat

) A" % (3 sind ~ s cos 9) ~iut
,

andd=8 +8, ¥=0
6‘ - A.'O.-(alhd”’bleu#,)-‘ut

Be By(s sin?, +3 cos?,) —iut

-
"
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andd =%, V=4

= & = & =
kl- a kl‘ a’ k’

o
[
Snell's law gives

simd _ Sind, _ sinY,
a a @ F

. Continuity of stresses and displacements must be applied at the boundary, giving:
1) displacement: u, = u’, or

0% _ 2% o¥
8s ~ 3z = o=z

)stresses: 0’y =0, 0y S0 OF

B Bv . pv _
azoz  o0af | axf -~ °

2

22 o . AR | 8% BY¥
ALd +2u ) t 3| = NAY +2u 2% + 3202

The reflection coefficient is obtained by solving the preceding system and this gives

' p‘a‘cosd [(1 - 2s8in®97,)% + -33%- sin®3 cosy’p cosv’, ] = pa cosd¥’p
C = —

{2.1.8)
S
p’a’cosd l(1 - 2sin®7,)" + i%.— sin®3 cosd’, cosd’, ] + pa cosd’p

where A and B can also be written:
= p'a Pl 485 - “l_gt v
A pam[u 26anty + ey |1~ Swnts | |1 %}—snﬁs
178
8=pa[1-5¢-:—sln31’]

This formula is valid for the angle ¥ less than the smaliest critical angle.
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If a = a’, there is no critical angle and equation (2.1.3) holds everywhere.
if 8’ < a < a’, there Is ona critical angle defined by 9, = sin™! -‘-:L,-.'

Formally, the mathematics can be derived in the same way for 3 > 4§,. The difference is
that cosy’,, is purely imaginary, implying that the transmitted P energy will be evanescent in
the z direction. Since we do not want to increase the energy with propagation, we must
have a minus sign in front of the square root. Therefore

"cosv," = i

2 v 4
E—sin®8 - 1 ]
x

In this case the reflection coefficient is complex-valued, which means that there is a
phase shift after critical angle. The expression for the reflection coefficient is thus given by

- D+iUE=-F) _ .
c() = DI iUET ) = C1(8) + iCo(¥) (2.1.7)
where
- D+ ER-F2
G = i+ FR
_ - 2DF
Cl®) = Zar(E + 7Y
and

2
D = p’a’cosd (1 -Z%sinzﬂ)z
a

2 7 ' .3 .2 8
E = [%g—slnzd - 1] pra‘coss 2 —sins [1 - %e-"“z"]

F = pa

2 172
E—sin?3 - 1 ]
«x

If a < £’ < a’, we have two critical angles

S
Y, = sin la-,—

sin™! 2

>
"

For ¥ <4, v equation (2.1.8) holds for the reflection coefficient.
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For 9,, < ¥ < %, equation (2.1.7) holds for the refiection coefficient.

Ford > '6... we have to consider the pseudo —S —fransmission angle defined like the
one for P waves by

"cosd’," = 1 [%ah‘ﬂ-1 ]m

accordingly wc obtain for C(¥)
cw) = S = £y(9) + iEx() (2.1.8)
where
. G+ H®
Ei{9) = Y- ¥y
-2HG
Eg(9) = T
and

G = p’a’coss [[1 -z%’-w‘c]. - ‘;‘,ﬁ-ah“d[%‘;—m-1 ]m[%:—sin!oq ]m-]

al

_ at 18
H = pa -;-,—sln’ﬂ -1

4. Reflection coefficiant in the (o,k,) plane

To define the reflection coefficient in the (w.k,) plane, we must give its value In the
four quadrants. It is possible to do that utilizing the properties of the 2D-inverse Fourler
transform of the reflection coefficient, that is c(f,z). This function must be real, sym-
meiric In z and causal.

First condition: Reality.
Amalfmctlonoftvbvarhblncanbommmhtmofltswmandoddpam
as: :

Clwk,) = Re E, E, +Re £, 0, + Ra 0, E, + Re G, 0,
' +i(mE E, +ImE, 0, +Im O_E, +Im G_0)

where Re refers to the real part and Iim to the imaginary part, £, refers to the e¢ven part
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of k;, O, refers to the odd part of w, and so on.

Since the Fourler transform of a real-even function is real-even, and of a real-odd func-
tion is imaginary-odd, to guarantee c(z,t) to be real, C(w,k,) must be of the form

Clak,) = Re E, E, +Re 0,0, +1i(im E,_ 0, +Im G,_EJ)

Second condition: Symmatry In z.

The condition of symmetry in the z direction implies that C(w,k,) = Clw,~ kg), thus
we are left with

Clw,k,) = Re B E, +iimE, O,
if we call
Cloblks]) = Ci(jwlilks]) +i Collw],]ky])
then
Clak,) = Cillolilks]) + i sgno Co(lol, 1k 1)

Let us define now .(:(Iol,lk, |). We can use (2.1.8), (2.1.7) and (2.1.8) and replace

vk

sind by r: . In fact it is better to write C as a function of (- iw) to help Inspection for

causality later. (2.1.8), (2.1.7) and (2.1.8) become

sl = 455 = CllollkD +iCllollkl) (219

where
A® = pa’ [(-— iw)® + a""’k,é ]‘”

{[(- 10)? + 2822 ]' - i‘f;iz[(-m)e + a®k2 ]”'[(—ia)* + g2 ]"']

B® = pa(-iw)* [(-ic.:)2 + a?k? ]‘”
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2

1 | '
(-w)1-";’ for1-":;" =0
[(-in)' + vo%2 ]u' ={ b

"""’-1qu°' 1-":;" <o

- RB(A°~B) +isgnwim(4°~B")
Clenks) = Re(4°+ B) +isgnwim(4° + B")

Third condition: Causality. .

To verify causality of the reflection coefficient, we apply simplified Muir's rules for
causal operators: (F.Muir's personal communication). Namely: A

i) The sum of two causal operators is causal.

it) The product of two causal operators is causal.

i) The inverse of a causal operator is causal if it has a positive real part.

We know that (~ ic) is causal (F.Muir's personal communication).
Therefore [(- iw)? + vBk? ]mand [(-ia)' + 28722 l"m causal.
This implies that A° — B° and A® + B° are causal. -

To check the causaliity of C we have to verify that

a-[pm = A‘+B’]a o

To do that, It is important to write —iw In the form — iw + &, 80 that when we will look
at the real part of Denn it will be the true one and not the imaginary one. We will take the
Emit for ¢ -+ O to detemmine the sign of the real part of Den.

Wa have to distinguish the three cases:

Da 2 a’

For this case

Den = Den1 (Den2 + Den3) + Dend
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with
| Den1 = p’a'(-i.v +2) |1+ C—%]m
 Den2 = [23"k,"+(-io+e)’ ]’l (2.1.10)
R~ F ..
Dend = pal—iw +2)8 |1 + (—_-g-'f;’z?- v

After calculus to the first order with respect to z we find for Re Den

178 a’ 178 178
e 1« ) copoug - e o 8 1 - ][, )
a’ e
+ patn‘ [1 - -—gi’z—
which is obviously positive.

Therafore C(w,k,;) is causal.

g =<a<a

We have two different regions to inspect
1-it 9 < 9, = sin~! (a/a’), then Den is the same as In (2.1.10) and the real
part is positive.
2-if 9 > 9., then for this case we can write also Den in the form

Den = Dent (Den2 + Den3) + Dend

but with

Den1 = p'a(-iw+e) |1+

azk,z ]l/'

(—iw + 2)?

Dan2 = [23’%.2 +(—iw+2)? ]z (21.11)

3= -_4:'..&]‘,2(_ io+2)]| - aoak,z _ 1]l/t ﬁ.zk’a ]t/t

(io+oF "t CTiorer
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a,. k,g _ ]l/l

= - 0 | = cmee————
quu i pal io+c)[ Cio+oF

Aft.rcdcdusmﬂnfntorderwlthnspccttoz.thoualpmdmlagivenby

e -

-

atk? -111"_

pw'[
which is positive and therefore C(wk,) is causal.

m a<fF<ea

1-ts <4, = sin1(a/ a’), then Den is the same as in (10).
o, <3S, = sin"Y(a/ £°), then Den is the same as in (11).
2-it8 > 'd,.,thulforthhma.lfwowﬂt.

Den = Denit (Den2 + Den3) + Dend

we have

. agk'g ]lll

 Den1l = p’a’ -iw+2) [1 +m

Den2 = [23"1:,3-&-(-{»-#3)'].
__atk? ]"'[ _B%E ,]"'

= 482% 3
Den3 e kX u,u-e)'[ Clorr Cior il

) k'g » ]xa

= - 0| e
Dend = 1 pal io-l-e)[ (—io+ o

After calculus to the first order with respect to ¢, we find for Re Den
a2 ]"'
o

which is positive. Therefore C(w.k,) is causal.
BEMABKS:



71

1.We have not examined what was happening in the evanescent region, the region

for which we have
w

Den = Den1 (Den2 + Den3) + Dend

We can still write Den in the form

Now the same type of caiculus as the previous ones will show that the real part of Den is
not always positive which means that C(w,k;) is not causal. it can be expressed also by
saying that the denominator of the reflection coefficient has poles. This is a well-known
probiem (see Ewing and al,1867,p107). It corresponds to waves propagating with a velo-
city less than that of compressional or shear waves in either medlum; called Stoneley waves.

2. We have examined the causality of the reflection coefficient but not the one of
the plane wave itself. In fact it is also a well-known problem that reflected plane waves are
not causal for angles greater than critical due to the non-causality of the Hilbert transform
(see Ewing and al,1967,p80-93).

in the naxt part we discuss the impiementation of these equations.

il. RESULTS

We show the resuits obtained by using the theory described in the previous paragraph.
to generate synthetic seismograms. We will discuss the problems that have occurred In our
triais, and will give the solutions which have been employed.

1. Gresn's Function Problem,
We have seen that the Green's function for our problem was of the form
g~ Yuds
k,

it we do not take any further precautions and calculate t}\e synthetic seismogram for
the primary reflection given by

i e-ZG,Al ~dgz +iut
J(zt) = wff S(kz,w) C(k,,o)——ic-.——e dkgdw
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S(k,.) = -source term,
Clk,,0) = reflection coefficlent,

L l1/2
v -]
we obtain only noise.

This effect comes from the fact that k, can become null, and the particular frequency
when this occurs becomes dominant.

The technique used to get rid of these artifact is not to solve the exact inverse Fourler
transform, but rather to use a modified version for which the Green's function is

g~ Feis

L-,+-:-c

(21.12)

: 2 J12
with ¢ being a small constant parameter with respect to [1-[—”3—‘—] l . This form keeps

the causality of the Green's function.

‘llk, 2 12 ’
in fact, since [1-[711 = cosY, we cannot have ¢z K cos?d for every 3.

As 4 Is approaching 909, cosd approaches O and thus s can become bigger than cos?d.
If ¢ is too small, it does not take off all the effects of k, becoming null . If z is small
enough, it gives a very clean seismogram (cf Figure 2-8).
Figure (2-6) is the seismogram obtained for a reflection coetficient C(k,,w) =1 with
the comrections applied aiso in the evanescent region.

2. Evansscant Region Problem.

Wa have defined in our preceding paper the reflection coefficient for O < sind < 1.
in the evanascent region one can consider "simd” > 1. In this region, the plane wave
theory we are using is no longer valid, and formally the only way to deal with it correctly is
by using conical waves (Cagniard's waves). .

The way we approach the solution is by calculating the reflaction coef ficient in the
evanescerit region using the equations valid in the propagating region. Now the only differ-

T e
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and this will guarantee éausallty as for the propagating region.

On the other hand, the Green's function is becoming a real exponential and as we do
not want to increase the energy of the wave as it propagates, we must take a decreasing
axponenetial, that is

o~ Tads

ks

where k, = J%I—

R

The problem with taking a Green's function like the one above, is that it is no longer
causal and therefore will give anticausal events. These anticausal events will be of impor-
tance only about the region k; = O, because everywhere eise the decaying exponential
becomes negligible.

There is also the problem presented in the first paragraph (k, -+ 0), and we will handle
it using the same implementation, namely replacing the Green's function by

@ his

n B

The results are presented for a constant reflection coefficient in Figure (2-8). One can
see that the anticausal events are insignificant at all at the clip values used for plotting.

3. Synthetic Seismogram

The parameters used for generating the synthetic seismogram (Figure 2~7) are the fol-

lowing:

First medium:
water
P-velocity
density = p

Second medium:
solid
P-velocity =
S-velocity =
density = p’

a = 1600 m/s

(1}
-t

2300 m/s
= 1200 m/s

“‘
"

n=
|
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The plots of the amplitude, phase, real-part and imaginary-part of the reflaction coeffi-
clent are shown in Figures (2-8) and (2-9) respectively.

The vaiues chosen for the P-velocity and the S-velocity in the second medium are such
that there exists only one head wave, as can be seen on Figure (2-7).

We must aiso remark on Figure (2-7) the & phase shift after critical angle, which has
besn predicted on Figure (2-8).

