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INTRODUCTION

Many geological and geophysical phenomena and processes in the Earth’'s
crust are profoundly influenced by interaction between the porous rocks that
constitute the crust and the pore fluid contained within those rocks. This
interaction may be chemical, manifesting itself through processes such as
diagenesis (e.g., Berner, 1980) or redistribution of isotopes (e.g., Taylor, 1977;
O'Neill and Hanks, 1980); mechanical, with pore fluids affecting the
mechanisms by which rocks deform (e.g., Carter, 1976; Brace and Kohlstedt,
1980) or transmit stress waves (e.g., Nur and Simmons, 1989); Qr a complicated
mix of chemical and mechanical processes, such as during the dewatering of a

sediment pile (e.g., Weaver and Beck, 1971; Cathles and Smith, 1983).

A clear understanding of fluid-rock interaction in the Earth's crust is also
of significant practical interest. One outstanding problem centers around the
long-term (10° a) isclation of 'high-level’, extremely toxic radioactive wastes
generated both by commercial nuclear reactors and by military weapons-
building programs. The waste-isolation scheme most favored-—and already
being pursued in some countries—involves burial of encapsulated waste
products in what are hoped to be °’stable’, 'impermeable’ rocks. Despite
serious efforts to understand the potential hydrologic interaction between
these radioactive wastes and the biosphere, it is not obvious to many people
that a ’safe’ waste repository has been (or can be) found. Earth science (and
earth scientists), public policy, and political forces affect each other in this

controversy.



For both theoretical and practical reasons, therefore, the many earth
scientists interested in crustal processes should routinely consider the
hydrologic characteristics of crustal rocks as potentially important

parameters.

The overall goal in this dissertation is to provide answers to several
important, related questions in regards to the distribution of water in the

Earth's crust:

i) At what depths is free water present?

ii) What are the porosity and permeability of crustal rocks?

iii) What is the pore pressure at depth, particularly in comparison to

hydrostatic pressure?

iv) How do pore fluids interact mechanically with crustal rocks?

v) How do any or all of the hydrological parameters of the crust change in

time and space? |
Considerable data to help answer these questions has been gathered as a result
of petroleumn exploration and engineering studies (Brace, 1880), but are
essentially restricted to the upper 2-3 km of the crust. Hence, answers must

necessarily be based largely upon indirect evidence and model studies.

The work presented in this dissertation comprises an effort to develop
simple theoretical models of some key aspects of crustal hydrology, to apply
these models to understand the mechanical interaction between porous
crustal rocks and the pore fluids contained therein, and to belp answer the
questions posed above. Throughout this dissertation, attempts are made to
relate and compare our theoretical models to geological and geophysical

observations from the laboratory, the field, and the subsurface.



In chapter 1, the way in which porosity-reduction processes affect
permeability and pore pressure at upper- and mid-crustal depths is examined.
A great deal of indirect evidence exists suggesting that pore pressure in excess
of hydrostatic may be quite common. At the same time, other inferences
suggest that typical crustal permeabilities are such as to preclude the
maintenance of excess pore pressure for geologically significant periods of
time. One way to reconcile this apparent contradiction is to consider porosity,
permeability and pore pressure all to be time-dependent, rather than static.
Simple mathematical models show that slow porosity/permeability reduction
could profoundly afflect pore pressure. Indirect evidence from
thermodynamical arguments and from experimental work suggests that
localized mass transfer--perhaps akin to ‘pressure solution'—may be very
common under crustal conditions and lead to such slow porosity/permeability
changes. Such time-dependent variability of crustal hydrologic characteristics
cannot be a ‘one-way' phenomenon, however; regions in which pore pressure is
high are likely to alternate both spatially and temporally with regions where
elevated pore pressure is relieved by fracturing and the concomitant creation
of relatively permeable conduits permitting egress of overpressured fluids.
This notion of pore pressure variable in both time and space is considered

again, in different contexts, in later chapters.

The work presented in chapters 2, 3, and 4, dealing with physical
processes in accumulating sediments, grew out of an interest in the
mechanisms by which excess pressures are generated in sedimentary basins.
Overpressuring presents significant practical problems in petroleum
exploration (e.g., Dickinson, 1953; Fertl and Timko, 1970); hence, a great deal

of effort has been made not only to develop well-logging techniques to



anticipate the presence of overpressured zones, but also to understand the

physical processes that cause such zones to develop.

Previous models of pore-pressure development in accumulating
sediments involve a variety of assumptions about the sediments’ rheological
bebavior. In chapter 2, such assurnptions are critically examined in view of
experimental data on time-dependent deformation of clays and shales, in order
to construct a plausible rheological model for compaction of clay-rich
sediments. It is shown that for time scales and loading rates typical of
sedimentary basins, mechanical porosity change during compaction is
essentially a unique function of effective pressure. This verifles assumptions
made in previous models. It also facilitates the development in chapter 3,
where the relative efficacy of various processes that may cause overpressuring

in compacting clay-rich sediments is examined.

Pressure-enhancing phenomena—mechanical compaction, thermal
expansion of pore fluid, and bound-water release during montmorillonite
dehydration--all '‘compete’ with pore-pressure diffusion, which acts to dissipate
excess pore pressure. A particularly new feature of the analysis is an explicit
mathematical description of the ’source strength’ of the clay-dehydration
mechanism. Very rapid pnre-pressure increase may result from
montmorillonite dehydration, possibly leading to episodic buildup and release
of overpressure. This may be related to the origin of Mississippi Valley-type
Pb-Zn deposits (Cathles and Smith, 1983). The clay-dehydration mechanism
may also help to explain commonly observed subsurface features, such as

porosity inversions (i.e., porosity locally increasing with _depth).

The work on accumulating sediments concludes in chapter 4 with an

explicit accounting for one of the ubiquitous feature in sedimentary basins:



sand-shale interlayering. The analysis demonstrates clearly that sand-shale
interlayering in a predominantly shale section will profoundly affect fluid-flow
direction, pore-pressure development, and the dewatering history of the

sediment pile.

Pore pressure must necessarily be linked to the overall stress state in a
rock mass. In chapter 5, a mathematical formalism is developed showing how
pore pressure, stress, strain, and temperature are coupled, and used to
examine the pore-pressure history of a rock mass for two common situations:
when uplifted, and when subjected to lateral tectonic compression. During
uplift, pore pressure in a rock mass of low permeability (or surrounded by
rocks with this property) may deviate markedly from hydrostatic. The sign of
this deviation depends strongly on another phenomena associated with uplift
(Bruner, in press): the probable growth of microcracks due to grain-scale
stress inhomogeneities. In the likely case that microcracking is important, the
compliance of the rock mass will increase, and pore pressure may climb above
bydrostatic. This phenomenon could be related, in some cases, to joint

formation.

During lateral compression at geologically plausible strain rates, pore
pressure in low permeability rocks may climb to lithostatic on a time scale of
only thousands or tens of thousands of years. This would have a major
influence on the mechanical properties of the rock mass, greatly facilitating
brittle deformation. This phenomenon may be of particular importance for

rocks caught in zones between converging tectonic plates.

In chapter 6, the transient pulse, or pulse-decay method of permeability
measurement is investigated. Coupling between pore pressure and stress may

be important in the laboratory as well as for larger scale phenomena; theory
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indicates that such coupling should cause an inherent sample-siie dependence
in the transient pulse technique. A simple experiment intended to test this
prediction is described. Sample-size dependence is observed, t?ut may be
masked by eflects of slight material inhomogeneity. Also examined are
limitations on the pulse-decay technique that may arise as a result of nonlinear
pore-pressure diffusion, with presentation of the theoretical rationale and
results of another simple experiment that support the tbeory. The overall
resuits are used to suggest guidelines for experimentalists intending to use the
transient pulse method in the future, such that possible misinterpretation of

data can be avoided.
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CHAPTER 1
POROSITY REDUCTION AND CRUSTAL
PORE-PRESSURE DEVELOPMENT

ABSTRACT

The influence of porosity-reduction processes on the hydrologic
characteristics of the Earth's crust is examined. We present a simple
mathematical model that shows the eflect of porosity reduction on fluid-
pressure development in the crust. Fluid pressure in excess of hydrostatic can
be generated if porosity-reduction rates are sufficiently high. Elevated fluid
pressure could in turn afflect properties such as strength and seismic
reflectivity. Our review of indirect evidence from laboratory, theoretical, and
field studies indicates that porosity-reduction processes are active--or are very
likely to be so—in large parts of the crust, crystalline as well as sedimentary.
We conclude that, in general, the hydrologic properties of the Earth's crust
should be time-dependent, even in regions not undergoing significant tectonic

activity.

1. INTRODUCTION

The hydrologic character of the Earth’'s erust plays a very important
role in 8 number of geological and geophysical phenomena. Certainly the
mechanisms by which crustal rocks deform during tectonic activity are
strongly influenced by the presence or absence of water, as well as by the fluid
pressure, with brittle behavior favored under some conditions, ductile behavior

under others [e.g., Carter, 1976; Brace and Kohlstedt, 1980]. Circulation of
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crustal water has important eflects on heat flow [e.g., Sleep and Wolery, 1978;
Lachenbruch and Sass, 1980; Smith and Chapman, 1883}, on the distribution of
oxygen and hydrogen isotopes te.g.. Taylor, 1977; O'Neil and Hanks, 1980], and
on ore deposit formation [e.g., Norton and Knight, 1977]. An understanding of
crustal hydrologic properties is critical in evaluating the safety of nuclear
waste burial schemes [e.g., Trimmer et al., 1980] and the efficiency of hot dry

rock geothermal energy extraction [e.g., Morrow et al., 1981].

Several important, related questions can be posed in regards to the

distribution of water in the crust:

(i) At what depths is free water present?
(ii) What is the value of aqueous fluid pressure P, at these depths?

(iii) What is the permeability at these depths?

Answers to these questions are of necessity based largely upon indirect
evidence, because published in sifu measurements of crustal hydrologic

properties reach to depths of only ca. 2-3 km [Brace, 1980].

The presence of free water to at least moderate depths in the crust is
strongly suggested by several lines of research. Isotopic studies of batholithic
rocks [e.g., Taylor, 1977; Norton and Taylor, 1979] indicate that meteoric water
can circulate to depths of ca. 10-20 km. Some deep-crustal electromagnetic
soundings have been interpreted as indicating the presence of zones of
relatively low electrical resistivity, with the presence of a continuous water
phase a probable cause [e.g., Nekut et al., 1977; Thompson et al., 1983]. Some
laboratory studies of the electrical properties of rocks support this
interpretation [Olhoeft, 1981; Sbankland and Ander, 1983]. Seismology has also
contributed to ideas about the hydrologic character of the crust. For example,

Berry and Mair [1977] have argued that crustal low velocity zones could be due
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to P, locally in excess of hydrostatic. This argument is based upon
experimental results such as those of Nur and Simmons [1969], who showed
that even in very low porosity saturated rocks, compressional velocity drops
markedly as P, approaches the confining pressure P,. Using a similar line of
reasoning, Jones and Nur [1982] suggested that some reflections from deep
crustal fault zones may be associated with elevated P, within or below these
zones. The hypothesis of elevated P, has also been suggested by Raleigh and
Evernden [1982] to explain the low deviatoric stresses thought to exist along

plate boundaries such as the San Andreas fault.

Other inferences about crustal hydrology are based upon observations
of a more geological character. For example, Fyfe et al. [1978] and Etheridge
et al. [in press] have reviewed geological evidence indicating that free water,
with P, often exceeding hydrostatic, is widespread during low- to medium

grade regionalA metamorphism. Two principal lines of evidence are:

(i) The ubiquity of mineralized fractures whose microstructure and
orientation indicate that they formed in extension (see also Ramsay
[1980]). On the basis of commonly accepted criteria for brittle failure,
this requires that P, exceeded the minimum principal confining stress at
the time of fracture formation. |

(ii) The consistency of experimentally determined phase equilibria (with
P; equal to confining pressure P.) with natural distributions of
metamorphic mineral assemblages. (Thé lack of independent P, control in
most metamorphic petrology experiments makes this argument difficult

to assess critically, however, as emphasized by Thompson [1983].)

The sbove arguments clearly support the idea that free water is

common, et least episodically, at upper- and mid-crustal levels. Furthermore,
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the hypothesis that elevated P, can be maintained in the crust for geologically
significant periods of time is quite attractive as a basis for explaining a number
of phenomena. This hypothesis carries with itself implications for the
permissible values of permeability of crustal rocks. Bredehoeft and Hanshaw
[1968] and Hanshaw and Bredehoeft [1968] studied simple models of crustal P,
development; they concluded that, in general, maintenance of elevated Py for
geologically significant periods of time requires horizons of very low
permeability, perhaps as low as 1 ndarcy (107%'m?%). Brace [1980), after
x;eviewing direct and indirect estimates of crustal permeability, argued that
zones with permeability of ca. 1 millidarcy (10~'*m®) must exist down to at
least 10 km depth. He therefore concluded that P, is very unlikely to exceed
hydrostatic pressure ‘in regions where crystalline rocks extend to the
surface,” and that P, above hydrostatic in crystalline rocks could be
maintained only if a cover of very low permeability (e.g., argillaceous) rocks
were present [cf. Hanshaw and Bredehoeft, 1968]. Recently, Jones [1983] has
examined the hypothesized relationship between seismically reflective zones
and elevated P, by combining simple models of P, development with synthetic
seismograms. He concluded that although elevated pore pressure can
significantly aflfect the existence and amplitudes of reflected waves, such
eflects persist for geologically significant periods of time "only for a
permeability lower than that generally observed in laboratory measurements

on crustal rocks.”

The apparent contradiction between the indirect evidence for
widespread elevated crustal P;, on the one hand, and the inferred relatively
high permeability throughout the crust, on the other hand, may be reconciled

by considering porosity, permeability, and consequently fluid pressure to be
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time-dependent, rather than static. What then might be the conditions or
situations for which these quantities could develop through time in such a way
as to maintain P, in excess of hydrostatic? The most obvious mechanisms
potentially responsible are time-dependent changes in porosity and pore-space
configuration due to (i) inelastic deformation, leading to pore closure; (ii)
dissolution, including pressure solution, and redeposition of solutes; and (iii)
the creation of fractures, with their subsequent healing and sealing. As

porosity changes due to these processes, so will permeability.

In the next section, we present a simple mathematical model for P,
development, taking into account the role of porosity and permeability
reduction. Scaling grguments lead to a criterion for assessing whether
porosity reduction will be efective in producing elevated P,. This criterion
indicates approximately the porosity-reduction rate necessary to produce and
maintain elevated P,. This is illustrated by calculations of P, development in
layered crustal models. In section 3, we discuss possible mechanisms of
porosity reduction and review thermodynamic arguments that porosity
. reduction is generally favored when P, is less tban overburden pressure. We
will argue t.h_at. local mass transfer‘is likely to be very important in effecting
porosity reduction. Discussion in section 4 centers on implications of our
model for interpreting tectonic processes, in particular, brittle fracture in the
crust. We also examine the possible role of elevated fluid pressure in crustal

low velocity zones.