ACKNOWLEDGMENTS

Wa wish to thank M. Yedlin for suggesting the source waveform function which is shown
in Figure 2-8.

REFERENCES

Ewing W.M., W.S. Jardetzky, F. Press, 1967; Elastic Waves in Layered Media. McGraw-Hill
Book Co, New York.

Morse P.M., H. Feshbach, 19563; Methods of Theoretical Physica. McGraw-Hill Book Co, New
York. '



75

Power spectrum

ampiitude

0

Signal
ampiitude

36

70

106 140

POWER SPECTRUM

176

210

TIME SIGNAL

FiG. 2-6. Time signal and Power spectrum of the source empioyed in all the synthetic

seismograms.
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FiG. 2-6. In this figure ¢ = 0.2 which gives an accurate representation of angles up to
78.5° Here the reflaction coefficient is 1 all angles of incidence. The parameters used
to generate this synthetic seismogram 88m, dt = 0.032s, nz = 128,
nt = 266, nkx = 2686, no = 256 and 1600 m/s. The density p = 1 in

: de =
=‘u’=
the first medium.
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FiG. 2-7. In this figure ¢ = 0.2 as in figure (2-6). The reflection coefficient as a function
of the angle of incidence Is given in figures (2-8) and (2-8). The parameters used to gen-
erate this synthetic seismogram are the same as in figure (2-8) with velocities in the
second mediuma” = v, = 2600 m/s B = uy = 1200m/s. Thedensity p’ = 2.
Note the prescence of the refracted wave, and the phase shift atter critical angle.



78

;Vpl-l.s Rhol=l"

Vp2=2.3

<. Rho2=2

Vg2=1.2

MODULUS OF REFL. COEF FICIENT :

o [ ] ~ [ ] -3 o [.]
- - - - [ -

INCIDENCE ANGLE (Deg.)

”
”
0

E s
bl e[ Ve1=1.5 Rhol-l
O [ vp2=2.3
o ™r Rho2=2
vy Vs2=1.2
W -84
=]
Q -nL
3 -
u p
Ll -tee |-
x s
-128
5 i
oléd > l
L) s
g I L\
E-|-+l.l.l.l.l.lAl..
e . e s 4 e - -] £ H 4

INCIDENCE ANGLE (Deg.)
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B-SYNTHETIC SEISMOGRAMS IN VISCOELASTIC MEDIA

INTRODUCTION

This articie is the continuation of the previous paper (Effect of Reflection Coefficients
on Synthetic Seismograms,Part li-A ), where we discussed the computation of synthetic
seismograms in an elastic medium, using an f-k domain wavefield axtrapolation method. In
this chapter we consider the case of waves propagating in a linear viscoelastic medium and
the generation of the corresponding synthetic seiamogram.No approximations are done,the
restriction being that we need homogeneous layered media. Some papers have already been
published on the same subject:

-some were dealing as a working space with the time domain either by using an
asymptotic ray theory for SH-waves (Krebes.E.S and Hron.F 1880a,1980b) or by
using an extended Haskell-Thompson matrix method (Silva.W 1978). or aiso by
direct summation of plans waves components (Frasier CW 1980).

Qeain were dsaling as a working space with the f-k domaln, like us. But they used
an approximate matrix mathod (Kennett B.L.N (1978)).

Our goal is to model a marine seismogram and to study both the effect of P to S
conversions and the effect of attenuation contrasts. )

1. THEORY

1. Plans waves in a linesr viscosiastic medium,

For the marine seismology case, the hypothesis of representing the medium by a linear
viscoelastic model is completely justified. First, the phenomena we are studying are low
ampiitude In the far field (1 or 2 wavelengths from the sourcs). Under this condition linearity
of the stress-strain relationship becomes a good approximation. Second, at the strain ampli-
tudes relevant to seismic exploration (<10-%), attenuation phenomena are not friction
phenomena but fluid phenomena (Winkler ¢¢ al, 1878), which can be modeled by viscoelasti-

city theory.
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in linear vlscoelasticity the reciprocity principle is applicable (Borcherdt, 1977, or Part
I-B). This allows us to write the elastodynamic equation for linear viscoelastic media by
replacing, in the usual elastodynamic equation, the real elastic moduli witﬁ the complex
frequency-dependent ones. This gives . ‘

[K(u) + %)—

V8 + u(w) Vu = ol (2.2.1)

where K(w) is the frequency-dependent compiex bulk modulus, u(w) is the frequency
dependent shear modulus, 3 = V-u is the volumetric dilation, and u = u(z,y,2,t) is the dis-
placement vector.

Taking for the displacement u time-dependence of the form e‘“t, Equation (2.2.1) can
be rewritten

[K(v) + Eg"—)- 8 + ulw) VPu = —putu (2.2.1b)

in this equation u = W(z,y,2).

This equation can be transformed using the Helmholtz form for the displacement u as
function of potentials % and ¥

u=Vd+Uxv¥ (2.2.2)
Ve =0
then (2.2.1b) separates
& kgd| _ 1o
72 ‘I’] + kﬁ\P] = (2.2.3)
where
kﬁ = pUz
K(w) + -g'-y(o)
= 298
k§ ww)

that are compiex-valued quantities.
The general plane wave solution of equations of type (2.2.3) is

d = §g ol -K7) (2.2.8)
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where K is a complex vector, and r is the position vector.
We can write K separating its real and imaginary parts:

K = P-iA . (2.2.5)

P will be called the propagating vector. A will be called the attenuating vector.
Rewriting equation (2.2.4) using these definitions we get

= & g-Argifut -Pr) ' (2.2.8)
in general, vectors P and A are not parallel, and the wave is said to be inhomogene-

ous. For the other case, where the angle between P and A is Zero, ¥ = (P,A) = 0, the wave
is sald to be homogeneous.

From (2.2.3), (2.2.4) and (2.2.5) we also gat

KK = |P|2= |A|? +20]A]-|P] cosy = 88~ = B4y -1 4] (227)

|&|®
with

M = M(w) complex modulus of the wave under consideration:
M=K+ %‘-p for a P wave
M=u for an S wave

Mp Real part of i

My imaginary part of

| H) Modulus of &

In 2D (2.2.8) gives

B = 8 aUm P AT L -(Rs +2,8)]

80 (2.2.7) can be written as

(P, = i) + (P, ~id )8 = L5 (2.2.8a)
or
B+k? = -l ' (2.2.8b)

M
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2. Gresn's function and Wavefieid Extrapolators in linear viscoelastic medium

Since the reciprocity principle can be applied in the situation we are interested in, we
use it to derive the operators we need to extrapolate the wavetfield. '

2a. Green's function for the acoustic wave squation

~ We have shown in Part li-A that for a Dirac source located at the origin and on the sur-
face of an elastic liquid, the Green's function for the downgoing wave is given in the f-k
domain by:

Gpylky,nz) = im g Z (2.2.9a)
with
: 21
ko= 204 -['—';,ki-] (2.2.9b)

The Fourier gransfonn convention is
J(za,t) = Z%ria—fff Fliy key,0) @ 002 ~®® ¥4 g e, do

In this expression the ratio vk;/ w Is related to the angle of propagation of the wave 3§
by

sind = vky/w (2.2.10)

The reciprocity principie gives us for a viscoelastic medium

ik, s
Gpy(kynz) = im & I (2.2.11a)

172

ky = L pv |1~ wk |" (2.2.11b)
— Pv. = .

p.v. meaning principal value of the square-root,
i.e. the square-root which has a positive real-part

v Is a complex velocity given by v? = %, vp =0 (2.2.11¢c)
Is a complex number k = k; + ilm(k) = P, —id, (2.2.11d)
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[et. (2.2.8a), (2.2.8D)].

Note: To simplify notations, the fact that we are taking the principal value of every

complex square-root will be understood in all following equations.

In our synthetic seismogram, the incident wave will be homogeneous. In this case, using

(2.2.7), (2.2.11d) becomes

k = (|P] ~i]|A])sind = o Vp/H sind

when 9 is the angle defined in figure(2-10).

o\,

P

FiG. 2-10. Attenuation and propagation vectors

From figure(2-10), we can find an equivalent to (2.2.10),
sind = P/ |P|

For an homogeneous wave, and by using (2.2.7) we obtain

iRk,
sim = on >
wlthu=m7$.°f
ve = ViIEY S
R = | e
2p

(22.12)

(2.2.13)
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172

M| - HMp

2b, Wave fisld extrapolator for the acoustic wave equation

It Is well known that In an elastic medium the wavefield extrapolator for the acoustic

wave equation in the f-k domain Is
&, =

(w,kg,2) = e

This relation can be written for a viscoelastic medium, as done In paragraph 2.a, and so we
have

ks z) = a 5°

18

s [oe)
) w

ko= 2
v = VH7p
k =k, +ilmk = 2-sins , or

‘uﬁ +uf Lc_,_
VR (4]

simd = , for an homogeneous wave.

Remark: Boundary conditions imply, as Is shown in the next paragraph, a conservation of
the z-coordinate of the wave vector K. This allows us to use equations obtained in the first
medium for other media. In particular, in the case of an homogeneous incident wave, we apply
equations (2.2.12) and (2.2.13) everywhere.

3. Reflections and Transmissions

in all the following equations, time dependence has been omitted, and It is understood
to be of the form ets,

Figure(2-11) shows the two media we are dealing with, and the notation employed.
Only the propagation vector has been represented. All variables associated with the lower
medium wiil be primed. in the first medium, subscript 1 refers to the amplitude of the incident
wave, while subscript 2 refers to the raflected wave.
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U4
I,iF RN
b
»
&
',
, :\
AR

P wave incident S wave incident

FG. 2-11. Reflections and transmissions of potentiais

in all the following derivations, we use potentials. As function of potentials, we have
the foliowing system of equations.

= &+, = Ao imrdn) . g o-il—ds)
¥ =¥ +¥ = Bet0s+sa)  pg-ilee~ss)
$ = {,‘ = Ac‘-«p‘aots)
v=¥= B'-i(b‘a +J's)

with
2,.48 = 28
k*+d X+ 2n Re(d) = 0
et = E:’T'- Re(f) = O
e - ‘b
Et+ed® = X’eﬁ.u? Re{d) = O

3 +f“ E__'”’ Re(/') =2 0

»

™
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The displacements and stresses for the 20D case are given by:

Displacements:
el i
Stresses:
Oss = Agg +()\+2p,) . z +2u aazgz

_ [ e v, v
0= = 42 9zdz 9z% 9z?

Three cases are to be axamined separately.

3a, Liquid-solid interface,

The Incident wave is traveling in a liquid medium, this implies . = 0, B, = B, = 0. Con~
tinuity of displacements and stresses gives

Uy = u,'..
0 = 0z

Osg = O'gg
This implies &k = k', which can be considered as a generalized Snell's law.

Az =R = p'al(f2 = k?)2 + ak2d '] = pd (f'2 + k2)2

Ay pdl(f'2 —k®)? + 4k2d '] + pd(f'2 + k?)?
A _p o= 20d(f"* ~ k)

A, P pd[(f'2 k2P + 4k ] + pd ' (f'2 + k%)
B _ o, o= Apddk(f'? + k?)

A, ST pdlf T k22 + ak?d S ] + pd (f'2 + k2P
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Sh. Solid-Liquid interface,

The incident wave is now traveling in a solid medium, and the transmitted wave Is trav-
eling in a liquid medium, therefore we have u’ = 0, B° = 0. The continuity equations are now

Yy = u,
Oss = 0
O = O

This implies & = &', as in case 3a. Now two incident waves are possible:
1. P-wave incident: B, = 0, we get

2 (s + k22 + ak2dd fp - pd’(f2 - k2)2

-AT-' Rep = PA(S2 + k2)? + ak2dd fp + pd’(f? - k?)?
B _p. = akpdd (f? — k?)

A S T pd(fT + k2)E + 4k2¢¢fp +pd (f2 —k3)2
A 20d(s* = k%)

a, =T = 'd(f! + k02 + Ak2dd fp + pd (2 = k28

2. S-wave incident: 4, = 0, then we get

By _ po. o Qkiddfp —pd (£ — kD - p'd(f? + k%)
B, S5 T pa(f2+ k%)% + pd (f% ~ k%) + Ak?dd [ p
A _ o _ =4k rp(f? — k%)

B, SP T 2°d(f2 + k2)2 + pd (f% = k%) + dk2dd f p
A _ 5 akdfp(r2 + k%)

B, BT pd(fT 4 k2 + pd (f% = k2): + aklddfp

3c. Solid=Solid interface,

Two cases are possible: we can have either a P or an S incident wave. in both cases
the equations of continuity are

U, = u'
Uy = u5
O = O
O = 0O'n

b1: P-wave Incident: B, = O, if we define
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Rpp A/ Ay
Rps = B/ 4
Tep = A/A
Tps = B/A

They are solutions of the linear system

where

k i ~k I
~d k ~d -k
—2kdpy  —(f P-ku  ~2kdp  (fE-k)
2=k  =2kfp - (2 -k =2kfuw

Rpp -k
P = f;:s b= -27:?1;4
P ol 12 22
Tps u(f2 - k%)

b2: S-wave incident: 4, = 0, the following definitions

Rsp = Agx/ B,
Rss = B/B,

Tsp = A/ B,
Tss = FB/B,
are solutions of the linear system
As = ¢
where
Rsp b
s = S5 e = =k
Tsp wr2 -k2)
SS -2kf
Remark:

The caiculus of the reflection or transmission coefficients In the (w,k.) domain does
not depend on the Fourier transform convention taken. On the other hand the synthetic
selsmogram Is given by the sum of expressions of the following type:
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~2tk,A8
1) = g [ [ Sti) Clkyo) ® e " diedo

S(k,,) = source term,
Clk,,w) = reflection coefficient

The result is real and s0 we have:

r(zt)=f(zt) =

Bth, 4 '
-z-(zl.ﬁ;“‘-ff g(kuvﬁ’) E(k'a”). k' .“" —tet a.d”

The synthetic seismogram can be uhdatad using the inverse Fourier transform convention.
As the refiection coesfficient is Independent of the convention, while the Green's function
and the source terms are dependent, we find that, if for one given convention the refiection
coefficient used Is C(k,,») then for the opposite convention the right one to use is Ci(k,,w).

4, Attanustion model .

in previous chapters ( Part I-A and Part I-C ), it has been shown that the effect of
attenuation on reflections is not, to a first order approximation, a function of the viscoelas-
tic model chosen. In the same chapters it was also shown (following equations derived by
Borcherdt, 1877) that the attenuation function in two dimensions is a siowly varying func-
tion of the angie ¥ between the attenuation and the propagation vectors. Under these con-
ditions, we are confident of using a constant —Q model (Kjartansson, 1980) to represent
viscoelastic behavior. This model will enable us to have the right order of variations modeled -
In the synthetic seismograms.

For review purposes, the constant-Q model is characterized by a frequency free
representation of the quality factor Q, the model is the following:

The viscoelastic modulus is given by

2y
M) = u.,[f-;-’- = My

£ r gimeome
o

=

mplying a phase velocity of

C,(o) = Gy
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In all these, wy Is a reference frequency at which gy and C have been measured. y is
given by

v = ;-r-tm“(v Q)

8. Synthetic Seismogram

Our goal In this paper is to model a marine seismogram. For this purpose, we will assume
a flat-layered earth model. Our experiment will be to put a source at the sea surface, as in
Part ll-A. To simplify the mathematical writing, we shall use a 3 layered earth. The generali-
zation for more layers follows immediately.

The notations and the experimental setting are described in Figure(2-12).

Five primary waves are recorded at the sea-surface. They are the following, where the
letters refer to the type of wave In each path: PP, PPPP, PPSP, PSPP, PSSP.

To find the expression for each of these waves in the f-k domain, we consider them as
potentials, because potentials satisfy the acoustic wave equation, for which wave extra-
polators are well known. On the other hand, if we were dealing with displacements, propaga-
tion would have to be done with the elastodynamic wave equation, for which we do not have

wave extrapolators in the f-k domain. Thus we have:

PP:
exp[~i(2k.p,20)]
inR + Sky,w)
, kep, ks
PPPP:
exp[—i(2kp, 2 + 2ksp, 21)]
inTpR12ppT10PP ,: bt - Shkg,w)
zPq
PSSP:
exp[—i(2k,p 2g + 2kz5. 2,)]
inTgRi2s5 T10sP ,: e S(kg,)
2Py
PPsP:

exp[-'i.(ZIc,pozo + Kkap,Z) + kg5, 2 1]
kp,

inTpR2ps T10sP - S(ky,w)
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PSPP:

QXP[-'i(Zk‘pOZO + k,Plzl + k‘s‘zl)]
k.p°

inTsRizasp Trorp + S (kys)

In these expressions

S(ky,w) = 2D Fourier Transform of the source function
_ © 'aok 2 172
O R
[ t 2 a2
k = L |y_|%k
Py a |
f 2 iz
kys = L]y |8k
! b1 | @

2
with £ = “—sing, and sinv = M-’c’—:
] QoR w

For primary waves, the synthetic seismogram in the f-k domain is the sum of the five
upper expressions.

If we want to introduce muitipie reflections or pegleg muitiples, it is straightforward.
Some examples are given'in Figures (2-13a,b,c). The procedure can be generalized. The

synthetic seismogram Iitself is obtained by taking an inverse 2D Fourier Transform of the
axpressions chosen in the f-k domain.
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Water

FAG. 2-13a.
8

Water-Bottom multiple. Muitiply the expression for PP by the factor:
- Ra Uargto .

Water

FG. 2-13b. m:og muitiple. Muitiply the expressions for PP PPSPP PSPP PSSP by the
factor: ~ Re 0"
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Water

FIG. 2-13c. intrabed multiples. If we take PPPP as the main wave, we can have as intrabed

muitiples:
ath
PP(PP)PP
PP(SP)PP
PP(PS)PP
PP(SS)FPP
il. APPLICATION

co ation :

. 1 l
PPPP-R\2ppR1opp 9.«23,, thyy )y
PPPP-R1apgR1osp © hg,

"(zkll’ + .ﬂ ) ol
PPPP-RiaspR10pPs € s l)' 1
PPPP-RyssRisse '

The resuits presented In this paragraph are a direct application of the equations
derived in the preceding one (/. Theory). Problems that have occurred in our trials are simi-
lar to those we had in our previous chapter (Part I1-A), therefore we have solved them in
the same manner. Different cases are presented In the following lines.
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1. Liquid=-Solid case: 1 Head wave,
Thi'eo different cases are presented here; velocities and densities remain the same for
all of them. They are:

First medium: liquid (water)

P-velocity v 1600 m /=
Density P * 1g/emd

Second medium: semi-infinite solid

P-velocity v'p 2500 m/s
S-velocity v'g ' 1200 m/s
Density P 2g/emd

Since v's < vp, we get one critical angle and one head wave.

Since we are working In viscoelastic media, velocities are frequency dependent. The
reference frequency at which they are taken is set for convenience at 1 Hz. This is a low
frequency for our source wavelet spectrum.

Thcvduestnkmforthc.qudltyfactw Q are also at the 1 Hz reference frequency, -

a) Fig 2-14,2-15,2-18. No attenuation, No Q contrast:

First medium: liquid (water)

P-quality factor (3 10000

Second medium: semi-infinite solld

P-quality factor Q°p 10000
S-quality factor Qs 10000

b) Fig 2-14,2-16,2-18. Q conérast:

First medium: liquid (watir)

P-quality factor Qr 1 OOOQ

L _ —  — —— —— —— — ——— ——— —— ——— ]
e Second medium: semi-infinite solid
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P-quality factor Q'p 14
S-quality factor Qs 10

c) Fig 2-14,2-17,2-20. High attenuation, No @ contrast:

First medium: liquid

P-quality factor ' Qr 10

Second medium: semi-infinite solid

P-quality factor Qe 10
S-quality factor Q@’s 10

Comparing figures corresponding to each of these three cases, brings us to the follow-
ing conclusions:

1. When there is no @-contrast, the reflection coefficient is strictly equal to the elastic
one if the model of attenuation used is the constant-Q model.

2. When there is no @-contrast, (cases ¢ and c), the wave velocities are different
between elastic and viscoelastic cases. Higher frequencies than the reference frequency
travel faster in a viscoelastic medium.

There is also the amplitude effect we were expecting: a low quality factor implies high
attenuation.

A third type of effect can be observed: it is the modification of the frequency content
between a wave traveling in an elastic medium and a wave traveling in a viscoelastic
medium. Attenuation implies that we are loosing proportionally more high frequencies than low
frequencies and so the signal we record is more spread out in a viscoelastic case than in an
elastic one.

3. It is important also to consider the differences occurring between case a and b.
Case a has nearly no attenuation (gp = 10000) and no @-contrast, while case b has the
same first medium attenuation as case a, with low @ in the second medium.

We observe that the effects of a Q-contrast appear mainly near critical angle, and that
there is an increase of amplitude of post-critical reflections in the Q-contrast case with
respect to the No @-contrast one. '

Another expected effect is that the ampiitude of the head wave is smaller in the @-
contrast case, because the head-wave is traveling in the highly attenuating second medium.
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FiG. 2-14. 1-Head-wave case:

Modulus and phase of Reflection Coefficient. Comparison of elastic and viscoelastic refiec-
tion coefficients. The dotted iines represent the elastic refliection coefficient and the
viscoelastic one when there is no @-contrast.The solid line represent the viscoeistic one
when there is Q-contrast. This is a frequency-dependent piot due to velocity dispersion in
the second medium. The frequency chosen here is the reference frequency (1 Hz).
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| HEAD WAVE
Vpl=1.5 Rhol=1| Qpl=10000
Vp2:=2.5 Rho2:22 Qp2:=10000
Vs 2=].2 Qs 2=10000 .
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FIG. 2-15. 1-Head-wave case:
Synthetic seismogram. No attenuation included.
- The parameters used to generate it are: dzr = 88 m, dt = .032 s.
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| HEAD WAVE
vpi=l.5 Rhol=l Qpi=10000
Vp2=2.5 Rho2=2 Qp2=i4
Vs2=].2 . Qs 2:=10
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FiG. 2-18. 1-Head~wave case:
Synthetic seismogram. Attenuation and g-contrast inciuded.
Same clip value and parameters as in figure 2-15. Note the increase of amplitude of

postcritical reflection and the decrease of amplitude of the head-wave with respect to fig-

ure 2-185. Note aiso the difference in arrival time for the head-wave.
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| HEAD WAVE
Vpl=1l.5 Rho 1= | Qpl=I0
Vp222.5 Rho2=2 Qp2=10
Vs2=1|.2 Qs2:=10
o] — X
40 -
1
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80 J 1 ! 1 ls
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‘\(\){l)
200 W
N
t/
240
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FIG. 2-17. 1-Head-wave case:

Synthetic seismogram. High attenuation and no @-contrast.

Same clip value and parameters as in figure 2-15. Note the decrease of amplitude of the
reflection and the decrease of amplitude of the head wave with respect to figure 2-15.
Note aiso the differences in arrival times for the reflection and the head-wave.
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| HEAD WAVE
15 FIRST TRACES

vpli= |5 Rholisl  QpiI*10000
Vp2:2.5 Rho2:2 Qp2+¢10000
Vs2=|.2 _ Qs 2+10000

| HEAD WAVE
TRACES 18- 30

Vpl=1|8 Rho sl Qpi=10000°
Vp2:2.5 Rho2=2 Qp2:10000
Ve 2=1).2 Qs 2={0000

30

49

78

L1

90

REFLECTION -

109

L

j—

120 , _ :

' 4. 10 !

20 30

Fi@. 2-18. 1-Head-wave case: No attenuation included. Window of :c._:o 2-16. Lleft:
traces O-16. Right: traces 16-30. The figuwres are not clipped at the same value. These are

the reference figures to compare with figures 2-19 and 2-20.
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| HEAD WAVE | HEAD WAVE
15 FIRST TRACES TRACES 16-30
Vpi=1.5  Rhol=| Qp!=10000 Vpl=15 Rho =] Qp1=10000
Vp2=2.5 Rho2=2 Qp2=14 Vp2:2.5 Rho2=2 Qp2:1i4
Vs 2=).2 Qs 2=10 Vs 2=1.2 Qs 2+10
30
—— {HEAD WAVE}
45 -
60 -
75 -
{REFLECTION} —
90 —
105 —
120
10 1 20. 30

FIG. 2-18. 1-Head-wave case: Attenuation and @-contrast included. Window of figure 2-
16. Same traces and clip values as In figure 2-18. Remarks done In figure 2-16 are

emphasized here.
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| HEAD WAVE

15 FIRST TRACES

| HEAD WAVE
TRACES 16-30

Vpl=l.6  Rholsl  Qpl=10 Vpi=l5  Rholsl  Qpl=10
Vp2:2.5 Rho2:2 Qp2:10 Vp2s2.5 Rho2s2 Qp2:10
Vs221.2 Qs2:10 Vs2s1.2 Qs 2+10

X
30
ARl . [HEAD WAVE]
45 - "~ _— - ]
B VAR B N
60 J -
\
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90 REFLECTION

105 .
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o
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Fia. 2-20. 1-Head-wave case: High attenuation and no @Q-contrast. Window of figure 2-17.
Same traces and clip values as In figure 2-18. Remarks done In figure 2-17 are emphasized

here.

30
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2. Liquid-solid case: 2 Head waves,

Two different cases are presented here. For both of them velocities and densities are
the same.

First medium: liquid (water)

P-velocity ) vp 1500 m/s
Density P 1g/cm3

Second medium: semi-infinite solid

P-velocity v'p 3200m/s
S-velocity v's 1800 m/s
Density p’ - 2.6g/cm?

As here v'g > vp, we have two critical angles and therefore two head waves.