2. EFFECT OF POROSITY REDUCTION ON FLUID PRESSURE

The fundamental relationships that we use in deriving a mathematical
model for crustal pore-pressure development are mmass conservation and
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Darcy’s law. Mass conservation for a fluid in a porous material is given by
0
ET(P: p)==9-(p,4) (1)

where
py = fluid density
@ = porosity
4 = volumetric flow rate per unit area

t = time

The volumetric flow rate per unit area is related to fluid pressure by the

phenomenological relationship known as Darcy’s law:
k
2= -2F ~prd) (2)

where

k = permeability
i = viscosity
P, = fluid pressure

g = acceleration due to gravity

Eqn. (2) indicates that there will be no flow when the fluid-pressure gradient is

hydrostatic, i.e., vhen VP, = p, 3.

Combining Eqns. (1) and (2) and expanding, we obtain

8 8py _ prk Ps k

prk
- -“L,—v;;-VP,

In the usual derivation of the diffusion equation for fluid pressure [e.g.. Brace

et al.,, 1988), permeability and viscosity are taken as constants. Reversible
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changes in porosity and fluid density due to changes in fluid pressure are also
included. .In the present analysis, we want to consider in addition possible
srreversible changes in both pox;osity and permeability, as they may strongly
aflect pore pressure development. Accordingly, we decompose the rate of

change of porosity into reversible and irreversible parts:

By _ (8¢, 89,

(The physical nature of (8¢/ 8t )iyvey, Will be discussed in section 3.) Similarly,

the gradient in permeability may be written as

Vi = (Vk)py + (T )ien (5)

Using Eqns. (4) and (5), we show in the appendix that the equation for

fluid pressure diffusion can generally be written to a close approximation as

1 8P, 1 ]
T VEP, + k—(Vk)m'VP] + Elc- (8)

where ¢ is the hydraulic diffusivity, defined in the appendix, and
$= —(8¢/ Bt )irev is & porosity-reduction rate factor, defined so as to be
positive when porosity is decreasing. The hydraulic diffusivity depends upon

both permeability and porosity.

It is clear from Egn. (8) that porosity reduction may have a significant
eflect on fluid-pressure development. In particular, porosity reduction (§ > 0)
will generally tend to increase fluid pressure, a point also raised by Angevine
and Turcotte (1983). Gradients in permeability that.arise as a result of

porosity reduction will also influence fluid-pressure development.

In this chapter, we consider the special case in which porosity and
porosity reduction are uniform throughout crustal layers. If we assume

further that permeability is uniquely related to porosity, the changes in k due
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to porosity changes will also be uniform throughout the rock mass, i.e,

(VE )erer Will vanish. Fluid-pressure development will then be described by the

equation
1 DP[ _ E!'i'
e Bt _v!P! + & &)

which differs from the common P, diffusion equation by the porosity rate-of-
change term. The importance of porosity change relative to diffusive
relaxation V2P, can be highlighted by recasting Eqn. (7) into nondimensional
form. ‘For simplicity, we consider flow in only the vertical, or z, direction,
where £ increases with depth. We then adopt the following scalings:
P, =P, P
t =¢,-f (8)
e =Hz2
where F,, t,, and H are characteristic scalings for fluid pressure, time, and
length, respectively. Dimensionless variables are denoted by bars. For the
characteristic time, ¢,, we take the diffusion time scale in the absence of

porosity reduction, viz.:
ty = = (9)

For P,, we choose the maximum allowable excess fluid pressure, which is
simply the difference between lithostatic and hydrostatic pressures at depth

H, viz.:

P,=0pg H (10)

where Ap = p, — py., With p, = rock density; g is the magnitude of g. Using
Eqns. (8)-(10) in Eqn. (7), we find
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. 22 by

The importance of porosity reduction in ﬂuid-preésure development is
given by the magnitude of the dimensionless grouping (uéH/Apg k) = F.
¥hen F is much less than 1, fluid-pressure development is essentially governed
by the usual diffusion relationship. As F increases, porosity reduction plays an
increasingly important role in modifying the diffusive response. For F > 1, the
diffusive term becomes of secondary importance and fluid pressure is
primarily affected by porosity reduction. We see that the importance of
porosity reduction increases as the characteristic length scale, H--that is, the
depth to which porosity reduction occurs—increases, and as permeability

decreases.

It is of interest to determine whether porosity-reduction processes can
lead to excess fluid pressures in crystalline rocks that make up most of the
Earth’'s crust. Consider, for example, a 10 km thick section of granitic rock
undergoing porosity reduction. We assume that the rock is at pressures and
temperatures typical of upper- to mid-crustal depths and has no megascopic
fractures; hence, the permeability may be rather low, perhaps ca. 50 ndarcy,
throughout much of the section [cf. Brace et al., 1988]. Ignoring eflects of
solutes, water viscosity should show a general decrease with depth [cf. Bolz and
Tuve, 1970}, from about 1 cp at the surface to ca. 0.1 cp at 10 km depth. For
simplicity, we take u = 0.2 cp (2x10™ Pa s) throughout the section. Using
Ap= 1.7g e (1.7%10% kg rn_s) and g = 9.8 m §2, we find that =1 when
$ =4.2x1078 s/ In other words, if porosity reduction were to proceed
throughout the 10 km thick section at a rate of ca. 4.2x10°'® §!, fuid-
pressure development would deviate significantly from the purely diffusive

case; excess fluid pressure would be generated and maintained. To illustrate
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this process, we have computed fluid-pressure development in a layer
undergoing uniform porosity reduction. Calculations have utilized a finite-

difference approximation of Eqn. (7). The initial and boundary conditions are

i)P(t=0)=0
ii)P(z=0)=0

i) 28z = 1) = 0

where L is the layer thickness and P = Py —ps g2z is the ‘excess’ fluid
pressure, i.e., the fluid pressure relative to hydrostatic at any depth 2. The
initial condition is therefore a hydrostatic fluid-pressure distribution. The last
boundary condition corresponds to the case of a lower crust that is
bydraulically unconnected to the upper section of thickness L. (This does not
necessarily mean that the 107'8!: crust is assumed to be dry, only that it is
hydraulically isolated from the upper crust.)

f
i

It seems reasonable that permeability should decrease as p decreases.
(

As a simple model, we have assumed a unique relationship between k and ®.
motivated by recent work on hot-pressing of calcite [Bernabe et al.,, 1982].
This work indicates that connected porosity, hence permeabilit}. may vanish
at very low values of porosity. Although porosity reduction in t]:‘:xe crust may
not necessarily occur by plastic deformation, as during hot-pressléing. it seems
plausible that a similar phenomenon-—-vanishing permeability at a non-zero
value of porosity--may occur nonetheless. Based on these considerations, we

have assumed the following relationship:
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k= kg (o FEy (12)
= *e n n
o — ¥c

where

kg = initial value of permeability
¢o = initial value of porosity
¥ = 'critical’ porositybfor through-flow

n = exponent

Hence, k =k for p=gp, k =0 for p=¢.. With n =3, Egn. (12) is similar to the
'Kozeny' equation [cf. Brace, 1977, p. 3343, Eqn. 3], ‘which describes the
relationship between k and ¢ for some rocks. We have taken n =2 and
%c =0.0002, the latter being much less than porosities typically measured for
crystalline rocks (¢=0.001). These values of n and g, should lead to a
relatively conservative estimate of the eflect of porosity reduction on

permeability. This k —¢ relationship is illustrated in Fig. 1-1.

In Fig. 1-2 we have plotted, for several values of $, the dimensionless fluid
pressure f’}. defined as }3', = P;/ p,9z . as a function of depth for a section
undergoing uniform porosity- and, hence, permeability reduction, with the
relevant parameters as given above. lt is clear from Fig. 1-2 that both the rate
and magnitude of excess-pressure buildup would be sensitively dependent upon
the rate of porosity reduction, with little excess pressure generated for )

much less than the ‘critical’ value.

Although the results presented above indicate the potential importance
of porosity reduction in influencing P, development, they do not allow us to
examine the way in which nonuniform porosity reduction within a crystalline
section would aflect fluid pressure. Such nonuniform & might be expected, for

example, if porosity-reduction processes are dependent on temperature and
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Figure 1-2: Fluid pressure as a function of depth for a 10 km thick section
undergoing uniform porosity reduction, for several values of porosity-reduction
rate #(in s~'). Initial permeability is 50 ndarcy. Solid lines show bydrostatic
and lithostatic pressure gradients. Dashed curves show fluid-pressure profiles
that would develop after porosity reduction for 2500 a at indicated rates. Note
that fluid pressure would exceed lithostatic for the largest é value, which

slightly exceeds the ‘critical’ value for this geometry and permeability.
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pressure. In order to examine this situation, we have considered the plausible
case of depth-dependent $. ¥We have calculated Py; development in a three-
layer crustal section, again using finite-diflerence techniques applied to Eqn.
(7). Boundary and initial conditions are the same as in the previous
calculations, with the added constraints that pressure and fluid flux must be

continuous at interfaces between layers. These can be expressed as

(P,)u = (Pf )l at z =g (13&)
and
Ic“(a—:-;l-)" = k‘(a:; b at z=g2 (13b)

where the superscripts u and ! refer to the ‘upper’ and ‘lower’ layers
corresponding to the interface at 2 =2,. In these calculations, the initial values
of permeability and porosity generally differ from layer to layer, as do values
of $. Results of some calculations are shown in Figs. 1-3a-f. Although the
number of parameters involved here—k, ¢, &, and thickness for each layer--
makes it very difficult to come up with a simple criterion for conditions
favoring excess-pressure buildup, certain generalizations can be made. First, it
appears that we can characterize fluid-pressure development during a
specified time period by the excess pressure developed at the boundary
between the center and lower layers. We will denote this pressure as Fg.
Furthermore, the scaling arguments developed for the single-layer case
suggest that excess pressure cannot arise unless permeability over at least
some depth interval is quite low. Such low-permeability zones (ca. 50 ndarcy)
probably will not occur very near the surface. We also expect the porosity
distribution- with depth in crystalline rocks not to wvary dramatically.
Accordingly, the most significant parameters (for a specified set of layer

thicknesses) would appear to be ky, the permeability of the upper layer, and
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Figure 1-3: Fluid pressure as a function of depth for three-layer model, for
elapsed time of 2500 a. For all plots, total thickness is 20 km; porosilies are 0.3,
0.2, and 0.2 in upper, center, and lower layers, respectively; permeubilities are
50 ndarcy and 25 ndarcy in center and lower layers, respectively; porosity-
reduction rates are 107%3-! and 5x10"'®s-! in upper and lower layers,

respectively.

Figure 1-3a: Upper, center and lower layer thicknesses are €, 2, and 10
km, respectively; $éc=10"1"3"); ky = 1udarcy. Pressure profile is for
elapsed time of 2500 a.

Figure 1-3b: Same as Figure 1-3a except ky = 10 udarcy.

Figurs 1-3c: Same as Figure 1-3a except $o = 5x10718 51,

Figure 1-3d: Same as Figure 1-3b except éc = 5x107% -2,

Figure 1-3e: Upper, center, and lower layer thicknesses are &, 2, and 13
km, respectively; o = 10-17 ¢~); k; = 10 udarcy.

Figurs 1-3f: Same as Figure 1-3¢ except ¢ = 5x10"1% 5",
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ég. i"c. and :Iu,. the porosity-reduction rates in the upper, center, and lower

layers, respectively.

In Figs. 1-42-c, we have plotted Pz as a function of ky for upper, center,
and lower layer thicknesses of B, 2, and 10 km, respectively. In each of these’
figures, we treat as fixed two of the three porosity-reduction ratens and vary the
third as a parameter. From Fig. 1-4a ($y variable), we see that as long as
porosity reduction at depth is relatively rapid ($;=5x10"'%s"!,
$; = 5x 10718 g-1), the effect of §, on Py will be negligible. (As expected, Pg
decreases as ky increases.) Variations in ii)c and ‘i’l. may be significant,
however. In Fig. 1-4b, we show Py vs. ky for the case of slow, near-surface
porosity reduction (i’ﬁ = 107205 -1), but relatively rapid porosity reduction in
the lowest part of the section (§; = 5x10"1%s-1). We ‘see that sorne excess
pressure will be generated, even for low values (107%%s~1) of &.; this excess
pressure is a result of porosity reduction in the lowest part of the section. In
fact, the magnitude of the excess pressure will show little variation for
107051 <$,<5%10"%s~); however, if $o>ca. 107s~!, Pp will increase
considerably. Finally, Fig. 1-4c shows Pguvs. kg for &y = 10205
$,=5x10"1%s"!, and &, variable. We see that with such a rapid rate of
porosity reduction in the center layer, there will always be a noticeable
excess-presﬁure development, even though the center layer is relatively thin.

&, will have little effect on Py in this case unless it exceeds ca. 10715,

It should be emphasized that in all of our P, models, we have taken $ to
be constant. Obviously, this would eventually lead to a state in which
permeability would vanish. Continued porosity reduction in the zone of highest

& would then lead to rapid buildup of P, to lithostatic. As we discuss later, this
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Pigure 1-4: Dimensionless excess pressure Py (see text for definition) developed
after 2500 a, as a function of ky, the permeability of the upper layer, for three-

layer model.
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would probably lead to brittle failure (natural hydraulic fracture) within the
high P, zone, thereby increasing ¢ and k and allowing the excess fluid
pressure to dissipate partially. Our profiles of P, as a function of depth are

thus hypothetical ‘snapshots’ of P, distribution.

If fractures were, in fact, to develop across high-P, zones, thereby locally
relieving high P;, one might suppose that further development of elevated P,
in crustal blocks bounded by such fractures would be strongly inhibited. In
order to investigate this hypothesis, we have extended our finite-difference
calculations to a two-dimensional crustal model, i.e., we have solved the
equation

6PL - 82Pf + azpf + Hé

ot - oyt | Bzt | & (14)

1
c

where y is a horizontal coordinate. The boundary and initial conditions are
i)P;(2=0)=0
i) 2z =1) =0

iii)f’(y=:tél)=0

iv)P(t=0)=0

where, as before, }3=P, — prg2z is the 'excess’ fluid pressure. Pressure and
flux continuity are also irnpbsed at layer interfaces (cf. Eqns. 13a-b). The
important new boundary condition (iii) indicates that we are assuming that
fluid pressure at the 'vertical' boundaries of the crustal block is hydrostatic.
This might correspond physically to the case of very permeable fault zones.
Some results of calculations for P, development are illustrated in Fig. 1-5, in
which we show ﬁ, as a function of 2z and t along the ‘centerline’ ¥y =0, for

several values of W. It appears that although the existence of very permeable
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zones bounding crustal blocks would decrease the rate of P, increase due to
porosity reduction, such pressurization would not be eliminated. Only very
dense networks of fault zones would be able to eliminate P, buildup associated
with porosity reduction. As an added complication, it is by no means obvious

that natural fault zones are, in fact, particularly permeable [Seeburger, 1881].