The reference frequency is the same as in the one head-wave cases, (wg = 1 Hz).
For the quality factors, the values at this reference frequency are:

a) Fig 2-21,2-22. No attenuation, No @ contrast:

First medium: liquid (water)

P-quality factor - Qr 10000

Second medium: semi-infinite solid

P-quality factor @‘p 10000
S-quality factor Q'’s 10000

b) Fig 2-21,2-23. @ contrast:

First medium: liquid (water)

P-quality factor Qp 10000

Second medium: semi-infinite solid

P-quality factor Q°p as
S=-quality factor Q’s 20
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Comparison of these two cases leads us to the saim type of conclusions as in the one
head-wave cases.

The amplitudes of the head waves which are propagating in attenuating media are
smaller than the ones propagating in non-attenuating media. The frequency spectrum is aiso
shifted to low frequencies.

For the refiections, there is a very slight effect near critical angie, but it seems that
the acoustic impedance contrast is overwheimingly high and masks the g-contrast effect.

Besides that, we note that the amplitude of the PP head-wave Is much weaker than
the PS one. This forces us to overclip the plots, emphasizing wrap-around.

in Figure(2-22), the wrap-amund energy is higher than in Figure(2-23), because it was
padded with less zeros. The higher amplitude PP head-wave did not need so much padding.

The small amplitude of the PP head-wavae with respect to tho_PS one is well knowsn in
well-jogging data concerning measurements of velocities and quality factors.

it ssems possible that this type of synthetic could be used to infer S-quality factors
from actual borehole data, knowing the P-quality factor.

3. Solid-sclid case:

As previously two different cases are going to be presented.For both of them velocities
. and densities are the same, that is:

First medium: liquid (water)

P=velocity vp 15800 m/s
Density p 1g9/cm?
Second medium: solid
P-velocity vp 2500 m/ =
S~-velocity v's 1200 m/s
Density ' 2g/cm?
L M
Third medium: semi~infinite solid
P-velocity v'p 3000 m/s
S-velocity V's 1400 m/s
Density " 25g/cm3
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FIG. 2-21. 2-Head-waves case: : '

Moduius and phase of Reflection Coefficient. Comparison of elastic and viscoelastic reflec-
tion coefficients. The dotted lines represent the elastic reflection coefficient. The solid
fine represent the viscoelstic one when there is @-contrast. This is a frequency-dependent
plot due to velocity dispersion in the second medium. The frequency chosen here is the
reference frequency (1 Hz). )
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FIG. 2-22. 2-Head-waves case:
Synthetic selsmogram. No attenuation Included. The parameters used to generate it are the
same as In figure 2-16. Left: Full seismogram. Right: Window, traces 21-32. These are

reference figures for figure 2-23. Note the small amplitude of the

respect to the PS one.

PP head-wave with
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FIG. 2-23. 2-Head-waves case:

Synthetic selsmogram. Attenuation and Q-contrast included. The parameters used to gen-
erate it are the same as In figure 2-16. Left: Full seismogram. Right: Window, traces 21-
32. These figures were padded with more zeroes than figure 2-22. Note the smaller ampli-
tude of both head-waves with respect to the previous case. Note also the differences in
travel-times for both head-waves.
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We aiso need the thicknesses of the two first layers. The third one is infinite. They
are: _
Uquid medium 8,=760m
First Solid medium 2 =600 m

The refiection and transmission coefficients at each interface are given in Figures 2-24 to
2-31. In Figures 2-28 to 2-31, the reflection coefficient without attenuation is
represented by a dotted lne while the one with attenuation contrast is represented by a
solid line. The reference frequency is the same as in the 1 head-wave cases, (w; = 1 Hz).
For the quality factors, the values at this reference frequency are:

a) Fig 2-32,2-34,2-36,2-37. No attenuation, No Q contrast:

First medium: Uquid (water)
P-quality factor @ 10000
Second medium: solid
P~quality factor Q. 10000
S~-quality factor Qs - " 10000
——==—_——_—=——:=-=—
Third medium: semi-infinite solid
P-quality factor - Q"'p . 10000
S-quality factor Q% 10000

a) Fig 2-33,2-35,2-36,2-37. @ contrast:

First medium: lquid (water)
P-quality factor @ 10000
Second medium: solid
P-quality factor Q°p 10000
S-quality factor Qs 10000

Third medium: semi-infinite solid
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P-quality factor "p 33
S-quality factor Q's 20

in ail the preceding figures we do not consider muitiple reflections of any kind. There-
fore primary signals do appear more clearly. The study of these figures lead us to the fol-
lowing conclusions.

1. When we look at converted waves, we see that their maximum amplitude is at least
one third the non converted one. We also see that the waves labeled PPSP and PSPP (see
notations In Figure 2-12) are of opposite polarities and so more or less cancel each other
when added together (see Figures 2-36, 2-37). Therefore the only observable converted
wave Is the wave PSSP (Figures 2-33,2-35).

2. Basically the same type of conclusions as in cases 1 and 2 can be made when com-
paring figures with attenuation and figures without but the amplitude effects on head waves
propagating in attenuating media seem smaller than in the previous cases. We aiso observe
a phase effect on reflections around critical angle. The frequency spectrum is aiso shifted
to low frequencies. The smaller effect of attenuation than previously is explained by the
fact that we are having attenuation only in medium 3 and so that most of the wave-paths
are pursly elastic media wave-paths.

3. There are many different kinds of head-waves predicted by theory ( Cerveny and
Ravindra 1971 ). Their paths are indicated schematically in the diagram below. The dotted
fine corresponds to a S-path. The solid one represents a P-path.

\ [

PPPP one head wave : PP(p3)PP \ /

PPSP one head wave : PP(p3)SP

PSPP two head waves : PS(s3)PP ’ /

PS(p3)PP \ /
\
\
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PSSP four head waves : PS(s3)SP

_—
/
) 'l
PS(p3)SP o\ h
. — e b—a—
\\\ ’?'[
* PSS(p2)P . , \ L/
. \/
\ /
\. ,
PS(p2)SP " )
" ‘_,

All of these head-waves are present in the synthetic seismograms (see for example Flgum.
2-36,2-37) except in the case of the PSSP wave where It seems that, as in case 2 (liquid-

solid with two Head-waves), all the energy has gone into the head wave PS(s3)SP making

impossible tha observation in our piots of any other head wave.

i1l. CONCLUSIONS

First it is important to emphasize the principal qualities and draw-backs of the method
employed in this chapter to generate synthetic seismograms. Working in the f-k domain has
made very sasy the introduction of attenuation and the resuits obtained do not show any
dispersion due to the method in itaeif. Head-waves of different types have been generated
as well as refiected waves. The handiing of the evanescent energy Is not perfect and can
give some anti-causal events if precautions are not taken. We have also to be careful that
our Fourler transform convention agrees with the signs of our refiection and transmission
coefficients so that all the waves generated are causal. The handling of non-iayersd media
or of surface waves is not possibie with this technique.

The different synthetic seismograms we have created show that, if we look at the

effect of attenuation contrast on recordad signals, this phenomenon is important if all the
following conditions are verified:
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~low quality factors.
=high attenuation contrast.
=low acoustic impedance contrast.

When the acoustic impedance contrast gives reflection coefficients on the order of
0.1, the effect of attenuation contrast appears mainly on post critical reflections and
refractions. It is a small effect (30-40% of the overall amplitude) in the cases we have
presented earlier (Figures 2-15, 2-16 for example) where the elastic reflection coefficient
at normal incidence was of the order of 0.5. It is important to note that this effect appear
only on post-critical arrivals which correspond to particularly smail reflection coefficients. In
part lll, we examine what happens in situations where the elastic reflection coefficient at
normal incidence is smaller than <0.1 . We show that the absolute amplitude of the elastic
reflection coefficient is a very important factor to decide whether or not the Q-contrast
effect is cbservable.
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" Fig.2-32 Synthetic selsmogram. No attenuation Included.
Left: Waves labeled PP and PPPP. Right: Waves PP, PPPP, PSPP, PPSP, PSSP.

The parameters used to generate It are the same as in Figure 2-16. Velocities are :

Vp=1600m/s , Vpe= 2600 m/s , Vse= 1200 m/s , Vpy= 3000 m/s , Vs3= 1400 m/s .

Denaitles are: p =1 g/cem®,py =2 g/cm®, ps = 2.6 g/cm?.

Quality factors are Infinite.
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Flg.2-33 Synthetic selsmogram. Attenuation included In io.__ca a.

Left: Waves labeled PP and PPPP.  Right: Waves PP, PPPP, PSPP, PPSP, PSSP.

The parameters used to ao:o.:-»o it are the same as In Figure 2-16. Velocities are :

Vp=1600m/s , Vpp= 2600 m /s, V5,=1200 m/s , Vpg= 3000 m/s , V59= 1400 m/s .

Densitiesare: p= 1 g/cmd,pp=2g/cmd,p3=2.6g/cm’.

Quality factors are inflnite for the two first media and for the third one equal to:

Qpy =33, U553 =20.

240
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Fig.2-34 Synthetic seismogram. No attenuation included.
Left: Wave PPPP, PPSP. Right: Waves PPPP, PPSP, PSPP, PSSP. )
The parameters used to generate It are the same as in Figure 2-16. Velocities are :
Vp= 1600 m/s , Vpg= 2600 m /s , Vsg= 1200 m/s , Vpy= 3000 m/ s, Vgy= 1400 m/s .
Densitles are:1p=1g/em®,pp=2g/om®, py = 2.6 g/cm?.
Quality factors are infinite.
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Fig.2-36 Synthetic seilsmogram. Attenuation included In medium 3.
Left: Wave vvvv.. PPSP. Right: Waves PPPP, PPSP, PSPP, PSSP.
The parameters used to generate it are the same as In Figure 2-16. Velocities are :
Vp=1600m/s , Vpp= 2600 m/s , Vsp= 1200 m/s , Vpg= 3000 m/s, Vg3= 1400 m/s .
Densities are: p=1g/cm®,p3=2g/emd,pg=2.6g/cm?.
Quality factors are Infinite for the two first media and for the third one equal to:
Qps = 33, Qss = 20.
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. Fig.2-36 Synthetic Seismogram.

Traces 35-46 . Wave PPSP.

Left: No attenuation Right: Attenuation in medium 3

The values of velocities, densitias and quality factors are given previous figwres.
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Fig.2-37 Synthetic Selsmogram.
Traces 36-48 . Wave PSPP.
Left: No attenuation Right: Attenuation in medium 3
The values of velocities, densities and quality factors are given previous figures.
Note the opposite polarities between Figures 2-36 and 2-37.
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PART Il

EFFECTS OF ATTENUATION ON REFLECTIONS :

EXPERIMENTAL RESULTS
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EFFECTS OF ATTENUATION ON REFLECTIONS : EXPERIMENTAL TEST

INTRODUCTION

As shown in previous publications [Kolsky (1966), Kjartansson (1979)] and also in Part
I, the intrinsic attenuation of a given body has two different effects on propagating waves.

The more well-known effect is truly a propagating one: when a wave propagates in
an attenuating medium, besides a geometrical spreading, there is a decrease in amplitude
and a broadening of the pulse with propagation, because high frequencies are more
attenuated than low frequencies.

The second effect is somewhat more complicated. We need two attenuating media in
contact to observe it. Everyone is well aware that a reflection or a transmission between
two elastic media is a function of the angle of incidence and of the acoustic impedance con-
trast between the two media. In the case of attenuating media, there is a third parameter to
take into account, the Q-contrast between the two media. This Q-contrast increases or
decreases ( depending on its sign ) the reflection coefficient which would be expected if
the two media were elastic.

In the foilowing expeﬂmént. we study the second effect and try to determine in which
cases its importance is significant in seismic exploration.

I-PRINCIPLE OF THE EXPERIMENT

As stated in the Introduction, we are Interested in showing the effect of Q-contrast
on reflection coefficients. This is a second order effect with respect to the acoustic
impedance contrast except when this contrast is very small. Then it can become a large part
of the reflection [cf Part I-A].

The experiment was conducted in a liquid medium for two main reasons:
- our reflected signal is not "' contaminated " by S-waves reflections.
- the coupling between the two studied media is reliable and reproducible.
Borcherdt (1977), Kjartansson (1978), and Brennan and Smylie (1981) have shown
that at a given angle for linear viscoelastic media the recorded reflected signal can be
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expressed by the following formula:

y(t) = s(t) * r(t) (3.1.1)

2(¢) = time signal for a wave having travelled twice the distance from the
sourcs to the interfacs.

r(¢) = reflection coefficient at the interface at the given angle of
incldence.

y(t) = recorded reflected signal.

In the case of "“non-attenuating” media --the concept of non-attenuation being defined
by the accuracy of the measurements, in our case, a medium with a Q greater than 100 is
certainly elastic— the refiection coefficient is no longer a time function but a Dirac in time.
We have

r(t) =79 5 (L) - (8.1.2)

And s0 y(t) becomes

Yolt) = rg s(t) (3.1.3)

_ For this type of medium, using elasticity theory, we can calculate the theoretical
refiection coefficient. Then, we can compare this result with the experimental value and look
at the discrepancy between the two valuss. This discrepancy gives us an idea of the accu-
racy of the experimental set-up.

Then we consider attenuating media for which r(t) is truly a time function. If we
Fourier-transform (3.1.1) and (3.1.3), we obtain:

(w) = S(w) R(w) (3.1.4)

Yo(w) = S(w) 7 (3.1.5)

in S(w) or 2(t) all geometrical effects (geometrical spreading, scattering, experi-
mental losses, traveling attenuation in the first medium) are inciuded. No matter what
medium the wave is reflected by the same first medium, the same traveiling path and the
same geometry for the second medium are used.

By looking at the difference between Y(w) and Yy(w) , we are really observing the
difference between R(w) and ry. Indeed, for an attenuating medium, we can always
express R(w) as ‘
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R(w) =7+ A R(w) : (3.1.8)

where
r; = Theoretical reflection coefficient if the medium were elastic.

A R(w) = Frequency dependent correction -due to the presence of
attenuation.

Therefore we can already say that there should be an effect, not only on the ampli-
tude, but also on the shape of the signal or of the spectrum. Nevertheless, this shape effect
is much more difficult to observe than the amplitude one. The spectrum of the emitted pulse
[see Fig.3-3] is rather peaked. This peaked shape and the fact that F(w) Is only slightly
frequency dependent imply that the shape effect is going to be negligible in most cases. On
another hand, the importance of the amplitude effect depends greatly on the acoustic
impedance contrast.

1-EXPERIM ENTAL APPARATUS

The experimental apparatus is presented schematically in Fig.3-1. It consists
mainly of two transducers and a sample holder allowing us to adjust the sample position and
the angle of incidence of the beam.

The system is mounted on a plexiglas table, the upper surface of which is considered
as the "horizontal”. The sampie is mounted on a device which allows two orthogonal dis-
placements. The sampie is leveled so that its upper surface is exactly at table level. This is
done by using three different screws allowing us to orient the tray on which the sample and
the sample holder are boited. Before being mounted, sampies are carefully ground so that
their two faces are smooth and parallel.

Each transducer is set in a transducer-holder which is boited to a rigid ' -shape
arm. These arms are then mounted on a pivot to the table so that the pivot point is exactly
at the surface of the table. This insures that the beam Is really focused on the sample's
upper surface. A three-dimensional adjustment of the position of the transducer can be done
by using screws located on the top of the transducer-holder ( Fig.3~1 ).

Transducer and sample are adjusted so that their surfaces are parallel and their
centers are on a same vertical line for normal incidence. For non-zero incidence angles, the
adjustment is done so that both transducers are set-up at normal incidence; the angle is
carefully adjusted afterwards. This insures the same orientation for the emitted beam and
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the received one.

The overall system is put in a water tank. Due to size limitations, angles greater than
40° are not used.

o Then the whole apparatus is connected to several electronic devices, as described

in Fig.3-2.

The transducers are connected to a pulse monitoring box [Panametrics Model 5062
PR] which allows us to use the same transducer for transmitting and receiving at normal
incidence. The only problem is that absolute amplitudes and pulse shapes are different when
we go from normal to non-normal incidence due to the different settings. 4

As soon as the signal is received, it is sent to a digital scope [Nicolet Model 204]
and to a trigger delay [Tektronix TM 508]. The Nicolet allows to record the signal on floppy
disks. The time sampling is 50 ns, and we have 4086 points recorded.

The scope is interfaced with a small computer [Hewlett-Packard 8845A] which
allows us to Fourier-transform and to analyze the spectrum of the recorded signal.

The transducers are immersion Panametrics transducers [Model A 301S]. Their
center frequency Is §00 khz Figures 3-3 and 3-4 show their different characteristics
(Time signal, Power spectrum, Focusing of the Energy). It is important to note that the pulse
used in our experiment is close to signals recorded in the field. An example of real data is
given in figure 3-3b. These data come from a survey done by Amoco along the East coast of
Canada (Flehtish Cap) and the source used is an airgun. We see that the band-width is
about the same as the one of our axperimental signal that is to say two octaves.

HI-SAMPLES
1-THE SAMPLES

Attenuating and non-attenuating media were used.
1a-Non-attenuating samples
For the non-attenuating media we used the following solids:
Stainiess-steel
Brass
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Fg.3~-3b Real data : Time signal and power spectrum.
These data are Amoco Flemish Cap data (East coast of Canada). The source is an air-
gun. The sampiing rate is 4ms. '
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Energy amplitude
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Fig.3-4 Energy radiated by the transducers at the focal distance (=7.5 cm). The x-
axis represent the distance from the focal axis. The y-axis represent the amplitude of the
energy radiated. The pattemn of radiation is nearly independent of the distance from the
transducer going from 3 cm to 30 cm.
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Aluminium
Glass

To obtain a broad enough range of reflection coefficients at normal Incidence
we used a different set-up than the one already described. it aliowed us to deal
with reflections from Liquid-Liquid interfaces. We used

Water-Alr interface
Water-Kearosene interface

The transducer was set-up in water in a horizontal position. As the interface
between the two liquids or between the gas and the liquid was horizontal by defin-
ition, the transducer was parallei to the interface by construction. The signal was
recorded at normal incidence using the same transducer for amitting and receiving
the pulse.

1b-Attenuating samples

For the attenuating samples, different solids were used:
A-lLucite:

Lucite is a well-known plastic and its characteristics at the frequency
we used can be found in the literature [Hartmann(1872,1974)]. In addition,
Thomas Piona, from Schiumberger, had the kindness to compare these  values
to the ones he has measured. Lucite was used as a reference sample to test
our measurements techniques.

B-Epoxies:
The samples are adjustable hardness epoxies and made in the labora-~

tory. By changing the ratio between the two components of the epoxy, one is
able to obtain very soft solids for which there is an important attenuation.

C-Sllicon rubber:

We used this type of industrial rubber because its acoustic
impedance is very close to the one of water and its attenuation is high.

D-Polymers:
Professor Knauss, from the Department of Material Sciences at Cail-
tech, has had the kindness to send some of the polymers he has been work-~
" Ing with. These are laboratory made samples, and they are highly attenuat-
ing. Their acoustic impedance is also close to the one of water.
For all these samples (B,C,D), our purpose was to simulate as much as possible the
conditions found in the earth for lossy interfaces, that is to say:
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-Low acoustic impedance contrast
-Relatively high attenuation

On ancther hand we wanted to obtain an experimental scattering due to grain
size close to the one found within the earth. The ratio (wave-length / grain size)
involved In this scattering is of the order of 10~* or 10~%. This value implies
that the experimental wave-iength must be smaller than a micron which Is
equivalent to the grain size of clay particles. Therefore it seems impossible to use
any actual rock samples in our experiment: with rocks other than clay the grain
size Is too large and with clay the water contact is impossible to maintain without
ruining the sample. A second reason is that whatever rock is considered, the
acoustic impedance contrast with water - even with most of liquids - will be too
big to show any attenuation effect on reflections.

2-SAMPLE PREPARATION, SIZES AND ROUGHNESSES

All the samples, except the rubber for which the raw surface was used, were sur-
facs ground so that the two faces were amooth and paraliel.

Two types of experiments were conducted to find the optimum sample size and
the dependence of the recorded reflactions on the surface roughness.

For the size dependence, we have used aluminium and lucite samples of different
sizes and shapes ranging from squares of 40cm length to cylinders of S5cm dlameter. In
this range we did not noticed any difference in the recorded reflected signal for angles
from O to 35 degrees. During these tests the distance between the source and the
sample was 20cm. The source radiation pattem of the source (Fig.3-4) shows haw
focused the emitted energy is and makes understandable how insignificant shapes and
sizes are.

Since the center frequency of our emitted signal is 500 khz, the wave-iengths
involved are of the order of one cm. We tried different kinds of surface roughnesses by
using different grades of "sand” paper. Within a reasonable grain size for the "sand”
paper (100-400 grit), we did not see any scattering effect showing that the surface
quality Is not a critical factor.

3-CHARACTERISTICS OF THE SAMPLES
Table lI-1 gives all the characteristics used in our experiment:
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P-velocity = ¥,

S-velocity = ¥,

Density =p

P-wave quality factor = @,
S-wave quality factor = X

Q, Is assumed to be equal to g, . This assumption is not a crucial one for the
following reasons:

=the studied effect of attenuation is second order.
=the S-wave attenuation effect takes place only at non-normal incidence.

=this value will be used only in computer simulation. In this type of work
the differential effect between P- and S-wave attenuations Is a third order effect.

The liquid was water with bleach at room temperature, its density was 0.997
g/cm3, and its P-wave velocity was 1489 m/s. Its P-quality factor could be con-
sidered infinite ( g, ~ 10000 ).

4-MEASUREMENTS TECHNIQUES
4~-a Density Measurements

We used Archimedes' principle to measure the volume of our samples. The
accuracy of this measurement is strongly dependent on the precision of the scale
used. In our case, weights were given to 1 072 g implying a relative accuracy on
the density of the orderof § 10~* .,

4~b Velocity Measurements

The velocity was measured with the sample set-up for the reflectivity
measurements at normal incidence. The travel time we used was the one taken by
the wave to travel inside the sample. With our apparatus we got a relative accu-
racy on velocities of 2 103 to 6 10-3 (see Table lli-1). The S-velocity meas-
urements were made with Panametrics S-transducers Model V151 which have a
center frequency of S00 khz like the P-transducers.

4-¢ Attenuation Measurements

The spectral ratio technique which we used to measure attenuation has
been described by Toksdz et al (1978). The reference sample we chose was
aluminium. To verify the accuracy of the technique we used brass and lucite. The
results are shown in Figures 3-5 and 3-8. They agree very well with the values we
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found in the literature which are:
~brass : (), infinite for our measurement accuracy.

<lucite : @, =50 and @, =60 (T.Plona personal communication). The
technique used to obtain these reference values is a resonant bar technique like
the one described by K.Winkler(1979). ’

The relative accuracy of the spectral ratio type of measurement can be
estimated to 5%-10%.

it is interesting to note that our measurement of Q is only based on the
center part of the fraquency spectrum (Fig.3-5 and 3-8). In fact the other parts
ere "faisified” because we windowed the signal using a square box before it was
compietely dampened. This method could be very questionable. That is why we
tried applying windows of different lengths to the signal. The signal we used was
the one obtained from the air-water interfacs; it is a very clean signal which Is not
contaminated by any other arrivals. The noise level is also very low. It is shown at
the top of Figure 3-7. The windowing results are shown in Figures 3-7,3-7b,3-7¢.
Figure 3-7c shows the same results as Figure 3-7b but with normalized ampli-
tudes. From these tests we can draw the following conclusions : '
= For windows taking into account at least two and a half wave-liengths
there does not seem to be any distorsion.
= For a two wave-iength wlndowtha resuit is very acceptable espe-
clally it we take Into account only the center part of the spectrum. The main
discrepancy is around the dc component.

« For smaller windows -—one and half and one wave-length~= the result
of any spectral ratio is modified by applying this type of fiiter.

We must not forget that this resuit is valid only for this signal and cannot be gen-
eralized without precautions. For most of the samples for which we have measured
Q,.w.uaodt\mmdahnlfwavo-hngm;muvfmwomeonﬂdentaboutthe
results.

in Figure 3-7d we show that an exceedingly wide window can be trouble-
some! Indeed, both of the power spectra in this figure came from the same
recording, a signal obtained from a silicon rubber-water interface. It is a very low
energy signal; thus some noise which in all other casas was negligible now appears
at the end of the signal itseif explaining why when the window used is too wide (3
wave-iengths), the power spectrum is contaminated. On the other hand as seen
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previously if the window is smaller (2 wave-lengths) the center part of the spec-
trum is well preserved but there is a large dc component. These resuits show that
we must be very careful in windowing the data to get their power s_pe_ctrum.

4-d Reflection coefficient calculation and accuracy

It is important to realize that the precision of the calculated theoretical

value of the reflection coefficient diminishes greatly with its absolute vaiue. This
11—z
1+z
when z Is close to 1. Therefore in an earth-like case (reflaction coefficient <

1072 ), our measurements become less and less precise. However, for very low

huge dependence is a well-known property of the homographic function

acoustic impedance contrasts (polymer, silicon rubber), the attenuation effect is
sufficient to show up even with the error bar we must attribute to the theoretical
value of the reflection coefficient. The different values are found in Table ili=-1.

IV- REFLECTION RESULTS
1-NORMAL INCIDENCE

To work at normal incidence we used the same transducer to emit and receive the
signal, a configuration which is possible using the puise monitoring box already
described.

For the liquid samples, we used the slightly different set-up mentioned in Para-
graph lil.