3. SOME CONSIDERATIONS OF POROSITY-REDUCTION MECHANISMS

The simple mathematical model presented above indicates that porosity-
reduction processes could have a major eflect on P, development in low-
porosity crustal rocks. The precise mechanisms by which such porosity
reduction might occur are uncertain, although two broad classes might

reasonably be considered, viz.:

i) Precipitation of material transported in solution by circulating fluids;

ii) Local redistribution of solid material.

To model porosity reduction by precipitation, we consider deposition in
pores of silica transported by rising pore fluids. Solubility of silica (as quartz)
generally decreases as fluid pressure and temperature decrease; hence, if
fluids are saturated at deptﬁ. they should tend to deposit silica as they rise,
assuming that significant supersaturation does not occur.

We begin with continuity considerations, this time writing two mass
conservation relationships, one for the solvent, the other for the solute. Let S
be the solubility of silica (as quartz), expressed as a mass fraction (mass of
solute per unit mass of solution), and ps be the solution density. Conservation

of solvent mass is then expressed as
2 [os (18] = ~v [ps (1-9)2 ] (15)

Solute mass transport must take account of precipitation of silica from
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solution. Assuming that any precipitated material bas the same density p, as

the host rock, we can express the solute mass balance as
8 - 3
27 PsS9) = ~V-(psS2) - p, (18)

For cases of interest, with temperatures <500°C, S will be less thun ca. 0.02
[ef. Kennedy, 1950]. Using tabulated specific volume data (Walther and
Helgeson [1977] for silica; Schmidt [1969] for water), it can be shown that the
density of the solution will differ from the density of the solvent by much less
tﬁa.n 1% for pressures and temperatures of interest. Hence, taking ps®p,, the

continuity relationships may be expressed to a good approximation as

2 {ps #) = ~V-(ps 2) Y
«sat—(Spf ¢) = ~V-(Sp, i) - p, b (18)

Combining Darcy’s law (Egn. (2)) with Eqn. (17), we find that the modified

diffusion equation for P, development is, as before:

1 0P _ 1 . pd
T =VeP, + % (VE)grew VP + T (19)

The porosity-reduction rate ¢ can be found by using Egn. (18) for solute mass
conservation. Expanding Egn. (18), and assuming that flow is only in the

vertical z direction, we find
y =52 85 . 520 s
=pr& = So—pyu) + prug—+ Sorlvrs) + vrr 5; (20)

where u is the magnitude of iZ. S will be, in general, a function of temperature

T and fluid pressure Py. Assuming a steady temperature profile, we can write:
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8s _ 8S 8T  _ 8S or,

9z ~ 8T 0z ' 8P, oz (21)
and
8S _ 8S 0P
ot - 0P, Ot (22)

Expanding the derivatives in Eqn. (20), using Egns. (21), (22), and Darcy’s law,
and neglecting terms of O[(8P,/8z)?], we can write, after some

rearrangement:

. _Skps 08P, 18P, kps 8S 8T 8P
(or + 5p/)8 = u " 8z ¢ 8t '’ 4 OT 8z 0z

S
_&L( )irnv _G—ZL

(23)

where

1 _1_  ue ( 1 8S )
£ - c + k S BP,
In the temperature/pressure range of interest (7 <ca.300°C,
P; <ca. 1 kbar), experimental data on quartz solubility [Kennedy, 1950]
indicate that temperature effects on solubility dominate over pressure eflects.

For example, using Kennedy's Fig. 2, we can estimate that at T=260°C and

Py=ca 1 kbar, (35/8T)p 6x10® °C" and (95/8P;)r %107 bar . If we

imagine fluid at these conditions rising 1 km, cooling by 20-30°C and
depressurizing by 100-250 bars, then (AS)cooiing ~ 1.2-1.8x107%, whereas
(AS) gspressurisstion ™ 1—~2.5% 1075 The rate of porosity reduction by precipitation
from rising fluid should therefore be given roughly by the second term on the
right hand side of Eqn. (23), because this term describes the eflect of

decreasing temperature on solubility. Recognizing that Sp; < p,, we can write

gn(EPry 85 8T 8%

upe ° 8T 02z az (24)
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To get some idea of the magnitude of & in this process, we can approximate the
various quantities on the right-hand side of Eqn. (24) as (p,/ p,) = 0.35,
4% 2x107%Pa s, 85/3T »8x10- T, 8T/8z ~25°C/km, and
8P,/8z =250 bar/km =2.5x10Pa/m. (The  fluid-pressure  gradient
indicated is nearly lithostatic and could not be maintained if the permeability

were very high.) Using these estimated values, we obtain
ém6.8k [s7']

for & in mks units. Taking k =50ndarcy =5%x10"®m? we find
$ ©3.3x1079s~}, Recalling earlier results, we see that this value of & is
considerably less than what would be required to produce or mainfain elevated
P, at the specified permeability. We also recall from Eqn. (l11) that the
porosity-reduction rate necessary for excess-pressure development increases
in proportion to k. Therefore, a calculation similar to that just presented
would show the same gualitative result--® much less than the 'critical’ value-
for any value of k. Hence, it appears that porosity reduction due to silica
deposition from rising fluids, although it almost certainly occurs, is much too
slow to produce or maintain elevated fluid preésures in most geological
‘environments. This mechanism of porosity reduction probably has a significant
effect on hydrologic conditions, however, in geologic systems characterized by
very high temperature gradients and flow rates, such as found in geothermal
systems [e.g., Facca and Tonani, 19687; Elders and Bird, 1978] or laboratory

studies of flow down temperature gradients [e.g., Morrow et al., 1981].

Although the discussion above certainly does not eliminate the
‘precipitation’ mechanism as operative, it does suggest that if porosity
reduction is an important process in producing elevated FP; in crystalline

crustal rocks, then a ‘local’ rather than large scale mechanism of porosity
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reduction may be responsible. This is in conceptual accord with recent
thermodynamic considerations of pressure solution. Robin [1978], in a very
lucid discussion of the driving force for pressure solution at grain-to-grain
contacts, showed (p. 1388) that whenever two solid grains are in contact, there
is a chemical-potential gradient tending to drive the solid component to the
periphery of the contact. This chemical potential is essentially proportional to
the eflective pressure P, = P, — Py, i.e., the difference between overburden
pressure and fluid pressure. Raj [1982] bas argued that except at very small
eflective stresses, such a thermodynamic force will tend to produce
"densification”, i.e., volumetric strain, even in the absence of deviatoric
stresses. This densification results from transfer of solid mass locally (i.e., on
the grain scale) via a fluid phase. Raj's preliminary experimental results
tended to support his theoretical arguments. Dibble et al. (unpublished) have
also argued that a finite value of P, always produces a thermodynamic
tendency for pressure solution and porosity reduction. They suggest, on the
basis of experimental work by Sprunt and Nur [1977], that the rate-controlling
process in porosity reduction is the growth of 'unstressed’ mineral grains, i.e.,

grains not subjected to deviatoric stresses.
4. DISCUSSION

Relationship between porosity reduction and brittle fracture

We have suggested above that porosity-reduction processes in crustal
rocks are likely to involve localized solid mass transfer via a fluid phase. Such
mass transfer will probably cause strain within the solid. Possible relationships
between porosity reduction and strain, or between porosity reduction and

deformation in general, may be indirectly examined by studying rocks that
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were once at considerable depths in the crust. The occurrence of porosity-
reduction processes in such rocks is indicated by detailed studies by optical-
and scanning electron microscopy [e.g.. Richter and Simmons, 1977a; Sprunt
and Nur, 1979; Padovani et al, 1982]. These studies have clearly demonstrated
that crack healing and sealing are ubiquitous in a wide variety of crustal rock
types, particularly crystalline rocks, where ‘bealing’ refers to former cracks in
which the mineral fllling is the same as the host grain, 'sealing’ to casés in
which the crack fllling is mineralogically different from the host grain. The
material source for healing is likely to be quite local, whereas sealing requires
an ‘external’ or ‘remote’ source of crack-filling material. Abundani. evidence
based on relative dating of microcracks demonstrates that these porosity-
reducing healing and sealing processes occur episodically during the history of
a rock mass, with porosity reduction alternating with microcracking that
tncreases porosity. This point has been particularly well documented in
studies by Batzle and Simmons [1976] and Padovani et al. [1882]. (For
terminological clarity, we note that the pore space of crystallin® rocks is

composed dominantly of ‘cracks’, i.e., very tabular pores.)

The notion of episodic porosity reduction and microcracking is consistent
with our model of P, development in crustal rocks. If porosity reduction
occurred rapidly enough, P, could build up to the point where it would reach
the least compressive principal stress. This would tend to cause brittle
fracturing and a drop in P,. However, as the results of our two-dimensional
model calculations suggest, such fracturing may not be suflicient to inhibit
further porosity reduction and buildup of P, to values approaching lithostatic.
Thus, repeated fracturing events followed by crack healing might occur, as

suggested by Yardley [1983] and by Smith and Evans [in press]. This notion is
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also supported by detailed studies of 'crack-seal’ deformation [e.g., Ramsay,
1980; Cox and Etheridge, 1983]. These studies have shown that mineéralized
extensions veins in deformed rocks, including those subjected to low-grade
metamorphic conditions, are often the product of numerous, distinct episodes
of fracturing and mineralization. The cyclic fracturing-healing concept has
also been advanced in connection with the mechanism of earthquakes
[Angevine et al.,, 1982]. A somewhat similar phenomenon, that of episodic
fluid-pressure buildup, followed by abrupt fluid release, has also been
suggested to be of significance during development of some sedimentary

basins [Cathles and Smith, 1983; chapter 4, this dissertation].

Porosity-reduction rates: guidelines from experimental work

A central issue in discussing porosity reduction and P, development is
the rate of porosity reduction. We have suggested that, for low-permeability
crystalline rocks in the crust, porosity-reduction rates greater than about
4x107's-! could lead to elevated fluid pressure, which might then cause
brittle fracturing. Although there has been little laboratory work focused on
porosity reduction in crystalline rocks, recent experimental studies give us
some indication that porosity reduction could occur relatively rapidly. For
example, Sprunt and Nur [1977] measured appreciable porosity loss,
presumably due to pressure solution, in sandstone cores subjected to elevated
temperatures and pressures for two weeks. However, the macroscopic shear
stress in the cores makes it difficult to use this result as an indicator of
porosity-reduction rates in rocks not subjected to overall (e.g., tectonic)
deviatoric stresses. In faét. in the samples not subjected to deviatoric
stresses, porosity reduction during the two-week duration of experiments was

too little, if any, to be measured.
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In an important recent study., Smith and Evans [in press] examined
bealing of cracks in synthetic quartz under conditions of elevated pressure
(P; = P, =2 kbar) and temperature (200-800°C). Morphologically, healed
cracks were strikingly similar tc fluid inclusions and 'microtubes’ commonly
seen in thin sections [e.g., Richter and Simmons, 1977b]. Smith and Evans
found that cracks healed extremely rapidly (in less than 1 h) at 400°C, but saw
no measurable healing in 48 h at 200°C. They suggested on the basis of kinetic
considerations that healing rates would have been less by a factor of roughly
1000 at 200°C than at 400°C, concluding that "microcracks in quartz will have
geologically short lifetimes at temperatures of 200°C or greater.” If these
results are applicable to rock in situ, then it seems clear that crack bealing
could be extremely rapid on a geologic time scale, even under upper crustal
conditions. Within the context of the present model, such rapid crack healing
could lead to a guasi-equilibrium state in which, averaged over time and space,
the porosity of a rock mass would remain relatively constant, the permeability
would remain rather low, and fluid pressure would be maintained in excess of

hydrostatic.

Additional laboratory studies of pressure solution and crack healing at
crustal conditions have the potential of yielding very valuable data on rates

and mechanisms of porosity reduction in the crust.

Excess fluid pressure and low velocity zones in the crust

As mentioned previously, remote detection of elevated P, at depth is
difficult, if not impossible, at present. One potential method of indirect
detection of zones of elevated P, might be seismic. Such zones at depth
should lead to a decrease in the effective stress P, = P,,a drop in seismic wave

velocities, and possibly to seismic low velocity zones [cf. Berry and Mair, 1977].
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To test the sensitivity of seismic parameters to the state of crustal fluid
pressure, we have calculated the compressional wave velocity, Vp, as a function
of depth for several cases of P, development in crustal layers. Several
examples were calculated by using the empirical relationship developed by

Jones [1983]:
Ve=A+BP, -Ce?h (25)

where A, B, C. and D are constants. The eflective pressure P, in Egn. (25) is

defined by
P,=PF - Q.Pf (26)

where a<1 [Nur and Byerlee, 1971]. Jones [1983] has also given an empirical
relationship for a = a(P, ):

-Pp/C

=1~Fe (27)

Values for 4, B, C, D, F, and G for several rock types have been calculated by
Jones [1983]. For our purposes, we have used his values for Westerly Granite,
viz., A=598km s~!, B=0.068km s~ 'kbar~!, C=05km s~}, D =5 kbar,

F = 0.5, and G = 0.4 kbar.

VWithin the context of the present model, in which P, is generally not
constant, the calculated magnitude of velocity decrease AVp will obviously be a
function of time. Fig. 1-8 shows Vp vs. depth for the corresponding P, profiles
in Figs. 1-3a, 1-3c, and 1-3f, at times for which a substantial excess pressure
has developed within some depth interval. Clearly, in these model low velocity
zones, AVp is very small, certainly less than 0.05 km/s. This is considerably
less than values of AVp inferred from crustal seismology studies [e.g., Berry
end Mair, 1877; Mueller, 1977], which indicate AVp in the range of 0.5-1 km/s.

Such large changes occur only in the pressure range range P, & 0-1 kbar; for.
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larger P,, Vp increases very slowly [cf. Nur and Simmons, 1969, Fig. 3]. Hence,
for depths greater than about 5-6 km, for which P, >ca.1 kbar (for
hydrostatic P, ), elevated P, will have little effect on Vp unless pore pressure is
close to lithostatic. Interestingly, seismologists who have proposed the
existence of crustal low velocity zones typically place such zones at > 6-8 km
depth [e.g., Berry and Mair, 1977; Mueller, 1977]. An elevated-P, origin for
such zones would therefore require pore-fluid pressures to be close to

lithostatic pressure.

5. SUMMARY

¥We bave examined the potential role of porosity-reduction processes in
the Earth’s crust. Simple mathematical models show that porosity reduction
could often lead to the development of elevated fluid pressure in the crust.
Porosity-reduction rates greater than a few times 10-!® §' should lead to
significant excess pressures for rocks with permeabilities of ca. 50 ndarcy, a
value appropriate for unfractured crystalline rocks at upper- to mid-crustal
depths. In general, we expect that crustal hydrologic properties—porosity and
permeability—as well as fluid pressure, should be time-dependent, even in

regions not undergoing significant tectonic activity.