To obtain the experimental reflection coefficient, we worked in the fréquency
domain and, then, calculated the area of the power spectrum. We could have used the
maximum amplitude of the signal or of the power spectrum, but we chose to use the
area of the power spectrum to average all the little fluctuations of the signal due to the
digitization and the ambient noise. The area was caiculated by the method of trapezi-
ums. We aiso tried to see if the "reflection coefficient’ result obtained by zeroing the
parts of the spectrum where the amplitude was too smail to be reliable (<10% of the
maximum amplitude, that could be considered mostly due to noise) was the same as the
one obtained with the full spectrum: we did not find any noticeable difference. In
consequence, we always used the whole area of the power spectrum.
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For non-atteriuating media we must use equation (3.1.5):
Yo(w) = S(w) 7o (3.1.5)

which, If we take the power spectrum of the two sides, gives: .
|atan| = |ste)| fro] (3.1.6b)

This equation can be lntegrafod :
,Z' IYo(o) Ido = I"o LZ']S(:.;) ]do (3.1.7)
or in the discrete domain
:g.lYo(ﬁn)l = Ifo Eg‘sﬁk)l (3.1.8)

Since for air-water interface we know that irol = 1 , equation (3.1.8) can be rewrit-
ten in the form: |

IYo(u.) |

el = ‘2 |vatat? |

the superscript AW meaning that the values of Y, are the ones obtained in the air-
water case.

For non-attenuating media at normal incidence, the theoratical reflection coetfi-
clent is given by:

(3.1.9)

_ [P1Vi=paVo |
ol - |y

i=
So It we pilot ‘gln(m)] as a function of l‘Fgl, we should get a straight line going

through the origin. The results are shown in Figure 3-8 and Table lli-2. The values
found are within 1% of the thecretical ones, proving the accuracy of the experimental
set-up.

For attenuating media it is completely different. The starting equation is:
Y(w) = S(») R(w) . (8.1.4)

which can be rewritten in terms of power spectra
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IY(:.:) l = lS(o) I ’R(o) l (3.1.4b)

This equation can be integrated like equation (3.1.5), giving:
]'l}’(o) Ida = ]IS(@) I IR(@) Ido (3.1.11)
(] (]

We can always decompose IR(Q)] into an acoustic impedance part and a Q-
contrast part [see Part 1-A].

IR(:.))I = Irol + A R(w) (3.1.12)

Wae can then rewrite equation (3.1.11)

.Z |7t |ao = o IZ |ste) |ao + _Z'|s(o)| Rkt (3.1.13)
or
f |7
|'° |+ Arg = ﬂy—?ld_‘, (3.1.14)
[ |ste|ae

In the discrete domain and using the air-water values, we obtain:

:ZZ Y(f.u)l
I"oI+ATo= — e (3.1.15)

3 [Fotat™)|

{=0

-
Now if we plot ﬂvlﬂm)l as a function of lr;,!. the points will not fit the
=0 :

straight line going through the origin determined from the non-attenuating data. The
results are shown in Figure 3-8. The actual values are given in Table ili-2.

It is Important also to realize that the area of the power spectrum Is not exactly
proportional to the modulus of the reflection coefficient | R(w)]: itis |rg] +Arg(w).
This remark Is important only for the cases where there is a very low acoustic
Impedance contrast and a very high attenuation. in all other cases AR(w) will be small
enough compared with |rg| to be considered as Independent of frequency which
allows us to write equation (3.1.13):

.Z' IY(v) Idv = I"o I,Z' IS“” Idu + A:{Z'!S(u) Idu (3.1.16)
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which gives immediately
AR N Arg

Tabie 1ll-2 shows the discrepancy between the theoretical elastic reflected
energy and the experimental one. The principal conclusions that can be drawn out of
this Table are the following:

-for non-attenuating media the values of this discrepancy are within 1%,
while the measurements’ precision is even smaller.

-for attenuating media the values of this discrepancy vary greatly and can be
as large as 80% for silicon rubber. On another hand the measurements' preci-
sion decreases with decreasing acoustic impedance contrast and reaches a
value of 32% for silicon rubber.

The bottom plot in Figure 3-8 is a' blow-up of the top one:it is an attempt to show
that polymer and silicon rubber do not fit on the straight line which passes through the
origin. Even with this expanded scale this misfit is not clear; therefore we have shown
the same results in another way (Figure 3-8). This plot proves that when the elastic
reflection coefficient is greater than 0.1 (whatever the attenuation), its effect is com-
pletely masked by the acoustic impedance (see, for example the epoxy sample for
which Q is 18). Figure 3-9 also shows that the attenuation effect increases with
decreasing acoustic impedance contrast but that, experimentaily, this effect competes'
with the measurements® precision effect aiready mentioned. '

Now if we look more particularly at the three attenuating samples (epoxy, polymer,
silicon rubber), the first two having an attenuation of about the same value ( g, ~ 15)
and the last one a smaller vaiue ( g, = 50), while the elastic reflection coefficients
range from 0.164 to 0.004, we note the following facts:

- For the epoxy sample with a reflection coefficient of 0.164, there is no
observed effect on the amplitude of the reflection.

= In the case of the polymer (R=0.07) the effect is small in relative value but
observabile.

= Finally for the silicon rubber (R=0.004) the relative increase of reflection is
on the order of 80%, but as we have already mentioned the error bar is now 32%!

For the shape of signals there is no noticeable difference for all the samples. For
the silicon rubber, one can have an impression of slight distorsion with respect to all the

other signals (see Figure 3-10). This "distorsion” will be examined in more detail in
Paragraph V when we use computer simulation. :
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ples.

88:n By - 'gpl
Samples 3 t 3 h
—th | _th &p ~th
Stainiess Steel | 1353 212 1359 232
Brass 1332 2z | 1340 62
Aluminiun 1215 | .2z | 1208 .82 |
Glass 1118 =22 1130 1.32
" |zercsens 202 | .8z | 280 1.02
Lucite 519 | .s2 522 sz
Epoxy 236 1.32 237 42
Polywsr 91 _ 12 100 102
Silicon Rubber S.51 222 10 802

Table II1-2: Values of theorstical and Experimental Reflected Enargy

E:h = Theoratical Reflected Energy (Elastic)

Em = Experisental Reflected Energy

AR .
-‘—th - I.hu.n Precision on !:h due to ssasurements’
th accuracy
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2-NON-NORMAL INCIDENCE

At non-nomal incidence we monitored the pulse differently than at normal
incidencs. So, as we have already said, it is impossible to compare the resuits with the
ones obtained at normal incidence. Nevertheless, we know that for non-attenuating
samples our system Is very accurate (1%). We can always set a new reference with
this pulse monitoring by using a well-known sample with a high refiection coefficient.
We used stainiess steel at an incidence angle of 3 = 7°. By a simple muitiplication we
obtained the "experimental” reflected energy for a reflection coefficient of amplitude 1
and compared other data to this reference using theorstical elastic values. '

Due to sample size problems and space limitation in the tank we did not exceed
angies of 35°. Even to go to angles of 35° we needed to employ larger samples than
the usual ones (7.5 cm dlameter instead of 5§ cm). Other problems must be pointed out.
If we went to angles close to critical angles, the following phenomena need to be con-
sidered:

=The reflection coefficient is largely a function of frequency for spherical
waves at angles close to critical even in the absence of any attenuation
[Carveny et al (1877)], because ray theory is not applicable in the vicinity of
the critical ray; the wave front can no longer be described by geometrical
optics. Therefore the shape of the amplitude curve depends not only on the
elastic characteristics of the differsnt media but also on the thicknesses and
dips of the interfaces and on the focal depth. Figure 311 shows an exam-
ple, reprinted by permission from Cerveny et ai, of this phenomenon for the
~ Moho interface.

" =At angies beyond the critical angle, the head wave interferes with the
reflected signal itseif. Then it becomes nearly impossible to know if the
cbserved effect is due to attenuation or to any interference pattem. it may
sven be difficult to decide where the breaking point of the signal is. This
problem is shown, for axample, in Figure 3-12 (bottom right signal).

The angle dependence of reflection coefficients is shown for the following sam-

Aluminium
Lucite
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Polymer
Sllicon rubber

The first sample is the only non attenuating one. We do not show the bdtMGr of
the epoxy sample, because the attenuation effect is hidden behind the acoustic
impedance effect, as in the normal incidence case.

The theoretical modulus of the refiection coefficient is piotted against the experi-
mental one in Figures 3-12 to 3-15. We have aiso plotted the time signais for the dif-
ferent angies at which measurements were taken. in a third part of the plot we show
the theoretical phase of the reflection coefficient. The values of densities, velocities
and attenuations used to generate thesa piots are given in Table lli-1.

Various observations are made:

<For aluminium and lucite the agreement between the experimental and
the theoretical modulli of the reflection coefficients is very good. Neverthe-
less certain points are far from the theoretical curve. First, it was impossible
to cbserve the peaks of modull which were found theorsticaily, as explained
by Cerveny et al (see aiso Figure 3-11). Second, for aluminium at 3 = 30°
the experimental point is completely out of the theoretical curve, because
the signal we cbserved is composed of the reflected signal and the P=S
_head-wave. Since this head-wave is out of phase with the refiected one, we
have a conaiderable decrease In apparent amplitude. This decrsase is aiso
supported by the fact that If we look at the signal recorded at ¢ = 35° this
head-wave appears as a precursor of opposite polarity to the reflected one.
It is interesting to note that we did not see any P-P head-wave precursor
after we passed the first critical angle. This absencs Is explained by looking
at signais recorded in bore-holes, where the P-P head wave is very low ampli-
tude with respect even to the P-S one: a ratio of 1 to 10 in amplitudes is not
at afl unusual and 30 the P-P head-wave is too low amplitude to be noticed in
our experiment. '

=For polymer there is not much to say except that the experimental
points do not seem to fit well either on the elastic or on the viscoelastic
curves. This disparity may be due to the fact that the integration of the
power spectrum ia not equivalent to the modulus of the reflection coefficient,
‘'as already shown in Paragraph IV=1. The viscoelastic reflection coefficient
has been caiculated for the refersnce frequency. Finally we can note that,
theorstically and experimentally, the attenuation effect seems to disappear
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&8 soon as we get to angles larger than 20°-30° . This disappearance does
not surprise us because we have already seen that for high values of elastic
reflections (>.1) the attenuation effect is completely masked.

=For silicon rubber we cbserve the same resuit as for the polymer:
experimental points do not fit on either the elastic or the viscoelastic curves
but this misfit is less pronounced. This result is probably due to the accuracy
of the different measured vaiues and not to the attenuation which is not big
enough to create the effect mentioned for the polymer sample. The theorati-
cal effect of attenuation is now tremendously big and it doubles  the
expected reflection modulus. Again we cbserve that for large incidence
angles (= 20°), there is no attenuation effect due to a large reflection coef-
ficient. The theoretical phase information is interesting because it seems to
explain qualitatively the slight chuhge of shape from the usual signal we
observed for silicon rubber (see Figure 3-10). This problem will be examined
in more detall in Paragraph V with computer simulation.

in general there is no cbservable phase information in the recorded signais. The
reason is that we are stnylng’boyend critical angies to avoid the problems already
described and so that the phasss are pretty much constant and equal to zero. There is
- one exception and It is siicon rubber for which there is an cbservable phase change of
180° which corresponds to the expected vaiue (see Figure 3-15 and 3-22, 3-23). On
anather hand, the recorded signal is not minimum phase and needs an unwrapping
before being used. This unwrapping has been done and showed a monotonically increas-

V=-COMPUTER SIMULATION AND COM PARISON WITH THE DATA

1-NORMAL INCIDENCE

We want to simulate on the computer the refiection of a wave at an interface. We
know that we have equation (3.1.1):

y(¢) = s(t) * v(2) (3.1.1)

Experimantally we can easily extract =(¢) : at normal incidence it is the signal we ‘
have recorded for the air-water interface. To generate y(t), we need r(z).Equation
(3.1.1) can be written in the frequency domain and it gives equation (3.1.4)
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Nw) = S(w) R(w) (3.1.48)

One can determined R(w) theoretically. To do that we need a model of attenua-
"tion. In Part 1A, It is shown that whatever viscoelastic model we uses, the effect is the
same on the reflection coefficient. This is easily understood if we consider it as a
second order effect. Thersfore the result does not depend on third order effects like
diffrent type of frequency dependence for the quality factor Q. Therefore we use the
constant-Q model derived by Kjartansson (1879). With this model, at normal incidence,
R(w) can be written:

R(w) = M&_

3.1.17
P1C1+p2Ce ( )

with
- iw |7t
€y = Cos [-;:]
.'_ ‘ iw |’®
s culi]
where
| Co; and Cyg are the phase velocities taken at the reference frequency
&g - ’ '

and v, ,7; are defined in temms of @, and @ by:

2 =ten(my)

We know [Claerbout and Kjartansson(1979)] that the reflection coefficient at
normal incidence is a causal function.
S0 the process to use for computer simulation is now clear:

-g(t) and so S(w) are given by the experiment for the air-water
interface.

= r(t) is calculated In ﬁo Fourier domain using equation (3.1.17).
- Y(w) is obtained by equation (3.1.4).
= y(t) is calculated by inverse Fourier transforming equation (3.1.4).
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Wae have not speciftied if the medium was lossy or not. Non-lossy materiails will be a
particular case of lossy ones for which 7 is equal to O.

The results of the simulation are shown in Figures 3-18 to 3-18 for the three lossy
materials epoxy, polymer, silicon rubber.

The agreement is good, showing that we could not axpect to see any attenuation
affect on the epoxy sample.

For the polymer the results show the siight observed increase in amplitude ( 10% ).