Mathematical modeling, along with considerations of the
thermodynamics of ‘pressure solution’, suggests that porosity-reduction
processes in crustal rocks should often involve mass transfer on a local scale.
Elevated fluid pressures generated as a result of local porosity reduction may
lead to brittle failure, with partial relief of high fluid pressure. Such fracturing
may slow, but probably not eliminate, further fluid-pressure buildup. Hence,

episodic fracturing and crack healing are likely to be common processes
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throughout much of the crust. This concept is supported by detailed studies
of the morphology of cracks in exhumed crustal rocks and of crack healing in

synthetic laboratory materials.

Calculations based upon laboratory velocity data demonstrate that
elevated fluid pressures generated by porosity-reduction processes in crustal
rocks will affect the velocity of compressional waves. To cause observed

crustal low velocity zones, fluid pressure must be quite close to lithostatic.
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APPENDIX: DERIVATION OF THE MODIFIED DIFFUSION EQUATION FOR PORE PRESSUR

To derive the modified diffusion equation for P, used in our finite-

difference calculations, we begin with Eqn. (3) of the main text, reproduced

here:
8¢ , ,9Ps _ P1k Pl vi. ko wvp, - i
p!at"'v ot “ PI+MVkVPf+“vaVPf (Al)
k

All symbols are as defined in the main text. This expression combines the
rmass-conservation condition with Darcy's law. We also use the assumption,
discussed in the main text, that the time rate of change of porosity has both

reversible and irreversible parts, viz.:

8¢ _ (8¢, 8¢, -
ot (at)m+(atw (Az)

The reversible part of 8¢/ 8t is given by

.] 8P,
(3w = 9By 51— (a-3)

where g, = (1/¢)(8¢/8P;) is a 'pore compressibility’ that characterizes the
elastic change in porosity as P, changes. The gradient in permeability, which

is dependent on porosity, also has reversible and irreversible parts:
Vk = (Vk )ppy + (VK Dirren (A-4)

The reversible part of Vk is given by

~

(Vi )pey = k BV Py (A-5)

where 8, =(1/k)(dk/8P,) is a coeflicient characterizing the elastic change in
permeability as P, changes. Finally, we need the equation of state of the fluid

(considering only the effect of pressure in our approximation):
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A %y _ ]

where B, is the fluid compressibility. To a reasonable approximation
(cf. Chemical Rubber Co., 1870, p.72), we can take f, as a constant for the
pressure and temperature range of interest. Using Egns. (A-2)-(A-8) in (A-1),

and assuming that u is constant, we find after expanding and rearranging:
1 8P, _ 1 4
'E'_a_tL' VePy + - (Vk )orey Y Py + Ek—+ (B; +B)VP, VP, (A7)

where ¢, the hydraulic diffusivity, is defined by

0= —t
Ky (By +B,)

If pressure gradients are not extremely large, the last term on the right-hand
side of Eqn. (A-7) will be negligible. We have made this assumption in the

modified diffusion equation given as Eqn. (8) of the main text.
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NOTATION
AB,C.D constants in empirical relation for seismic velocity
c hydraulic diffusivity
£ hydraulic diffusivity modified for solubility eflects
F.G constants
F dimensionless parameter related to porosity-reduction rate
g magnitude of acceleration due to gravity
g acceleration due to gravity (vector)
H characteristic length scale
i subscript denoting "interface”
k permeability
ko initial value of permeability
L crustal thickness in single-layer models
n exponent '
P, conflning pressure
P, effective pressure
Pp  excess fluid pressure (cf. Figs. 1-4a-c)
Py fluid pressure
5, dimensionless fluid pressure as used in figures
P, characteristic pressure
P fluid pressure in excess of hydrostatic
P dimensionless fluid pressure as used in scaling arguments
S solubility of quartz in water as mass fraction
t  time |
i, characteristic time
t dimensionless time
T temperature
u magnitude of volumetric flow rate per unit area
u volumetric flow rate per unit area (vector)
Vp compressional velocity
y.z  spatial coordinates
4 dimensionless coordinate
a dimensionless parameter related to eflective pressure



s
Bx
By
AVp

Ps

Ps

Pe
Po
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fluid compressibility

fluid-pressure sensitivity of permeability
‘compressibility’ of pore space

change in compressional velocity due to elevated fluid pressure
difference between solid and fluid densities
viscosity

density of fluid

density of solid

density of solution

porosity

‘critical’ porosity for finite permeability
initial permeability

porosity-reduction rate
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CHAPTER 2
PHYSICAL PROCESSES IN ACCUMULATING SEDIMENTS
I: RHEOLOGY OF COMPACTING CLAY-RICH SEDIMENTS

We review experimental results on the time-dependent deformation of
clays and shales in order to develop a rheological law for compaction of clay-
rich sediments. A good fit to the experimental data is provided by a three-
parameter model known as a standard linear solid. We show that, in general,
the variables controlling the compaction state—~typically characterized by
porosity—are overburden pressure, pore-fluid pressure, and the rates of
change of these gquantities; the rheological parameters are functions of
porosity. For time scales and loading rates characteristic of sedimentary
basins, the rheological law simplifies to one in which porosity is a unique
function of effective stress, i.e., the difference between overburden pressure
and fluid pressure. This verifies an assumption commonly made in models of

fluid-pressure development in sedimentary basins.

1. INTRODUCTION

Sedimentary rocks comprise a large fraction of the rocks exposed at the
Earth’'s surface, and the study of their origin is a major discipline within the
geological sciences. Much attention has been focussed on the mechanics of
sediment transport (e.g., Allen, 1970), on chemical processes during
sedimentation and burial (e.g., Berner, 1980), and on the mechanics of

sediment compaction (e.g., Rieke and Chilingarian, 1874; Chilingarian and Wolf,
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1975), the latter work being largely directed at characterizing the porosity of
hydrocarbon reservoir rocks. The mechanical behavior of sedimentary rocks
has also been of importance to mining engineers, out of concern for the
stability of some underground mine openings (e.g., Jaeger and Cook, 18786).
Thus, the nature of time-dependent sediment deformation, at both ‘long’' and

'short’ time scales, is of significant practical interest.

In this chapter, we consider in detail the rheological behavior of
compacting clay-rich sediments. We first discuss experimental work on time-
dependent deformation of clays and shales, as well as rheological models for
such materials. Building upon this earlier work, we then propose a simple
phenomenological model in which the degree of compaction is generally a
funétion of overburden stress, fluid pressure, and the rate of change of these

variables.

In epplying our model of clay/shale rheclogy to the geologically
interesting case of sediment accumulation in a basin, certain simplifications
will be shown to be valid. In particular, for typical sedimentation rates, and
over the time scales of interest in basin formation, we will show that the
rheological mode! essentially reduces to one in which the degree of compaction
(or porosity) is simply a function of effective stress, i.e., the difference between

overburden pressure and fluid pressure.

2. TIME-DEPENDENT DEFORMATION OF CLAYS AND SHALES

Sediment compaction must properly be viewed as an essentially
transient phenomenon. As sediments are buried, the pore volume is usually
reduced by a substantial fraclion; this loss of pore volume is largely

irreversible (e.g., Hamilton, 1976). It is commonly assumed--and we will
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carefully examine this assumption below-that when applied stresses are
constant, an ‘equilibrium’ state will be reached, i.e., that after a long enough
period of time, fluid pressure will tend toward hydrostatic and porosity will
tend toward a well-defined value ¢ = p (T), where I is effective st.ress.‘deﬂned
as the difference between overburden pressure and pore-fluid pressure (e.g.,
Smith, 1971, 1973). Similarly, if the loading conditions applied to sediment at
‘equilibrium’ are abruptly altered, there will be a time-dependent change in
-pore volume as the sediment ‘relaxes’ towards a new equilibrium state. This is

the phenomenon of creep.

Deformation of clay-rich sediments has been extensively studied by
workers in soil mechanics, where an understanding of the mechanical behavior
of clay soils subjected to loads is of great practical importance. Numerous
studies, both theoretical and experimental, have focussed on time-dependent
deformation of clays (e.g., Kravichenko and Sirieys, 19688; Mitchell, 1976). For
triaxial tests in which the axial stress g, differs little from the ‘confining’
stress g, (e.g., Christensen and Wu, 1984), clays usually show creep behavior of
the type illustrated in Fig. 2-1. Upon sudden increase in the axial load, a small
‘instantaneous’ strain is observed, followed by a large increase in strain with

time, tending towards an asymptotic value.

Experimental studies of the creep behavior of sedimentary rocks, and
especially of clay-rich rocks, are regrettably few in number, so there is little
data to guide us in developing a rheological model for such rocks. One of the
earliest studies of time-dependent deformation of clay-rich rocks appears to
be that of Griggs (1939), who subjected a mudstone to a small (ca. 1 MPa)
uniaxial load for several months. The creep curve obtained by Griggs was

qualitatively similar to that shown for clay in Fig. 2-1, although the magnitude
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Figure 2-1: Experimental creep curves for clays at very low confining pressure

and differential stress (after Christensen and Wu (1964), by permission of the

American Society of Civil Engineers). Deformation (axial compression) is

measured relative to an initial length of 3 inches.

Figure 2-1a: Initial load of 1.49 bars increased at £ = O to 1.71 bars.

Figure 2-1b: Initial load of 1.71 bars increased at ¢ = 0 to 1.89 bars.
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of strain and time involved were quite different. Later studies of creep of clay-
rich rockﬁ (Nishihara, 1952, 1957: Hobbs, 1970; Renzhiglov and Pavlishcheva,
1970) have generally involved uniaxial tests with loads grentér than ca. 20% of
the uniaxial compressive strength. For the smallest loads, the creep curves
are usually of the same form as found by Griggs. With fairly large differential
stresses, creep generally leads to rupture. Such load conditions, however, are

unlikely to occur commonly in compacting sedimentary rocks.

Any number of empirical creep laws could be constructed that would fit
the data on clay and shale creep. Among the simple rheological models
commonly considered, the creep behavior of compacting clays and shales
subjected to increasing loads appears to have a reasonably close resemblance
to that of the standard linear solid (e.g., Ramsay, 1987, pp. 277-79), a
phenomenological model that describes time-dependent deformation of some

materials. The standard linear solid may be described mathematically by the

equation
E -4 o 1 do
= 5 = + 1
T at TMp My dt (1)
where
E = strain

o = load stress

t =time

My = unrelaxed modulus
Mp = relaxed modulus

T = relaxation time

In light of our focus on compaction, we will use E here to denote

volumetric strain, and identify o with overburden stress. The rheological
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parameters My, Mg, and T are best understood with reference to a special
loading configuration. We imagine the stress o to be abruptly increased from
some datum value (which we can, without loss of generality, set to zero) to 7 at

time ¢t =0, i.e.,
o(t) =0 H(t) (@)
where H(t) is the unit step function, defined by

H(t)=0, t<0 (3)
H(t) =1, >0
The time-dependent strain for the standard linear solid under this loading can

be shown to be (e.g., Ramsay, 1987, p. 279)

E(t=0) = -ﬁa-;- et/ & ;T(l -e~t/7) (4)

for My, Mp. and T all constant. This is illustrated in Fig. 2-2. We see that the
instantaneous or ‘'unrelaxed’ strain at ¢t =0 is 3/ My , while the asymptotic or
‘relaxed’ strain as ¢-+= is 9/ Mr . The parameter T characterizes the time
scale over which the bulk of the creep strain occurs. Note the qualitative
similarity between the standard linear solid response (Fig. 2-2) and the

experimental results (Fig. 2-1).

It is quite probable that the standard linear solid as a rheological model
of sediment compaction may only be applicable for monotonically increasing
loads, ie.,, for monotonically decreasing porosity, due to the fundamentally
nonelastic nature of the compaction process. Unloading will also produce
creep (cf. Hamilton, 1976; Lo et al., 1978), but the moduli characterizing this
process are likely to be significantly different from the moduli appropriate to
the loading process. Therefore, #;; and Mp should not be thought of as elastic

moduli. For this reason, we denote the *bulk’ moduli with '}’ rather than the
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STRAIN

TIME

Figure 2-2: Strain-time relationship for a standerd linear solid. Instantaneous,
‘unrelaxed’ strain is B/ My: asymptotic, ‘relaxed’ strain is 8/ Mz: T is the
relaxation time, during which most of the creep strain occurs.
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standard symbol 'X" used to denote elastic bulk moduli.

In order to study changes in the physical properties of sediments during
compaction and lithification-~whether we be interested in fluid pressure, strain,
pore-fluid chemistry, or any other property—we must necessarily consider the
sediments to be motion relative to a fixed reference frame. The rheological
model that we suggest is appropriate for compacting sediments—the standard
linear solid model as formulated in Eqn. {1)—is not directly applicable to
moving media. In order to extend the model to the case of a moving medium,
we assume that the time derivatives in Eqn. (1) may be replaced by the
material, or substantial, time derivatives (cf. Malvern, 1969, p. 141-43), i.e., the
time derivatives following motion of the solid grains. We also need to
consider the effect of pore-fluid pressure p on compaction. It seems clear that
fluid pressure will tend to counteract compaction, just as overburden pressure
will enhance compaction. Many elastic processes are characterized by an
‘effective stress’ T = g-ap, where as1 (N;.xr and Byerlee, 1971). The exact
expression for effective stress for nonelastic processes, such as compaction of
clay-rich materials, is generally not known; as a first approximation, we will
simply take £ = g—p. We thus replace o in Egn. (1) by £. (We also emphasize
that E is generally a finite strain.) With these various considerations, we

propose as a rheological law for compacting clay-rich sediment:

DE E _ _T 1 DY
Dt+T-TMR+HyDt (5)

D/ Dt denotes the material derivative, defined by

D_2o,. o
DE- T B (6)

where u, is the speed at which the solid grains move and s is a spatial

coordinate in the direction of movement, which should be very nearly vertical.
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Any model of sedimentation and compaction of clay-rich rocks should, in
principle, utilize the creep data discussed above. Strictly speaking, as we
discuss in the next section, this has not been done. After estimating values of
the rheological parameters, however, we will demonstrate that some of the
simplified approaches to compaction are nonetheless adequate, at least for the
sedimentation rates and the time scales relevant to sedimentary-basin

development.

- 3. SEDIMENT RHEOLOGY IN MODELS OF ACCUMULATING SEDIMENT: A REVIEW

Various mathematical models have been presented that attempt to
describe fluid-pressure development in accumulating sediments. Because
mechanical compaction is typically considered to be the major influence upon
fluid pressure (see, e.g.. Smith, 1971, 1973), earlier workers have sought to
relate the compaction state of the sediment, as characterized by porosity, to
mechanical variables such as overburden pressure and fluid pressure. Perhaps
the earliest such work was that of Ortenblad (1929-30), who applied the then-
recently developed theory of soil consolidation (e.g., Terzaghi, 1943). The
fundamental relationship proposed by Terzaghi, verified repeatedly over the

years by laboratory studies, is simply

e =¢°—C,1n(;°°—) (7)
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where
e = p/(1~¢p) = void ratio
ep = void ratio at datum load
C. = compression index
¢ = load stress

0¢ = datum load stress

C. is strongly dependent upon the relative proportions of clay and sand (cf.

Benson, 1981).

More recently, Sharp and Domenico (1876) and Bishop (1979) have also
treated sediment compaction and fluid-pressure development in basins by
using soil-consolidat;xon theory. Eqn. (7) appears to be valid for clays subjected
to pressures of up to several hundred bars in the laboratory (e.g., Parasnis,
1860). However, such compacted materials are not truly rocks, such as shales
or mudstones, the origin of which involves many complex chemical and
physical changes in addition to compaction under pressure (e.g., Meade, 1966;
Weaver and Beck, 1971). Hence, it is questionable whether consolidation
theory is properly applied when dealing with sedimentary rocks formed over a

time span of millions of years.

Smith (1971, 1973) carefully considered the mechanics of sediment
compaction in his model of fluid-pressure development in accumnulating, clay-
rich sediments. He assumed that an effective stress law would hold for
sediment compaction, i.e., that fluid pressure would be as effective in
tnhibiting compaction as overburden pressure would be in enhancing
compaction, and that porosity in compacting shale would be a unique function
of the effective stress. Smith used this assumption, along with the commonly

observed exponential relationship between porosity and depth (e.g., Athy,
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1830) to derive an expression relating porosity to eflective stress. Keith (1982)
has aiso taken such an approach to the mechanics of sediment compaction.
Other attempts to incorporate simple rheological considerations into
compaction models bave also been made. Nagumo (1965) and Marsal and
Philipp (1970) proposed that in normally pressured sediments, porosity can be

described by an equation of the form

do =
2z tXxe=0 (8)

where x is generally a slowly varying function of . Egn. (8) can be rewritten as

do dl _

For a constant loading rate, Eqn. (9) predicts an approximately exponential
decrease in porosity with time. Another rheological model has been proposed
by Palciauskas and Domenico (1980), who suggested that porosity in
compacting sediments is related to effective stress by an expression of the

form
8% L (1-g)a =
5t (1-¢)a=0 (10)
whére @ is the sediment compressibility. This can be rewritten as
22 . (1o oz 25 <
o +(1 p)adt 0 (11)

Palciauskas and Domenico also considered t;he possible effects of deviatoric
stress on porosity.

When we reconsider the experimental work on creep of clay and clay-rich
rocks (Fig. 2-1), it becomes clear that neither the rheological model of Nagumo
(1865) and Mafsal and Philipp (1970), nor that of Palciauskas and Domenico

(1980), can adequately describe the experimental data. This can best be seen
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by solving Eqns. (9) and (11) for the case of a step-function change in applied
stress, then comparing the predicted strain with experimental results. As

before, the step-function change in applied stress is given by
o(t) =0 H(t)
where H(t) is the unit step function, defined by

H(t) =0, t<0
. H(t)=1, t>0
We find for the Nagumo/Marsal and Philipp rheology (with x constant)

p(t=0) = poe™° (12a)
and for the Palciauskas and Domenico rheology
#(t=0) = po — (1 —p) (e® —1) (12b)

where gg is the porosity for £<0. These two rheological laws thus predict an
instantaneous porosity (or strain) chﬁnge in response to a step-function
change in .applied stress, with no additional time-dependent strain. This is
definitely in disagreement with experimental observation. It therefore seems
clear that a rheological model that considers both £ and DI/ Dt, such as the
standard linear solid (Eqn. 8), is in general a preferable description of

clay/shale rheology.

4. ESTIMATION OF PARAMETER VALUES FOR THE STANDARD-LINEAR-SOLID
MODEL OF SEDIMENT COMPACTION

Estimating values of the parameters My, Mg, and 7 for clays and shales is
a difficult task. Creep data for clay-rich rocks have been fit to various
empirical laws (Nishihara, 1957; Hobbs, 1970; Renzhiglov and Pavlishcheva,
1970), but not including laws appropriate to a standard linear solid. It seems

intuitively clear that My, Mz, and T will all be strong functions of porosity,
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increasing as g decreases and the clay or shale 'stiffens’. The studies cited
above also indicate little dependence of creep-law coefficients (analogous to
our My, Mp, and 7) on the absolute stress level, at least for fairly small

deviatoric stresses. Hence, to a first approximation, we will take the three

parameters in our creep model to be functions only of porosity.

The unrelaxed modulus My, which describes the material's instantaneous
volumetric strain, should be given, to a reasonable approximation, by bulk
moduli measured by acoustic wave propagation. Hamilton (1971) compiled
such data for several sediment types; for clays and shales, he suggested that
the relationship between bulk modulus and porosity may be written (in our

notation) as
My = Uge™™* (13)

where Up= 54.5 GPa and m = 9.8. This relationship, which fits the data

reasonably well over a wide range of porosities, is shown in Fig. 2-3.

The relaxed modulus Mp describes the material's volumetric strain at
‘long’ times, such that an equilibrium compaction state has been reached. In
analogy with the usual definition of bulk modulus as the ratio between mean

stress and the corresponding elastic volumetric strain, we define My as

‘MR = -E-'-(?g‘:;)— (14)

where E(t <) is the finite strain at 'long’ times.

In the most general case, E(t-+=) will be related, in a complicated
fashion, to porosity change and change in grain density due to, say,
dehydration. The rheological law would then be coupled to .mass-cqnservation
relationships. However, in the special case of constant volume of solids, we can

write a fairly simple expression for Mz, using results in the appendix to replace
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E by ¢. Smith (1971, p. 248, Eqn. 23) bas shown that for the common
exponential decrease of porosity with depth, £ will be related to ¢ by the

expression

(15)

r= E%’—[m(‘%) - (v - #)

where ¢y is a datum porosity, say, the porosity at the sediment-water
sediment-water interface, g is the acceleration due to gravity, Ap is the
difference between grain and fluid densities, and b is a constant, with
dimensions of reciprocal length, characteristic of the basin in question (cf.
Magara, 1976). (It should be emphasized that we do not imply by Egn. (15) that
L is a function of ¢; rather, the functional relationship is ¢ = ¢(Z). Egn. (15)
simply is the clearest way of mathematically expressing this functional
relationship.) Using Eqns. (14), (15), and (A-8)-—-the last to replace E by g--we

can write

22210 (£ - (po - o)

l1-g
In( 1—¢o)

(18)

Mp =

Mp as a function of ¢ is also shown graphically in Fig. 2-3 for several values of b
and for ¢,=0.5. Mz (¢=0.5) is obtained by taking the limit of Eqn. (18) as
#-0.5, and is identical to the ‘frame compressibility’ of Smith (1971, p. 247,
Eqn. 27). Our expression for Mg (y) cannot, of course, be strictly valid for p-0;
in that limit, Mp and My should both approach the bulk modulus of a pore-free
grain aggregate.

We finally need to estimate the value of 7. For porosities near 0.50, we

can estimate 7 from the experimental data collected by Christensen and Wu

(1964) for several clays. Inspection of their Figs. 6-10, along with their
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tabulated void ratio data, suggests, for example, that T+ & 5x 103 s for ¢ = 0.55,
Tn10°s for ¢ =0.43. Estimation of T for lower porosities cannot,
unfortunately, be directly made. Nishihara (1957), Hobbs (1970), and
Renzhiglov and Pavlishcheva (1970) give rheological coeflicients (for various

creep laws), but give no porosity data.

The standard-linear-solid rheological model may not be valid for very low
porosities, say, ¢ <ca. 0.05, because in attaining such low porosities, the shale
is likely to have become at least partially cemented by 'stifl' materials such as
quartz, which will not flow plastically under upper-crustal conditions. For such
low porosities, the shale should behave nearly as an elastic solid. An indirect
estimate of T for 'low’ porosities greater than this 'elastic limit’ may be made,
bowever, by using inferred crustal viscosities. This is because (cf. Ramsay,
1967) the standard linear solid can be as equally well characterized by My, Mz,

and a viscosity n as by the parameter set ¥, M3, and 7. It can be shown that

- nMy
Hr (My - Mg)

T

(17)

Suppose we consider shales with porosity ¢ = ca. 0.05 as the limit of
validity of our model. We see from Fig. 2-3 that for such rocks, My will be

much greater then Mp. We can therefore approximate Eqn. (17) as

ks I
TR 7 (18)

Estimates for the apparent viscosity of the upper crust are typically in the
range 10 - 10 Pa s (cf. Biot and Ode, 1965; Fletcher, 1966), so with
Hp =ca. 102 MPa, we can estimate 7 = ca. 10'! — 10'2 5 (3x10* — 3x10%a) at low

porosities.

We see that v may vary over a tremendous range (about 7 orders of
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magnitude) as sediments compact. Lacking estimates of T at any intermediate
porosities, we suggest tentatively that 7 be given by a simple exponential form

that roughly matches the high- and low-porosity estimates:
T=ToeM (19)

where 79 = 10 5, A = 32.

5. APPLICATION OF RHEOLOGICAL MODEL TO SEDIMENT COMPACTION

We have argued above that in order to properly characterize time-
dependent strain (or porosity) of clay-rich sediments, a rheological model for
the compaction of such materials must generally take into account overburden
pressure, pore fluid pressure, and the rates of change of these quantities. For
convenience, we reproduce here our proposed rheological law for clay-riéh

sediments:

DE E p> 1 DX
T TMp * My Dt (5)

where E =In[ (1 =)/ (1~¢g) ]. with g a datum value. The relative importance
of the various terms in Eqn. (5) may be easily estimated if we consider the

special case of DT/ Dt = £, = const. We can then rewrite Eqn. (5) as

DE . E_ Lit I,
Dt+T_TMR+}ly (20)

At this point, it is useful to recast Eqn. (20) into dimensionless form. Suppose

that the constant rate of loading has been applied for a time 7, and that the

total strainis Fy. We can then use the dimensionlesst variables

~_ E
E-_—Er (21)
T=L
t-T

1The strain E is, of course, inherently dimensionless.
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where dimensionless variables are denoted by tildes. Substituting Eqns. (21)

into Eqn. (20), we can write, after some rearrangement:

DE 2 v (b= ‘f; z" + Ih) (22)

The dimensionless terms £, £, and DE/ Dt will all be 0(1) because of the way in

which we have scaled strain and time.

Referring to Fig. 2-3, in which we show the relaxed and unrelaxed moduli
as functions of porosity, we see that Mp/ My will be much less than unity
unless @-0. Furthermore, 7, the characteristic time scale over which
sedimentation takes place, will likely be several orders of magnitude greater
than 7, which we estimated to be less than ca. 10*-10%a at even the lowest
porosities for which our model is valid. Therefore, in nearly all cases of
interest, we can ignore the first terms on both the left-hand and right-hand
sides of Eqn. (22). Reverting to dimensionai form, the rheological law may

generally be expressed to an excellent approximation as
E=—— (23)

In other words, a clay-rich material will ‘relax’ sufliciently rapidly that E (or ¢)
will be essentially a unique function of T (at least, during loading; as sta£ed
earlier, this rheological model may not be appropriate for unloading). This has
been commonly assumed (e.g.. Smith, 1971; Plumley, 1980; Keith, 1982), but
without reference to data on the mechanical behavior of such materijals. Our
review and synthesis of the relevant experimental resuits shows that this
assumption may legitimately be made in models of sediment compaction and

fluid-pressure development in sedimentary basins.
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8. SUGGESTED FUTURE STUDIES

We have reviewed experimental studies of time-dependent deformation of
clays and shales in an attempt to synthesize a rheological law that reasonably
describes compaction of such materials. These studies have focussed on the
average mechanical deformation associated with particular applied stresses.
In actuality, the microphysical nature of compaction and lithification must be
very complex, involving phenomena such as reorientation and deformation of
individual mineral grains, mineralogical changes, and ion exchange between
grains and pore fluid (e.g., Meade, 1968; Burst, 1969; Weaver and Beck, 1971;
Eberl and Hower, 1878). A variety of experiments will be necessary to further
refine our knowledge of the processes by which clay becomes shale. The

questions to be addressed should probably include the following:

i) How do elevated temperatures, in the range of probable upper-crustal
values (< 300° C) affect creep behavior of clay-rich sediments?

ii) How do clay chemistry and pore-fluid chemistry aflect clay- and shale
creep? This work should probably focus on the effects of Na, K, Ca, and
Mg, the relative proportions of which appear to have a strong influence on
diagenetic reactions during burial (e.g.. Eberl and Hower, 1978).

ili) What sort of eflective stress law, if any, is appropriate to describe
creep of clays and shales?

iv) How do clay-rich sediments respond mechanically to decreasing as
well as increasing loads; ie., how much deformation is ‘elastic’ and

reversible, as opposed to ‘plastic’ and irreversible?