For the silicon rubber the results are more interesting because the attenuation
affect Is bigger. We see a very good agreement in the shapes and in the amplitudes
between the simulated and the experimental signal. The values used for the computer
simulation are the ones listed in Table lli-1.

in Figures 3-19 to 3-21 we show the expected theoretical effect for different
~ Q-contrasts and elastic reflection coefficient on our signal. This is shown both in time
and spectrum domains. We can make the following conclusions:

There is no attenuation effect on the power spectrum no matter the
elastic reflection coefficient is.

-The effects on the time signal are mainly amplitude effects Increasing
with decreasing values of Q except, may be, at very low Q (l.e 10).

As already shown by the experiment, the lower the elastic reflection the
higher the attenuation effect. Figure 3-21b give schematically the amplitude of the
effect we should observe on reflected energles at a viscoelastic interface. Different
iso-amplitude contour lines are drawn as a function of the elastic reflection coefficient
and the quality factor. We also consider typical earth situations and their approximate
location on the plot: the expression gecthermal granites stand for granites in geother-
mal areas and values for saturated sandstones are taken to represent 'typical” bright
spots. The Q values, for tight gas sands, have been extrapolated from low pressure
measurements. The values of the elastic reflection coefficients are there to give an
Idea of typical earth reflections but are not actual measured values.

2-NON-NORMAL INCIDENCE

At non-normal lnddence, for a given angle, we also have a one-dimensional problem
which can be expressed by a modified equation (3.1.1):
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FIG. 3-21b. Schematic diagram showing zones with attenuation effect on the amplitude of
the refiected wave. The muitiplicative factors 1.1 and 2 indicate the relative increase in
reflected amplitude when there is attenuation. The plotted value of Q is the one of the most
sttenuating medium constituting the interface. The second Q vailue is then considsred to be
infinite compare to the pilotted one.
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y(t) = s(t) * rot) (3.1.18)
or in the frequency domain
Y(w) = S(w) Re(w) (3.1.19)

In these equations 3 represent the angle of incidence.

In the frequency domain, the general 2-D reflection coefficient is a function of o
the frequency and of k; the horizontal wave number; therefore we have:

sin(9) = vk,

(3.1.20)

we also know that in the elastic case the reflection coefficient is only a function of the
ratio %—. that is to say sin(¥) In the attenuating case, supposing an homogeneous

medium, we can write

R(”:kg) = R(Qﬂ’) = R’O(o)

The theoretical expression of R(w,k;) was determined by employing the equations
derived in chapters | and I and using constant-Q modeli.

To generate the synthetics we used the same procedure as in the previous para-
graph.

The results are shown, for the silicon rubber, in Figures 3-22, 3-23. Different
observations are made:

=All the synthetics have been generated with a slightly larger velocity
than the center value of the one measured giving a theoretical elastic reflec-
tion coefficient of 0.0048 instead of 0.0040 as listed in Table lil-1.

-For an angle of 7.6%, which is the smallest value we can obtain with
our set-up, the agreement between the simulated and the experimental sig-
nals is good. Nevertheless we see that the third and the fourth peaks of the
signal are too high in the synthetic example but that the average amplitudes
are well reconstructed by the simulated signal.

-For an angle of 10° the same observations may be made.

-The value of 15° angle is Interesting for the experimental signal
because It shows that the 180° phase shift is not finished: there is a small
negative peak before the first big one. One can see that this is well simulated
by the synthetic example. Again the amplitudes are well reconstructed
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axcept for the cbservation on the amplitude of certain peaks.

~For the angle of 30° the effect of attenuation has nearly disap-
peared and the agreement is very good with both synthetics as well shown in
the theorstical reflection coefficient curve (Figure 3-185).
This last point may give us a clue as to decide whether or not we are In the pres-
ence of an attenuation effect in seismic exploration: the first offsets should show
an effect that the larger ones should not have.

Vi~=CONCLUSIONS

As previously stated, in this axperiment it was impossible to use rock samples:
=Their acoustic impedance with respect to water is too large.

<The grain size and the surfacs roughness are too important with respect to the
wave-iengths used in the laboratory.
On ancother hand it is very difficult to creats an earth-like interface in terms of acoustic
impedance contrast: as soon as we go to very small values the needed accuracy on the
measurements of densities and velocities become very critical.

Nevertheiess we have been abie to show the following resuits:

-When there is an effect of Q-contrast on reflections It is exclusively an
amplitude effect.

-This Q-contrast effect appears in laboratory observations when the elastic
refiection coefficient is very smail, at ieast < 0.1. In the sarth we deal with
reflection coefficient of 0.01; therefore the effect should be strong as soon as
the quality factor is small encugh (<80-70). '

=A significant attenuation is needed to ses this effect. in the laboratory where
elastic coefficients are still comparatively large (of the order of 0.05), we need a
Q of 15 or less. in the earth where elastic coefficients are much smalier ( on the
order of 0.0065 ), the quaiity factor Q can be greater and still create an important
affect.

_=The attenuation effect on reflections is angie dependent and dies out for
angies greater than 20°-309.

~The constant-Q model is a good model to use to simulate the effects we may
encounter in reality.
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ANNEX A
DEFINITIONS AND MEASUREMENTS OF Q

1 = Definitions

Attenuation in a given medium is generally daﬂhed, for practical purposes, with
respect to what is called the quality factor Q.

This term Is not very clear since every author has derived his own definition! [
O'Connell and Budiansky 1978 ]. All these definitions are not equivalent. However, for low
attenuations, i.e quality factors Q of 10 or larger, there is no real discrepancy.

The different definitions depend on the way the author has studied the attenuation
effect.

Using forced oscillations during loading, Q is defined by

Q= 4n E3tored
AW

Extered = average stored energy during a cycle of loading.
AW = Energy dissipated per cycie of forced oscillations.
One can aiso define Q in the following way:

o 2mEREY
=W

where
Egtayd = Maximum value of the elastic energy stored during a cycle of loading.
Using traveling waves, one could define Q by

2T,
Q= 37

Teax = Peak kinetic energy density at a glven point.
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AT puxy = Drop in Ty Over one spatial wavelength.

if studying resonating systems one can use the width of the resonance peak and
define Q as the following :

e
=

@ = Resonating frequency.
Aw = Width of the resonance peak at one half the
maximum power.

Or if looking at the decay of the resonance after switching off the driving force

& = Resonating frequency.
& = Exponent of the decaying time exponential representing the signal.

Other parameters have been defined that are related to Q. A non exhaustive list is
given here )
@ = Attenuation coefficient (‘in nepers/unit-length ).

- T
a=Z2L

a can be given also in decibels / unit length and then we have

Q4B wnit —tength = (20 100108 Yneper/ unit -iengtn = 8.686a

Ancther useful parameter is:

7 = Characterizes the decay in amplitude of a single peak of a traveling
plane wave
and
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where A; and A4, are successive peaks of a traveling plane wave.

We have aiso

6=

O':

Very often one speaks of complex modull, the given modulus being related to the type of
wave one is looking at. If we define

M = Mp + iM; = Complex modulus

then we have

This is the most used formula for Q and it can be taken as a definition of Q.

Finally one can be interested in the phase lag between stress and strain.Then if we
define

é= Phase angle between stress and strain and we have

=L
tand )

2 = M easurements
Q is measured by various techniques:
a- Puise traveling technique

Wae look at a given pulse through an attenuating medium. The recorded sig-
nal Is compared to the one obtained by doing the same thing through a reference
sampie for which there is " no attenuation”. The comparison of the two power
spectrum gives us the attenuation. ( Toksoz and al 1979 ).

We have

G

A _,
looz-('rz 7‘)+'°°az

7=-07



186

~

z = Sample thickness
G = Geometrical spreading

Thnslopeofthestnlghtlhohﬂ\eplotlog-‘}"-uafunctbnofﬁwm-

quency / gives us the value of (y;, — 7;)z from which we get the value of Q.
The problems inherent to this method are the following :

-bo%—hwmodwbchm-mqmcydwdm:mmdmny

the same geometry and a thick enough sample with respect to the
waveiength of the puise.

= The coupling between the transducers and the sample may be a
probiem.

D-Mmtbarmcthgds

The rock Is modeled as a simple resonating system. As already mentioned
two ways of proceeding are possble

= gsing the width of the resonancs peak; the accuracy of this measure-
ment depends on the ampiitude of the attenuation and on the order of the
harmonics used (see ANNEX B ).

= using the decaying exponential obtained by switching off the driving
force at the resonance frequency. Again, the accuracy depends on the ampli-
tude of the attenuation and on the order of the harmonic used.

¢- Torsional pendulum

This method Is similar to the last one. instead of resonating a bar we apply
a torque to a bar and look at the resonances.

d- Phase lag measurements
This method is very difficult, because It must be extremely accurate.
J.Spencer (1881) has made work. it uses the formula aiready given:

=1
tand )

$ = Phase lag between stress and strain
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The main problem with this method is the high degree of accuracy needed
on the measurements. It has the advantage of using very low frequencies
similar to seismic ones. )
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ANNEX B

ACCURACY OF Q MEASUREMENTS IN THE LABORATORY

RESONANT BAR METHOD
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ANNEX B
THE RESONANT PEAK METHOD : ITS ACCURACY FOR
HIGH ATTENUATION

1 = INTRODUCTION

Single resonating systems are generally modeled by damped harmonic oscillators.
This is a very good model for low attenuation and low harmonics.

For high attenuation and high harmmonics, this method fails, because modeling the sys-
tem as a damped harmonic oscillator does not take into account the interferences between
the different normal modes of vibration.

Our approach is more general modeling the resonant bar as a linear viscoelastic
medium, a medium responding linearly to an applied load and having a time-dependent rela-
tionship between stress and strain.

OurgoallstostudythepeakofresonanceandltswldthasafunctionofQ=%f—;

the attenuation and to compare the rasult obtained by this method to the one generally used
in laboratory experiments (Winkier 1979).

2 - EXPERIMENT

The experiment is sketched in Figure A-1 . The bar Is set on a support at its middle.
It is driven constantly at one extremity by a sinusoidal force of amplitude g, and frequency
w. The origin of the z-axis is taken at the end where the driving force is applied. The length

of the sample is L. The displacement at z = g-ls O by construction of the apparatus: it is a
node of dispiacement.
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FigA-1

q,cos(wi]
————i

Schematic representation of the resonant bar experiment

\

~T

¥x
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2 = a, Equation of vibration

By applying the fundamental law of mechanics,we get

*U _ do(z,t)

32 - oz + g,6(z)cosw, t (B-1)

p

o{z,t) being the strass and D"(z,t) the displacement. As we have a linear viscoelastic
medium we can write

o(z,t) = m(t)*e(z,t) = m(t)'-‘?—‘%-“— (8-2)

with m(¢) = elastic modulus of the sample.
By combining equations (B-1) and (B-2), we obtain

-l a’u

Pare —~+ g, 6(z)cosw, t (8-3)

= m(t)‘

In fact, this equation is not very practical and we are going to use a complex version of
(B-3):

2
2BV o ey zv

at?

+ g, 8(z)e'* (B-3")

and U(z,t) is given by
U(z,t) = Re[V(=,t)]
The time-part of (B-3') can be solved easily and gives us
Wz.t) = ulz)e*’*

By Fourier transforming (B-3') we obtain :

H(n) (w o) + pwdu(z)o(w — w,) + go8(2)8(w — wo) = O

H(r.;) + potu + g,8(z) = (B-4)

with
M{w) = Fourier transform of the elastic modulus
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mﬂmmcya’twmchmbarbmm
If we know the solution of (B-4) ,U(z,t) is then given by

U(z,t) = Re[u(z)] coswt — Im[u(z)] sinwt
And its maximum value is '

| max value U(z,t) | = |u(z)|

2 - b, Solution of equation (B-4)

Wae deveiop u(z) on the normal modes. If u,(z) is a normal mode it is solution of

Mo

= +potu, =0 : (8-5)

with the boundary conditions
tUn(0) = uon
%(L, = =-Ugn

end MU, = Memdmw.WtdWhn[=H(-)].
From equation (B-5) and the boundary conditions we get

Un(2) = ©onc08{un < / ﬁ-zl

(2n +A1)1r, /ﬂo
Oy = 1 2
We look for the solution u(z) as a deveiopment along the normal modes,

w(z) = ¥ ayun(z) )
nsg .

Up(z) = eos[n..\/ ﬁ-z]

By multiplying (B-4) by “n(z).lntmﬁné over =z and plugging for u(z) the deveiopment (B-
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6),we obtain
- d 2 - _
"“”,2.%"’ S Fumdz +pu ,an’ Jupundz+qo=0

By using the orthogonality of noﬁnal modes [ f u,,u,d:. = %6,,] and by replacing

d
-%‘22— by -pog}z— we obtain

wg—{ﬂz'%f) w2|+qq=0
This gives
_ 290Mo _ ug
T T LM -Ho?] | H(D)oi-He?
And so

u(z) = ug f: 1 (2)

3 - CALCULATION OF THE MODULUS OF u(z) AND OF THE HALF-WIDTH OF THE
RESONANT PEAK

Let us look at what happens at the end z = L .There we have u,(z)=-1 for every n,
while in equation (B-8b), ug Is a scaling factor that we make equal to 1 for simplicity. This

gives

- = MR(W)Q;‘:—M()G}?'
up(z) = ,.z.:o [Mr(w)w2 =M P+ Hfwd
and
- r Ceo)es
uylz) = 2 Mooy

w0 [Mp(w)wd = MoeP 12+ Hf wt

with the subscript R indicating the real part and the subscript ! the imaginary part.