7. CONCLUSIONS

In developing models to describe physical processes in accumulating
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sediments, careful consideration should be given to experimental studies. We
bhave taken this approach in regards to compaction of clay-rich sediments,
reviewing and synthesizing data on time-dependent deformation of clays and
shales in order to arrive at a rheological law for sediment compaction.
Available data indicate that the compaction state of clay-rich sediments--
usuelly characterized by porosity--will generally depend upon overburden
pressure, pore-fluid pressure, and the rates of change of these variables. For
time scales and rates of loading typical of sedimentary basins, the model
predicts that porosity will be essentially dependent upon simply the eflfective
stress, thereby verifying a commonly held assumption used in models of

sedimentary-basin development.
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APPENDIX: RELATIONSHIP BETWEEN POROSITY CHANGE AND FINITE STRAIN

The total volume Vy of a sediment packet is made up of solid grains of
volume ¥, and fluid-filled pores of volume V,. If, during compaction, grain den-
sity remains constant, then any change §Vy in the volume pf the sediment
packet will be equal to the change §¥, in pore volume. Considering an ‘initial’

state and a ‘final’ compacted state, we can express the porosities as

‘= -w-L (A-1a)

LAY

and

o = (A-18)

where the superscripts i and f refer to ‘initial’ and 'final’ states. Egqn. (A-1b)

may be rewritten as

P’ = M (A-g)‘

T WSV
or

o Brev_
V3 (1 + é¢2)

where 6¢ =8 Vy/ V}. Expanding in powers of §¢, we find
¢ =¢'(1-6c) + 6+ Ol(dz)z] (A-3)
Hence, the porosity change in going from the initial to the ﬁnal state is
bp = of ¢t = 8e (1) + Of5cY] (a-2)

In the limit of infinitesimal deformations, therefore, we have dg¢ = de(1-9).
where d¢ can be identified with the infinitesimal volumetric strain. For finite

strains, we integrate over all infinitesimal strains to find
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E=fda=]'fl_f‘-’¢— (A-5)
%o
or

E= 1n(11f&9 (A-6)

This is the expression used in the main text.
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NOTATION

reciprocal length scale characteristic of sedimentary basin
compression index

void ratio

datum void ratio

finite strain

‘dimensionless’ finite strain

acceleration due to gravity

" constant related to unrelaxed modulus

unrelaxed modulus

relaxed modulus

pore-fluid pressure

spatial coordinate in direction of sediment motion
time

dimensionless time

characteristic time scale for sedimentation

speed at which sediment grains move during compaction
constant related to unrelaxed modulus

volume of fluid in packet of sediment

volume of solid grains in packet of sediment

total volume of packet of sediment

compressibility of sediment
infinitesimal strain
viscosity

constant related to relaxation time
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density difference between solid grains and pore fluid
overburden stress

magnitude of step-function change in stress
axial stress in triaxial test

confining pressure in triaxial test

datum value of overburden stress

effective stress

rate of change of eflective stress (constant)
relaxation time

constant related to relaxation time

porosity

datum value of porosity

parameter in relationship between porosity and effective stress
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: CHAPTER 3

PHYSICAL PROCESSES IN ACCUMULATING SEDIMENTS

I1: FLUID FLOW AND FLUID-PRESSURE DEVELOPMENT
IN COMPACTING SHALES

ABSTRACT

We derive fundamental equations necessary to describe the development
of overpressures in compacting shales, considering the potential effects of
mechanical compaction, thermal expansion of pore fluid, and montmorilionite
dehydration on the pore-pressure history. Montmorillonite dehydration can be
considered as constituting a fluid source, the strength of which we show
depends upon several parameters, including the density of adsorbed water and
the rate at which the expandable clays dehydrate. We then estimate the
relative importances of the three overpressuring mechanisms. Mechanical
compaction can potentially lead to pore pressure increasing as rapidly as
overburden pressure; thermal eflects need not be invoked unless
overpressuring rates exceed the rate of increase of overburden pressure, and
even then may not be required, because montmorillonite dehydration has the
potential to cause very rapid rates of pore pressure increase, exceeding even
rates due to mechanical effects. Such rapid overpressuring could lead to
lithostatic pore pressures, hence to mechanical failure and abrupt fluid
release, perhaps episodically. This could be related to the genesis of
*Mississippi Valley-type' Pb-Zn deposits. We also show that porosity changes
associated with montmorillonite dehydration are likely to be quite substantial,
explaining at least in part the porosity increase with depth often encountered

in the transition zone from normally pressured to overpressured shales.
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1. INTRODUCTION

Sedimentary basins are among the major structural features of the
Earth’s crust, their origin and overall development probably indicative of
processes at depth in the mantle (e.g., Sleep, 1871; McKenzie, 1978). The
common association between such basins and hydrocarbons makes physical
processes within sedimentary basins of great practical interest. Because the
development and migration of hydrocarbons are considered to be closely
. related to phenomena connected with lithification--in particular, compaction,
heating, and expulsion of pore water (e.g., Hunt, 1979)—a better understanding
of processes occurring within sedimentary basins during lithification should

help constrain models of hydrocarbon generation.

A phenomenon of particular importance for hydrocarbon exploration,
because of the difficulties it can cause for drilling programs (e.g., Dickinson,
1953; Fertl and Timko, 1970) is the occurrence of fluid overpressure, that is,
fluid pressure in excess of hydrostatic (also called geopressure, excess
pressure, and abnormal pressure). Fluid pressure in excess of hydrostatic is
pressure is therefore commonly considered to be the state of ‘regional’
equilibrium for pore fluids in the Earth's crust. In fact, thermodynamic
arguments (Dibble et al., unpublished) suggest that local chemical-mechanical
equilibrium will nof be satisfled, in general, if pore-fluid pressure is
hydrostatic. Nonetheless, the observation that fluid pressure at depth in old
sedimentary rocks is usually quite near hydrostatic indicates that such a
condition can reasonably be taken as the 'normal’ or 'equilibrium’ reference
state. The occurrence of overpressures in a basin therefore indicates that this
'equiliﬁrium' state has not been reached; fluid expulsion, with concomitant

porosity reduction, must take place before the overpressure can be dissipated.
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In the previous chapter, we discussed the rheology of compacting clay-
rich sediments. In the present chapter, we incorporate that discussion with
considerations of mass and energy conservation in order to develop the
mathem.atics to describe fluid pressure during compaction of clay-rich
sediments undergoing burial and lithification. In the next section, we briefly
mention the major mechanisms proposed to account for overpressure
generation in sedimentary basins. All such meébanisms necessarily involve
transient changes in the physical state of the sediments, a point also stressed
by Keith (1982). We also review previous mathematical models of fiuid pressure
development in sedimentary basins. In section 3, we present a detailed
derivation of the equations describing fluid-pressure development and
compaction in accumulating, homogeneous, clay-rich sediments. In the most
general case considered, compaction, thermal effects, and fluid sources (e.g.,
dehydrating clays) all influence fluid pressure. Although the complexity of the
problem prevents us from finding analytical solutions to the governing
.equations, we show in section 4 that we can extract some important
generalizations about the relative importance of the various overpressuring
mechanisms by considering certain special cases. We show that, in general,
montmorillonite dehydration should have a very important influence on pore-
pressure development. Thermal effects may be important in achieving very
high overpressures, but are not necessary to explain moderate

overpressures.

2. MECHANISMS AND MODELS OF OVERPRESSURE GENERATION: A REVIEWN

At least ten mechanisms have been proposed as causes of overpressuring

in sedimentary basins (see reviews by Bredehoeft and Hanshaw (1968) and
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Smith (1871)). Those commonly considered of major importance are:

i) Mechanical compaction as sediment is loaded by accumulating

overburden (e.g., Smith, 1971);

ii) Thermal expansion of pore fluid as burial proceeds (e.g., Barker, 1972;

Magara, 1975b);

iii) Fluid release by dehydration, especially in regards to the

montmorillonite-to-illite transformation (Powers, 1967; Burst, 1869).
Clearly, these proposed mechanisms suggest that sustained overpressuring
requires transient changes in the physical state of the sediment. Should
continued burial and loading cease, compaction and fluid release due to
dehydration will gradually cease, and an equilibrium geotherm will become

established.

Most mathematical models of fluid-pressure development in sedimentary
basins bave focused attention on mechanical compaction of clay-rich
sediments. Perhaps the earliest such work was that of Ortenblad (1929-30),
who applied the then-recently developed theory of soil consolidation ( e.g.
Terzaghi, 1943). Ortenblad’s numerical results, presented in terms of an
unusual set of coordinates, dealt with sediment thicknesses of only a few tens
of meters. Bredehoeft and Hanshaw (1968) considered fluid-pressure
development in thick (several km) sections of accumulating sediment; their
estimate of the maximurn permeability permitting maintained overpressures is
often quoted. However, their work did not take into account compaction.
Bishop (1979) solved essentially the same equations as Bredehoeft and
Hanshaw (1968); he attempted to deal with compaction by applying
consolidation theory in an a posteriori fashion in order to determine the

variations with depth of both density and fluid pressure. Bishop's results are
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questionable for two reasons. First, it is unclear that soil consolidation theory
may properly be extended to cover the complex processes occurring over
millions of years as clay becomes shale. Second, density {(or porosity) and fluid
pressure are intimately coupled throughout the history of sedimentation and
compaction; it is invalid to solve for fluid pressure developed over millions of
years, then ‘correct’ the porosity distribution based upon those calculated

pressure values.

Smith (1971, 1973) explicitly considered the coupling between
compaction and fluid pressure development in accumulating clayey sediments.
Following Athy (1930). Smith assumed that porosity in compacting shale is a
unique function of the effective stress ¥ (=overburden pressure - fluid
pressure).t However, rather than actually solving a diffusion-type equation for
fluid pressure, Smith neglected fluid compressibility and instead solved for
porosity throughout the sedimentary column. Fluid pressure was then "backed
out’ by means of the assumed relationship between eflective stress and
porosity. Keith (1982) took an essentially identical approach to compaction,
but also attempted to correct, in an approximate fashion, for the eflfects of
thermal expansion and clay dehydration. She argued that the latter two
mechanisms are generally of minor importance in pore-pressure development

in comparison with the effect of sediment loading.

Sharp and Domenico (1976) investigated the thermal, as well as fluid
pressure, history of accumnulating sediments. Their formulation explicitly
accounts for heat transported by fluid flow; the effect of temperature on the
fluid-pressure field is treated in an approximate fashion by applying

corrections to the fluid density, rather than by coupling the temperature field

$Rheological laws for compacting sediments proposed by Nagumo (1885) and Marsal and
Philipp (1970) reduce essentially to the same form.
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directly to fluid pressure (cf. their Equations 1, 3, and 10). Their numerical
results also suggest that thermal effects on fluid-pressure development are of

secondary importance in compaﬁson with sediment-loading effects.

Another factor possibly influencing fluid pressure in compacting
sediments—deviatoric stress—was examined by Palciauskas and Domenico
(1980), with emphasis on the possible relationship between deviatoric stress,

microfracturing, and hydrocarbon migration.

The various mathematical models described above have clearly aided in
understanding pore-pressure development in compacting sediments. The
present study is intended to extend earlier work in several regards. In
particular, a formal mathematical development shows explicitly the way in
which the effects of heating and fluid sources couple to the equation describing

fluid-pressure development.

3. ANALYSIS

Following earlier model studies, we consider sediment to accumulate in
horizontal layers. We assume that both fluid and solid motion are in the
vertical direction only. This should be a good approximation except near basin
margins or other discontinuities, such as permeable fault zones (cf.
Seeburger, 1981), and as long as abrupt changes in permeability do not occur
perpendicular to bedding, in which case fluid flow could have a significant
horizontal component (Magara, 1976). Such horizontal flow, which is almost
certainly important for hydrocarbon concentration (e.g., Hunt, 1979), and is
probably related to the origin of Mississippi Valley-type Pb-Zn deposits (Sharp,
1978; Cathles and Smith, 1983), will be examined in greater depth in chapter 4,

but will be neglected here for simplicity of presentation.
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Mass conservation and fluid pressure

The coordinate systemn used is shown in Fig. 3-1. The vertical coordinate
£ increases downward from the sediment surface, which is considered fixed.
The base of the sediment pile lies at h(¢), where ¢t is time measured from the

start of sedimentation.

We now consider the effect on fluid pressure of changes in porosity and
temperature, as well as the effect of fluid released by dehydration of solid
grains (e.g., montmorillonite transforming to illite). We first need to consider
mass conservation. In an Eulerian (fixed) reference frame, conservation of

mass of fluid and solid may be expressed, respectively, as

'gt—(Pj¢)=-':?(Pfuf¢)+s (1)
%[p,(l‘?)] = ‘Eaz_lpnut(l"V)]-s (2

where

Py = pore-ﬂuid density

ps = solid grain density

u, = average fluid velocity

u, = average solid velocity

@ = porosity

S = fluid source strength (mass of fluid released per unit volume of sedi-

ment per unit time)

These conservation relationships are independent of details of the dehydration
process; in particular, they are independent of whether or not bound water in

montmorillonite has a different density than free water in the pores.
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Our assumption that dehydration of clays serves as a fluid source
necessitates the presence of the term involving S in the expression for
conservation of mass of the solid. Due to this dehydration, p, cannot be
treated as a constant, such has been done in earlier models ( e.g., Smith, 1971;
Sharp and Domenico, 1978; Keith, 1982); In general, S and p, will be related in
e complicated fashion, depending upon the exact nature of the fluid-release
mechanism. In Appendix A, we discuss the relationship between S and p, for
the interesting case of montmorillonite-to-illite transformation. We show there

that
S = (=P (1-g) 22 (3)
Ps —PB Dt

where pp is the density of the bound (adsorbed) water on montmorillonite
surfaces—~the water released during the clay-transformation process. This
result will be used later when we discuss the role of clay dehydration in

overpressure generation.

We will assume that changes in the chemical composition of the pore
fluid will have a negligible eflect on fluid density, in comparison with the effects

of fluid pressure p and temperature 7. These effects are expressed as:

8
2L Bs Py (4a)

and

2L = a0y (4b)

where f, and a, are the compressibility and thermal expansivity, respectively,

of the fluid. To a first approximation, we can take g, and a, as constants.

In order to arrive at a differential equation for fluid pressure, we need to

express fluid flux in terms of p. We assume that pore-fluid flow will be
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described by Darcy’s law, viz.:
. k ,08
oy -w)= - = (g-pr9) (5)

where
k = permeability
4 = viscosity

g = acceleration due to gravity

The quantity g(u, —u,) is thus the volumetric flow rate, i.e., the volume of fluid
that passes through a unit cross-sectional area in unit time. The form of Eqn.
(5) indicates that no flow will occur when fluid pressure is hydrostatic
(p =pygz). Ve also expand and rearrange Egn. (2) to get an expression for the

local rate of change of porosity:

8¢ _(1=¢ ., 0P 0pa, 8 _ S
% = (L) (Gt g+ e 1 ¢>]+p. (8)

We have implicitly neglected here reversible, ‘elastic’ porosity change (cf.
chapter 1 of this dissertation); such changes should be of minor importance in
comparison with irreversible porosity decrease, except possibly for very low
porosities, especially when cementation by ‘stiff’ materials such as quartz has

occurred. We will not consider such cases here. Hence, expanding Egn. (1),

using Egns. (5) and (8), and assuming that second order terms involving (;2;-)2

and (%—)(%{9 are negligible, we find a linearized diffusion-type equation for

fluid pressure:
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2 .., 8%, 0 |k 3 _ aT 8T, _ Oua _
#By (G +w Y= o e —pra) |+ pay (Gr+wm ) - 5 (n
1- 0ps Ops, . SAp
- (=& (-4 +
o e % 52 by Ps

where Ap = p, — py.

Eqn. (7) can be readily interpreted. The left-hand side is proportional to
the rate of change of fluid pressure, modified for the effect of particle motion
(due, for example, to subsidence). On tbé right-hand side, the first term
describes diffusive relaxation due to fluid flow; the second term is related to
the effect of thermal expansion of the pore fluid; the third, fourth and fifth

: -t.erms describe the effects of compaction, dehydration and fluid release.

Rheology of compacting sediments

In the previous chapter, we discussed at length the rheological behavior
of clay-rich sediments. In general, experimental results on time-dependent
deformation of clays and shales require a rheological model in which strain--
which, in the absence of fluid sources, can be easily related to porosity
change--is a function of both the load stress and the rate at which this load is
applied. It was shown that for the rates of loading typically associated with
sediment accumulation in basins, the rheological law reduces essentially to the
relationship between porosity and eflective stress proposed by Smith (1971),

viz.:

(8)

£= %&[m({-:—) - (po=9)

where ¢p is a datum porosity, often taken as the porosity at the sediment-
water interface, and b~! is a scale length for porosity reduction, given by the

common exponential relationship between porosity and depth:
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P = gos™" (9)

The rheological law, Eqn. (8), implies that the porosity of a 'packet’ of sediment
may be considered to be essentially independent of the history of both
overburden pressure and fluid pressure during burial. (This may not be strictly
valid if dissolution and precipitation are important porosity-altering processes

during burial (e.g., Carstens and Dypvik, 1981)).

Due to the largely irreversible nature of compaction and lithification
processes, it seems reasonable to assume that the strain rate in compacting
sediments may be negative, but not positive, during burial, where negative
_ strain rate corresponds to an increasing degree of compaction. In other
words, we assume that the vertical distance between nearby sediment grains
may decrease, but not increase, during burial. This may be expressed

mathematically as (cf. Malvern 1969, pp. 145-50):

ou,
-3;—5 0 (10)

Note that we have not stated here that porosity must decrease during burial
(cf. discussions by Plumley, 1980; Bonham, 1980, p. 554). This would be true
only if there were no processes such as dehydration that could add fluid mass
to the sediment. This is an important point that we will return to later in our
discussion of the porosity proflle commonly associated with overpressured

zones.

Overburden stress

As stated above, porosity may be taken as essentially a unigue function of
the eflective stress £ =% — p, the difference between mean stress in the rock
matrix and pore-fluid pressure. The stress state in accumulating sediments

may be quite complex, with deviatoric stresses generally developed (cf. McGarr
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and Gay, 1978, pp. 423-25; Palciauskas and Domenico, 1980). The large strains
involved in compaction, the fundamentally nonelastic deformation undergone
by the sediment, and the difficulty in specifying stress- or strain boundary
conditions makes theoretical estimation of the stress state an imposing task,
beyond the scope of this chapter. We will assume, as a first approximation,
that the confining pressure is simply equal to the load applied by overburden.
This stress is readily determined by integrating the sediment density over

d_ept.h:
5(z) = jo'pms d¢ (11)

where pm = py¢ +p, (1—¢) is the sediment density. Physically, this means we
are assuming that any deviatoric stresses will relax on a time scale much less
than the time over which sediment accumulates. This is apparently not
strictly true (cf. McGarr and Gay, 1978), an observation that meay have
important consequences for our undgrstanding of the rheology of sediments.
Nonetheless, this approximation for & should not lead to serious errors in

estimating the effect of loading on pore pressure.

4. OVERPRESSURING MECHANISMS: ESTIMATE OF RELATIVE IMPORTANCES

In general, solution of the ‘complete’ sediment compaction problem
requires that we consider the behavior of the seven variables ¢, p, 3, T, %,;. p,.
and pp. Even more variables would enter if we considered transport through
the fluid phase of various chemical species—-which is probably necessary for a
rigorous treatment of the clay-transformation process (e.g., Perry and Hower,
1970)--or considered other possible mechanisms for overpressuring, such as

osmotic pressure associated with salinity gradients (Hanshaw and Zen, 1965).



100

Solution to the ‘complete’ problem is therefore quite imposing, if not

intractable.

Fortunately, we can gain some important insights into the relative
importance of the several potential sources of fluid overpressure by
consideriné special cases in which some of the overpressuring mechanisms are'
absent. We consider again Eqn. (7) for fluid pressure, which, for convenience,

we reproduce here:

vﬁ:(gz-'ru.;,%) -g:;'- “—(%-my) +¢a;( +u.gf) (7)
2) aﬂa apa\ oY)
-( ( azl*PlPo

The relative importance of the eflects of porosity reduction and fluid
heating on pore-pressure development may be estimated in a relatively
straightforward manner if no fluid sources are present. In that case,

expanding and rearranging Eqn. (8) leads to the expression:

du, 1 Dy
8z  1-¢ Dt (12)

Thus, in the absence of fluid sources, the porosity of an element of the shale
will decrease with time for physically plausible strain rates (cf. Eqn. (10)).
Substituting Eqn. (12) into Eqn. (7). we can write, after some

rearrangement:

1 D¢ DT (13)

2&.= =

where D/ Dt = 8/ 8t + u, 8/ 8z is the material time derivative, i.e., the time

derivative following the motion of the solid grains (Malvern, 1969, p. 143).

We now use Eqn. (8) to express D¢/ Dt in terms of DT/ Dt, viz.:
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D a(1-¢) yom (14)

where a = bg/ g Ap (1 - ¢)? is the 'compressibility’ of the shale (cf. Sharp, 1976,
Egqn. 5; 1983, Eqn. A-4), equivalent to the expression given by Smith
( 1971, p. 247, Eqn. 27). This ‘compressibility’ should not be thought of as an
elastic compressibility, but rather as characterizing the irreversible porosity
change due to an increase in eflective stress. This corresponds with hydrologic
usage in describing compaction of an aquifer (e.g., Domenico and Mifflin, 1965,
p. 565).

Egn. (14) is valid, of course, only as long as DI/Dt is positive.
Substituting Eqn. (14) into Eqn. (13), and recalling that £ = & ~p, we find, after

rearrangement:

Dor

(a+phy) o= | E (2B p,g>]+a%§—+ ea, 2L (19)

“

The last two terms on the right-hand side of Eqn. (15) ‘represent pore-
pressure increase due to porosity reduction and thermal expansion of pore
fluid, respectively. The effect of porosity reduction by loading is given by the
term involving DG/ Dt . If & corresponds to overburden pressure, in accord
with our earlier approximation, then Do/ Dt ® p, gV, where p, is the density of
sediment added at the sediment surface and V is the thickness of sediment

deposited per unit time. The eflect of loading-induced compaction on pore

pressure is therefore given approximately by

Do
a S~ apugV

The sediment compressibility, a, is given by hydrologists (e.g., Domenico and
Mifflin, 1985) for a variety of materials. We will instead use b values from the

petroleum-geology literature to estimate the eflect of sediment
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compressibility. From Athy (1930) and Magara (1978), we estimate

b ®2-10x10"* m~!. Taking p,/Ap ® 1 and ¢ & 0.2-0.3, we find:

a %"—’-z 0.6-6x 10~V [s-1)

for V in MKS units. For likely sedimentation rates (V & 100-500 m/Na), we find:

a %E-n 2-100x 1016 s-1

The effect of thermal expansion of pore fluid is given by the term involving

DT/ Dt. We can rewrite this term as

pap %{-H pa, 'V
where T is the magnitude of the geothermal gradient. With a, ¥5x10™*C~! at
temperatures and pressures of interest (as estimated from tables in Schmidt

(1969)), ¢ = 0.2-0.3, and I"' = 20~40°C/km, we find

pa, %‘—T&! 0.06-1x10"1€ 51!

for V = 100-500 m/Ma. Considering that heat advection associated with
sedimentation tends to reduce the geothermal gradient within a section of
accumulating sediments (Sharp and Domenico, 1976, Fig. 4), this may, in fact,
be an overestimate. It therefore appears that, averaged over burial times of
millions of years, the eflect of heating on fluid pressure will probably be
negligible in comparison with the effect of porosity reduction by loading. We
must emphasize, however, that the latter mechanism by itself can lead to
Dp/ Dt only as large as D6/ Dt, regardless of the rapidity of sedimentation;
larger values of Dp/ Dt require an additional overpressuring mechanism.
(This point is also emphasized by Magara (1975b).) Our analysis does not rule

out the possibility that thermal expansion of fluid may be important in
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achieving Dp/ Dt > Do/ Dt.

The effects of clay transformation and fluid release on pore pressure are
less easily described by considering the differential equation for po_re-pressure
development. This is partially due to the fact that when dehydration of clay
'occurs. porosity may change independently of any change in loading; hence,
D¢/ Dt can no longer be readily related to changes in p and G. The exact
magnitude of the porosity- and pore-pressure changes induced by the
dehydration process will depend on several factors, including the ease with

which fluid can escape (i.e., on the permeability distribution), as well as on the

mechanical constraint imposed by surrounding sediments.

We can nonetheless get reasonable numerical estimates for the effect of
clay dehydration on pore pressure (as well as on porosity) by considering an
illustrative special case, that of constant sediment volume during the
dehydration process. This is a physically plausible configuration, because the
mechanical constraint imposed by hundreds of meters of overlying strata
should strongly inhibit any actual expansion of the material undergoing
dehydration. There is no mechanical requirement that montmorillonite
dehydration at depth cause an overall expansion or ‘rebound’ of the

sedimentary column (cf. Magara, 1975a, p. 296).

Referring to Fig. 3A-1, we consider a small mass § Mp of adsorbed water
transforming to free water with density p,. We may write the total volume ¥;
in the ’initial’ and ’final’ states as

V=V, +V;+6Vp (18a)

W=V, +V (16b)

where ¥, is the volume of clay that remains after bound-water release and V; is
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the volume of free (pore) water. The superscripts i and f refer to 'initial

state’ and ‘final state’, respectively. These expressions may be rewritten as

1
V=V, + et L (17a)
P}  PB

V7=K.+£3—;—;£’- (17b)

where !l} is the initial mass of free water, which has density p}. For small

changes in density, corresponding to small § {5, we can approximate

pf = p} (1+8,6p) (18)
where 8p is the change in pore pressure. Equating Eqns. (17a) and (17b) and
using Eqn. (18), and neglecting terms involving the product §Mp §p., we find,

after some rearrangement::

1
{1-
By M}

ép = 2, 5 6Mp (19)
Pe

Noting that M} = p}V}, and teking the limit of infinitesimal changes in all

variables, we find

1, S

Dt lcmmmt sed. vol. = (P - p5 Tr (20)
or using Eqn. (3):
[ 1 Dp,
%“ conatont sed. wol. = ("_'L)( =2 o ~PB ) Dt . (21)

Note that an increase in pore pressure requires that pg>p,. A similar
algebraic exercise leads to an expression for the rate of change of porosity of a

sediment packet. We simnply state here the result:

1 \Dpl
Pe—pPp’ Dt

.%tf_' constons sed. vol. = ( (22)
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In the event that the surroundings provide a less-than-ideal mechanical
constraint, we would expect Dp/ Dt to be smaller, and D¢/ Dt to be larger,

than given by Eqgns. (21) and (22), respectively.

Estimates of the magnitudes of Dp/ Dt and D¢/ Dt due to clay
dehydration ( at constant sediment volume) can be gotten once we have _
assigned values to pp, the adsorbed-water density, p,., the clay-greain density,
and Dp,/ Dt, the rate of change of clay-grain density. As noted in Appendix B,
where we discuss the issue of the density of bound (adsorbed) water in
montmorillonite, experimental date indicate that pp>p, for adsorbed-water
thicknesses less than ca. 4 mbnolayers; as the adsorbed-water content
decreases below this value, pp appears to increase monotonically (Martin,
1862, p. 32, Fig. 1). Hence, a constant value cannot be assigned to pg. Rather,
we would expect pp to increase during the dehydration proceés. from a value of
103 kg /m? to perhaps 1.5x10° kg/ m?® for the last adsorbed water layer (cf.
Martin, 1982, p. 32, Fig. 1). For a clay initially composed solely of
montmorillonite, grain density p, will probably increase from ca.
2x108kg/m? to 2.5x 10° kg / m? during burial and dehydration (cf. Deer et
al.,, 1988). If p, changes through a fairly restricted depth interval of ca. 1-2 km
(cf. Hower et al., 1978), then for reasonable sedimentation/subsidence rates of
100-500 m/Ma, we find Dp,/ Dt & 10712 ~10"" kg m ¥s-!. Hence, using Eqns.

(21) and (22) with ¢ = 0.20, we can estimate:

| constons asa. vor. ¥ 1-5% (1070~ 107) Pa/s

1.1x10° kg / m3,

where the lower limit bas been calculated for pp

1.4x10% kg /mS3,

Ps =2.1x10°kg/mS%, and the wupper limit for pg

Ps = 2.4x10° kg / m3. By way of comparison, we have
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%.l Kehaetatic gradient N P gV N 8-40x 102 Pa/s

We see that the potential rate of overpressure buildup due to montmorillonite
debhydration is remarkably high. Rapid buildup of pore pressure to lithostatic
values could occur. For example, making the conservative assumption that p
is initially hydrostatic, the time t, for p to reach lithostatic (if no excess-
pressure diffusion occurs) will be approximately Ap gD/ (Dp/ Dt )constant sed. vou. »
where D is the depth to the zone of montmorillonite dehydration. Taking D =3
km (cf. Hower et al., 1976) and the other parameters as above, we find ¢, <ca.
1 Ma. Pore pressure could therefore climb to lithostatic on a time scale short
in comparison with the time scale for basin development. Mechanical failure
and escape of overpressured fluids would then occur. Hence, montmorillonite
dehydration could thus lead to repeated, episodic buildup and release of
overpressure. This could be very important in the genesis of 'Mississippi
Valley-type' Pb-Zn deposits (Dozy, 1970; Cathles and Smith, 1983), as

elaborated below.

We can also estimate the rate of porosity change due to dehydration:

De

Dt I constent sed. wi. © 0.BX% (10718~ 10"14) s

It excess-pressure diffusion were completely inhibited, this would lead to an
increase in @ by about 0.1 in ca. 0.3-3 Ma. Porosity increases with depth in
overpressured zones are often of this magnitude, or larger (e.g, Magara, 1975a,
pp. 295-99). In comparison, the average rate of porosity change during burial

is given by

Do
Dt

| %{;I V<ca 107 s}

for compaction along a ‘normal’ trend, where we have estimated dg/dz by
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using Eqn. (8), b =2-10x10"*m~! and V = 100-500 m/Ma. D¢/ Dt is, of

‘course, negative for normal compaction.

These estimates are likely to be a bit high, because we have implicitly
assumed that the initial clay comprises solely montmorillonite. Nonetheless, it
should be apparent from these simple calculations that montmorillonite
dehydration has the potential for creating very large overpressures and

arresting normal compaction.

5. DISCUSSION

In earlier discussionsvof the relative eflicacy of various overpressuring
-~ mechanisms (e.g., Magara, 1975a, 1975b; Chapman, 1980; Keith, 1982), frequent
reference has been made to a state of ‘compaction disequilibrium.” A shale is
considered to be in ‘compaction disequilibrium' when its porosity falls off the
'normal’ porosity vs. depth trend (Fig. 3-2). Magara (1975a) has argued that
the likeﬁest. cause of compaction disequilibrium is low permeability, which
would inhibit the release of overpressures and permit maintenance of
porosities greater than the ‘equilibrium’ value. Magara has argued that
montmorillonite dehydration is not capable of causing porosities to deviate
significantly from the °‘normal’ trend. This conclusion contrasts with our
estimate of the eflect of clay dehydration on porosity. If mecbanical
constraints prevent overall expansion of the sediment undergoing
dehydration—a plausible situation--then porosity and pore ‘pressure would
increase rapidly. This tendency will be opposed, of course, by upward fluid
diffusion due to the finite permeability of the overlying shale. Nonetheless, the
extreme rapidity of porosity- and pore-pressure increase possible with clay

dehydration—compared to values for even fairly rapid sedimentation--strongly
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SHALE POROSITY ===

DEPTH

Figure 3-2: Porosity vs. depth trends, comparing ‘normal’ compaction with
‘undercompaction’ (after Magara (1975a), by permission of the American
Association of Petroleurn Geologists). Dashed line labeled with numeral 1 is the
bypothetical porosity profile, as well as 'path’ taken by shale element if porosity
is altered by montmorillonite dehydration below depth A. Note that porosity
increases between depths A and B. Path 2 correspond to the hypothetical
situation in which the shale element becomes ‘isolated’ at som~ depth, i.e., to

Megara's state of ‘compaction disequilibrium’.
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suggest that montmorillonite dehydration should be seriously considered as an

agent of overpressuring and ‘'compaction disequilibrium’.