The experiment consists of driving the sample at different frequencies, so that one of
the modes is more particularly excited.
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To excite praferentially the mode n ,the frequency we must use Is given by the formula
ot
Hp(w) = My—5-
R . 0“3

At this frequency the denominator of u(z) will be the smallest possible and 30 this mode is
the main contribution to the peak ampiitude.

If we excite the mode (2p +1),the resonant frequency wq s given by

Mp(ex) = ”o%
with
= (2p+1)uiag
8 - a, Modulus of u(L)
Wes have
4
Hplogdwd~MHowd = M (2; I:;: ] ?;L:ﬁg—z(n ~2)n+p+1)
. (2n+1)’ Mool [2n +1
' o)l = Mol = p+1 Cori)y ——-[—-ﬁ-]
if we define Q by
Q= Mp(exn) _ Mpo
My(we) ~ Hpo
We can write
up==F 4 =-3 a4-4
T =l
nep
wll)= £ 6 =~ F Ba-5y
nep
with

Mp(oo)ewd ~Mowf
[Mp(wp)en ~Mowf TP+ M (wgdwd

A=
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MI(OQ)CJyz;

B,

and this whatever n.

= [Hz(o) o ~Howd P+ Hf(og)on

We have by definition of oy , A, =0.

A, can be written

1

HAog)w? |7

4= HMp(wo)wi-Mowd

A 1

[Hn(o0)o?—Hood T | nEP

M (o)t

™ Hplog)oi—Hood

(2p +1)2

" [Mp(wg)od ~Mowl T |

_c
l 4Mouf(n—p)n+p+1) 11 @

In this expression C is a constant with respect ton .

This implies
- 1 4
R +C

( cf Appendix A )

-1 c

'u.;"(L) R W-I- Q—z

We have aiso

B,= 1 = Q_.
P= Hogo?  Howg

As A, ,5, can be written

]-1

[Mp(wodwi—Howd]? |

[ MP(op)el

I /. C " S

(it o0rez-soud]”

Mol [ ¢
[(Mp(o)od—HowfF | @

@n+)¥2p+12 [ ]
18 QM gwi(n—p)2(n+p +1)? @)

Ba ™

B, ®



198

. This implles

3 (2p+1)® |n? 1 e
:%B"" 16QUd |3 @ Zpr1 ] T &
( cf Appendix A )
or
_Q . (2p+1)® [n® 1 c”
wL) ~ Tyl * 1eoy.n3| 3 T Zpry) @
So finally we get

2
lu l3°=uf+u§=m%{1+(—2%9—{gaﬁ+ (2p+1)"] + FA;-}

The valuas cbtained for the different harmonics are

Pirst harmonic |u|.',.=§%,?{1+%-:¥-+ ]

Third harmonic |u|3,=;§§-{1+~3-'%8-+
Ayt barmonie fule g e 1580,
Seventh harmonic .|u|&=}-%[1+%ai-+

Already we see that higher the harmonic ,worst the accuracy on the peak displacement.

3 = b, Half-width frequancies
Wae define the haif width frequencies as the frequencies w, and w_ ( see also Figure
A2 )

g

At a first order we know that (O'Conmnell and Budiansky 1978)

wl,=ell 1+ 5]
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FigA-2 Resonant peak definitions



200

In this formula
e=+1  forow,
t=-1 foro.~

As we are looking at secondary effect, we must ook at the dependence of o, as a function

of(-‘b-)'.w.m

of = oflt + &+ S+ :‘é;—+ ] (B-7)

We must also consider the dispersion relations. If ¥p(w) and K (w) are derivable functions
of v, we have

- 2 d2i - S g%y
Mpls,) = Hpo + (0, - a.)f‘;q_“ (_.zv.) L :......4-( eo.) “’x oy +

(o -o.)‘ at i, (o = a)° ddy

di,
Hz(n*)=ﬂm+(n*—u.)75’-|....+ -;7-]..,'+ _T——?F-"""-"'

Equation (B-7) gives '
= 1 28 _ &t
0y 0014» +27.T(a* '+?.-’-(3 > +6,)
So we can mwﬂ.te‘llx(a*) and M (w,) in the following form

Mo, = .u,,[n-"‘ [ S S

et
Hiw,) = u,,,[1+7g g 7; 1

= L0 dlp

- o dly
7f"2”m —"ldo una,
2

- e 21 dﬂg : W d"Mp
’f‘zu,,,l(“* D do et g GA T, ]
dzﬂyi
4 dof

S 1,44
= giflen - Do+ |
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. - dM '
B = 23| g 2 E 00 g e (&-2)
¢ (oq - )y EHe, o8 Pl
4 3 + 2 dug Uy 24 do’ U,

_ . Gy 1_a dMy
7*‘*&,,|( 5~ 2 £0) g,
03 dsﬂl ]

+ 4—(2“3 - 2—) dog""oau. + 24 du—’ lm,

With all these relations, we are ready to develop ug*(L) and u.;"*(L).

In the foliowing equations we simplify the nqtations by not writing the + subscript,
which are restored at the end of the calculus.

With these notations, we have

ﬂg(f-’)ﬂ;‘: -Moﬁz = Mgnoz{4(n =p)nt+p+1) + %{Hg

2
2n +1
(p + 1% 2p+1] "]*
1 [ [2n +1) 1[ [2n +1])
FplEH] - wrlEa] -
o[z e1Pl L n . R E%
”1(0)05-11.7[2?—_‘_;-] Tttt o

As in the preqlous paragraph, we have
uwp(D) =-F 4 -4
b 1

1+

3
We find
a=0 _fi=e [ 1ffea 2y, +2(83-0)(B1-2)) . d |
H,o? 1+, -eP| ~ QB B,-eR+1 | @]

(2p +1)° + 3
AHowé(n-p)n+p+1) Q

A, =

And it implies
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=, _ 1 d
:%4'-4”0934.-5—_

(cf. Appendix A )

' e Q@ _ B=-c 1 11
W) = - T T+ G- H.JE'[“

b=t [Ba~a 29 +2(8—aXp -2))| _dy

(1 +@ -0 A -¢ (1+@-e® )|~ @

j~|-

I3
]

Bp= 8 1 [, 1l _ 25+ 28 -aXg ~2)
Hof (1+(8-e®| = Q" (1+(8, —e)?)
| AN
&=
it implies
DR
e @
So
| =@ 1
Wil = T T v =D
P 1 2+ 2B —ad —8))
ol (g =-eP|” (1+8, =2
As
. 2
18 = up + uf = Lol
By equating the constant terms, we get
—_—t .1
(1 +(ﬁ;-t)a) 2

which implies
=0

For the terms in 1-;wng¢t

Q

4
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-2y -t +2(fz ~a) =0
1
a=f-eon-z
which is equivalent to -
= a+ + 1
&-ﬂz_ N -3

PN |
a-=pfr+yi =3

2
System (B-8) and Equation (B-8) show that
B =Pz 7”WE=-r
And then we have
w? deMp @y
A== 8o dot Joma” 2M R-i (8-10)

To have the dependence of the peak width as a function of Q, we must go one step
further and calculate the terms d.,d, - - -

To do that we use the two relations we have already derived:
f=0

1
a=pe-en-3

=t 71 1 2 1
&= 5;%5‘[ T F(‘)’z*‘?x"'z‘h"'g')]

This gives

(2p + 1)2 e(2p+1)°? ]
4 = AMgef(n —p)(n+p+1) 4Q(n—p)(n+p+1)] n¥p
Y4 = \—(2p+1)2-3)]

3 4H00§ 4Q

( of Appendix A )

I ; 1 e, 111 o2 -
up(L) = ﬁ?@?{1 3(71""2-)f3'z‘{4 EE(ZP'H)Z 371"'7?"72“
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And
5 = ZHood 1+-%<7:+§—)+é-{e(ﬂa-6)-7?+ %ﬂ
B~ (2n +1)2(2 +1)2
Qidsf(n PYn+pr1)?
This impiles

& ";_( +1)2 {2 1
:233' " 16QHyu] 1 I (2,,""4.1'52}

0 oo et o

As lu]’=uj+ufm°btah

Jujt = ﬁ*é—{%- hﬂft(ﬁa-ﬂ”

Andthlsmmtoqual

Juj2 J e[ 2 3
2 "zggml” 1647 "3""'(294-1)3}]

Wa get

] e{’gi-y1+(2;p+1) 28" 78
Nw.mlmzbyqulu..\nm

6= n:—[n*w;*ﬂzpm*ﬁ-}- %}

= 35-[;:‘*-1;‘4-(21» +1)‘.§}-,—%—}
Using system (B-8) we get

B3=-g5

r=y;



"=~
And so finally we obtain
8t = =67=| 4]

with

- wd 1.d%Mp w, dSMp W 1 dM [ d2M;
161 -{Bﬂgal(za—-z_) do? '“’“'+ 6 do° Io-u. ]-ZMmI(a 2-) dw I"'"' * 4 do? 1o

2
- wf |dMy 9 2 m°
'Amﬁ,! do) lo=e * 76~ P+ 53

which can be written In the simpiified form

= il
|6] = a+(2p+1) 23
in these equations « is given by equation (B-10).
The peak width being
208
b= wi-wd
[l
A= = —
1+ g @+|4]
Q&

The relation between the peak width and Q can be written

@-Q@2a~A) 8] =0 (B-11)

|8] = u+(2p+1)z§"-}

Experimentally, we found that even at low @ there is no real distorsion when we excite
the first harmonic; we can assume the quantity " a " is a small number on the order of 1 .
Then we can neglect ” a " as the order of the harmonic 'p"” increases, and we can write
Equation (B-11) in an approximate form for high harmonics ( =3 ):

n2
@~ A-M2p+1)? =0
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To see the effect of this correction factor, we can compare the Q given by this equation
with the one usually taken, A . To see this effect we take a very low value for A, a very
high attenuation. Using a A of 5, the results are shown in Table An-1. ~

4 - CONCLUSION

The resonant peak method of measuring attenuation is accurate when the first harmonic
is used even when Q Is low.For higher harmonics one should be careful and cotrect the raw
value ,for low Q, by utilizing the formula derived in this chapter.The discrepancy between the
two values will increase with increasing harmonics.

O'Connell R.J.,Budiansky B.,1978,Measures of dissipation in viscoelastic media, Geoph.Res.
Letters,5,5-8.

Winkier K.,1879,The effects of pore fluids and frictional sliding on seismic attenuation,PhD
thesis ,Stanford Univ.,Stanford,Caiif.
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Table An-1
Half-Width A =35
Qrder of Harmonic "Corrected” Value of Q

1 ' 5.1

5.6

5 6.3

7 7.0

9 7.8

11 8.5

13 9.2
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APPENDIX A : CALCULUS OF THE SUM OF SERIES INVOLVING INVERSE OF INTEGERS

2 (n-p)(n+p+1)

As
1 . 1 _ 1 ]
(n-p)n+p+1) (2p+1)|n-p n+p+1]
And as
- fpap-] -
5" % 2,
z‘, n asp
We get
=1 aup-1 ]_ »n -1_
::.;,[ n-p n+p+1j t n+p+1]" ﬁ:u
And .
[ 1 1 ]_- 1 - J—e' +l;|_
angﬂ[ﬂ‘-p n-l-p+1] am m-tzpﬂn El n
So finally we get

f: 1 =
.3<n-p)(n+p+1) (2p+1)?

1
2- 2 (n—p)'(n-l-p-ﬂ 3

As

1 oo+ 2 . 1 1 ]
(n-pl(n+p+1)®  (2p+1)?| (R-PXn+p+1)  (n—p)®  (n+p+1)%]

We have

'2-1

(n -p)‘l el n‘
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n&-l 1 _ n=2p l_.
ns0 (,,_+p+1)z n-pﬂnz

L o= Lor

nap+t (n-P)z n=l

- 1 = 1 = 1
— —— +1
nap+l (n+p+1 2 n=l n? ’§l2p n?

So
a| 1 1 J..a1 1
,E, (n—p)? * (n+p+1)zj -2,.2‘ n? (2p+1)?
nap
As we know that
= 1 -zi
,.g,?"‘ 6
We finally get
5 1 1 |m_ a1
nzo(n—pYin+p+1)? (2p+1)2|3  (2p+1)?]
n
S (2n +1)2
S az-;o(n-p)’(n+p+1)z
nap
We have
" (2n+1)? N 4 (2p+1)?

n—pPn+p+1)?  (Rpln+p+1) ' (n-p)i(n+p+1)

So we get immediately

i (2n+1)2
(n—pY(n+p+1)?

=,
n=0 3  (2p+1)?
nwp
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