We emphasize that there is no wmechanical reguirement for
montmorillonite dehydration at depth to cause overall expansion or ‘rebound’
of strata; in fact, such expansion seems mechanically very unlikely. We agree
with Magara (1975a) that "the rebounding of a large sediment mass” would
present “a difficult problem in geologic understanding.” The redistribution of
mass--with concomitant porosity change and probable overpressure
development--that occurs when montmorillonite-bearing shales undergo
dehydration is likely to cause localized deformation (probably brittle

fracturing), but, in all likelihood, no large-scale strain.

The potential rapidity of pore-pressure buildup due to montmorillonite
dehydration may have important implications for our understanding of the
origin of 'Mississippi Valley-type' Pb-Zn deposits. These deposits, which are
associated wit.h~ sedimentary basins, are commonly considered to have formed
as a result of basin dewatering (e.g., Dozy, 1980). Recent theoretical
considerations by Cathles and Smith (1983) make it quite clear that the basin-
dewatering mechanism can be valid only if dewatering occurs in an unstable,
'pulsatory’ fashion, with fluid-flow rates much greater than could occur during
'steady’ basin dewatering. Therrnal constraints indicate that the source region
for the dewatering pulses must be at a depth of 3-5 km (Cathles and Smith,
1983, p. 991). Interestingly, this depth interval coincides with the depths at
which most montmorillonite dehydration occurs (e.g., Hower et al., 19786).
Montmorillonite dehydration, with the concomitant pore-pressure buildup and
release, could therefore supply 'pulses’ of hot fluids. We suggest that this may

well be the underlying mechanism responsible for genesis of Mississippi Valley-
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type Pb-Zn deposits.

8. SUNMMARY

We bhave derived fundamental equations necessary to describe
overpressure development in shales, considering mechanical compaction,
thermal expansion of pore fluid, and montmorillonite debydration as potential
causes of overpressuring. We then estimate the relative importances of these
mechanisms. Rapid loading, together with low permeability, may be eflective
in causing pore pressure to increase at rates up to the rate of increase of
overburden pressure. Thermal eflects need not be invoked to explain
overpressuring rates of such magnitudes, but could be important in achieving

even faster overpressuring.

We estimate the eflect of montmorillonite dehydration on porosity and
pore pressure in a shale mass by detailed consideration of the dehydration
process, in which adsorbed water is released into the pore spa;ce. undergoing a
change in density. This process has the potential to cause very rapid
overpressuring and increase in porosity, possibly leading to episodic buildup
and release of overpressures This could play a critical role in the origin of

Mississippi Valley-type Pb-Zn deposits.
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APPENDIX A: CLAY DEHYDRATION AS A FLUID SOURCE

We can relate the fluid source strength S-—the mass of water released per
unit sediment volume per unit time--to the rate of change of grain density p,
by considering the idealized configuration in Fig. 3A-1. In the initial state, the
systern comprises montmorillonite (with adsorbed water) and pore water. We
imagine that a small mass §Mp of adsorbed water, with volume 6V, is
released, becoming free pore water. The clay densities in the initial and final
states, denoted by p} and p/, respectively, are given by

{‘_M:'Fﬁfrfg

= A-1
Ps Vit oVp (A-1a)

p{ = (A'lb)

|5

where M, and V¥, are the mass and volume of the clay and the superscripts 1
and f again denote 'initial’ and 'final’ states. If the dehydration process does
not involve processes other than release of the bound water, then M} = M and
V; = V/; hence, we can drop the superscripts. Denoting the change in clay

density pf — pi by dp,. we find after some algebraic manipulations:

_ M, 8Vg - V.6Hp

- -2
8P = =V v 6Vp) (4-2)

Fowever, 6§V = 6Mp/ pp, where pp is the densily of the bound water. Thus,

after some further rearrangement, we find:

Ve 6ps
M 6
= . Vs (1 + _ﬁ_s_
PB pPB

6Mp = (A-3)
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Noting that M, = V,p/, this becomes, after dividing by W, the total volume in

the final state:

Y
§Mp W o
7 (A-4)
Bi _ (34 80%,
PB P
or
—o!
Gga _ f(l ¢/ ) 6ps (a5)
B _(1-¢)ep,
P

where ¢/ is porosity in the final state. Dividing by ét, the time increment for
the bound-water mass §Mp to be released, and taking the limit of infinitesimal

mass transfers, we find

1 DMp PB Dp,
S = — = Y(1=¢) — A-8
Vi Dt (p, -pB AC2 Dt (4-6)

This result is independent of the details of how the released fluid is distributed.
Eqn. (A-6) should be generally valid for any dehydration reéction involving
release of adsorbed water. (Note that we have not considered here other
phenomena, such as potassium fixation by the clay (cf. Perry and Hower, 1970)
that are probably an integral part of the montmorillonite-illite transformation

process.)
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APPENDIX B: DENSITY OF BOUND WATER IN MONTMORILLONITE

The issue of whether pg, the density of bound, or adsorbed, water in
montmorillonite, is greater than the density p, of free water, has been the
focus of considerable disagreement among petroleum geologists. For example,
Burst (1969, p. 82) argued that when only two adsorbed monolayers of water
were left on montmorillonite surfaces, pp would exceed p,. In contrast, Kunt
(1979, p. 203) has stated flatly that "the water between the smectite layers
[i.e., the adsorbed water] has a lower density than the water in the larger
pores” and that "statements in the literature that clay mineral dehydration

causes abnormal pressures are erroneous."”

The divergence of opinion as to whether or not pp is greater than p,
seemns to stem from confusion about experimental data on the subject. Kunt
(1979) states that the data of Anderson and Low (1958) prove that pgp <pp. In
fact, a careful examination of their data shows that Anderson and Low
determined pp only for water/clay ratios greater than ca. 1 g H;0/ g clay.
This corresponds (cf. Martin, 1962) to adsorbed water thicknesses of more than
ca. 10 monolayers. Martin's (p. 32, Fig. 1) review of adsorbed water-density
determinations for a sodium montmorillonite indicate that for waler contents
less than ca. 0.4 g H,0/ g clay-that is, for adsorbed-water thicknesses of ca.
4 monolayers or less--the adsorbed water density is greafer than that of free
water. These last few monolayers are presumably released during the
montmorillonite-illite transformation; any additional bound water will probably
have been gradually lost during burial (Burst, 1969). Hence, we are justified in

taking pg >p, during the dehydration process.
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NOTATION

b reciprocal of scale length in porosity us. depth relationship
J  superscript denoting ‘final state’

g acceleration due to gravity

h  sediment thickness

i superscript denoting ‘initial state’

k permeability

Mp mass of adsorbed water in montmorillonite

M; mass of free pore water

M, mass of clay grains

My total mass of clay-water system during dehydration

P pore-fluid pressure

S fluid source strength (mass of water released per unit sediment volume per
. unit time)

t time

t, time for initially hydrostatic pressure to reach lithostatic due to clay
dehydration

T temperature

u, velocity (i.e., volumetric flux) of pore fluid

u, velocity of sediment grains

YV  sedimentation rate

Vg volume of adsorbed water in montmorillonite

Vy volume of free pore water

V. volume of clay grains

Vr total volume of clay-water system during dehydration

vertical coordinate



»
Pa
Py
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sediment 'compressibility’

thermal expansivity of fluid

fluid compressibility

magnityde of geothermal gradient

denotes small change in parameter, e.g., §ip
viscosity of pore fluid

density of adsorbed water in montmorillonite

density of pore fluid

Pm =py@p+p, (1-p) sediment density

Ps
Pe

A
[

clay-grain density
density of sediment at the sediment surface

Ps — Py

confining pressure, approximated as equal to overburden pressure

= U —-p eflective pressure

L 4

Po

porosity

porosity at sediment surface
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CHAPTER 4
PHYSICAL PROCESSES IN ACCUMULATING SEDIMENTS
II1: FLUID FLOW AND PORE PRESSURE IN
COMPACTING SAND-SHALE SEQUENCES

ABSTRACT

We present simple mathematical models to examine the nature of fluid
flow and pore-pressure development in compacting sand-shale sequences. This
study differs from most previous work in that we explicitly consider flow along
bedding as well as flow normal to bedding. We show that when relatively
permeable sand units have easy hydraulic connection to the sediment surface,
water expelled during shale compaction should often become funneled along
these sands. Such flow—the magnitude of which is controlled by a number of
geometrical and physical parameters, particularly strata thicknesses and
permeabilities—could have a major effect on hydrocarbon migration and

overpressure development within sedimentary basins.

1. INTRODUCTION

Fluid flow in compacting sediments is widely considered to be of critical
importance in hydrocarbon migration and concentration (e.g., Hunt, 1979) and
in the genesis of certain types of Pb-Zn deposits (e.g., Dozy, 1970; Cathles and
Smith, 1983). Much attention has been focussed on shale dewatering,
especially in connection with the development of overpressures, with
mathematical models of varying complexity presented by a number of workers,
including Bredehoeft and Hanshaw (1968), Smith (1971, 1973), Sharp and

Domenico (1976), Bishop (1979), and Keith (1982). These models have all
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focussed on the highly idealized case of pore-pressure development within
bomogeneous, laterally extensive shale units. In all of these models, as an
inevitable by-product of the assumed geometry, fluid flow must be assumed to
be only vertical, i.e., normal to bedding. Although such models have certainly
aided our understanding of pore-pressure development in sedimentary basins,
they are limited by their inherent geometrical simplifications. Features such
as alternating sand and shale units, as well as the nonuniform thickness of
these units, may strongly affect the direction of fluid flow. Magara (1976) has
considered the effect of nonuniform strata thicknesses on fluid flow in sand-
shale sequences, presenting estimates for the permeability contrast between
interlayered sands and shales that would result in volumetrically important
lateral flow within sand units. In this chapter, we have significantly extended
Magara's work. We consider a range of idealized geometrical configurations of
interbedded sands and shﬂes in order to better defilne the way in which fluid
flow and pore pressure in accumulating sediments will be affected by material
inhomogeneities. We also discuss the implications of our model for

hydrocarbon concentration.

2. ANALYSIS

Excess-pressure development in the presence of lateral fiow in sands

As mentioned above, earlier models of pore-pressure development in
accurnulating sediments have begun with an idealized geometry, one in which
fluid flow is only in the vertical direction, i.e., normal to bedding. This should
be a very good approxirnation for homogeneous sediments far from basin
margins or other structural discontinuities; it will probably be inadequate,

however, for sequences of interlayered sands and shales (Magara, 1978) or in
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the vicinity of steeply dipping, permeable fault zones (cf. Bell and Nur, 1978).

The limitations of the one-dimensional compaction model may be
quantified, in an approximate fashion, by considerations of flow in a simple
‘two-dimensional’ sedimentary sequence, as shown diagrammaticelly in Fig. 4-
1. A shale of thickness d,, overlies a sand{ layer of thickness I; the sand in turn
overlies a shale layer of thickness d;. The layers are assumed to be horizontal.
Vertical structural boundaries of some specified width w and permeability
exist at z=L and z=-L. It may be convenient to think of these as permeable
fault zones (cf. Seeburger, 1981); however, their exact nature is not critical for

our analysis.

Localization of flow along °‘sandy’ units could serve to ‘focus’ and
concentrate hydrocarbons. In order to better understand such phenomena, we
must address two important, related questions in regards to lateral flow

through relatively permeabie strata:

i) Can excess fluid pressure develop in such 'sandy’ units during lateral
flow, and if so, of what magnitude?
ii) What is the relative proportion of water expelled during shale

dewatering that flows laterally through such 'sandy’ units?

We begin by determining approximately the conditions under which
excess pressure development is possible within relatively permeable units. A
simple model for fluid pressure development associated with lateral flow in
‘sandy’ units may be readily developed. Referring to Fig. 4-1, we consider the
case in which all water expelled during dewatering of the lower shale must

migrate laterally through the overlying sand, then upward along the

tFor convenience, we will refer to all relatively permeable units in the sedimentary section,
regardless of actual lithology, as 'sands’.
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Figure 4-1: Coordinate system and generalized geometry of interbedded shales
and sands with vertically dipping ‘boundary zones'.
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boundaries at L and —L. (In some sense, therefore, we are treating the sand
layer as a confined aguifer.) The upper shale is considered to be impermeable.
Clearly, this will overestimate the tendency for excess-pressure development
in the sand; nonetheless, it permits us to reach some important

generalizations by dimensional arguments.

A further simplification will be to assume that the sand layer has constant
properties during dewatering of the underlying shale; in other words, we
assurme that !, as well as the sand porosity and permeability, do not change.
This may at first appear to be a physically unjustifiable assumption, given the
nature of the studyﬁ after all, we are irivest.igating compaction. However, the
constant-properties assumption should not lead us far astray as long as we
restrict our attention to fluid-pressure development on time scales short
enough that the sand properties would not change significantly. (In fact, the
constant-properties assumption should generally lead to underestimates of
fluid pressure in the sand, because decreasing porosity and permeability, for a
specific shale-dewatering flux, would tend to inhibit fluid escape, thereby

enhancing any overpressure.)

An equation describing fluid pressure in the sand layer may be written
once we realize that the water expelled from the underlying shale may be
characterized, in the mathematical sense, as a continuous fluid source R(t),
the mass of fluid expelled upward per unit time and unit area of sand-shale

interface. The mass conservation relationship for the sand is therefore

2erp) = - o+ EEL (1
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where

Py = fluid density

¢ = sand porosity

t, = volumetric flow rate of fluid

t = time

We now assume that pore-fluid flow along the sand layer can be described

by Darcy's law, viz.:

k&.é& (2)

PUsr == u 0oz

where

P = pore pressure

k.ang = permeability of sand

4 = viscosity
We have implicitly assumed in Eqn. (2) that the sand is not deforming, in
accord with the constant-properties assumption as elaborated above. We also
assume that the fluid density will be a function only of pore pressure, i.e., we
neglect thermal effects aﬁd salinity gradients. Hence, the equation of state of

the pore fluid can be written as

8
‘f}'= Brpy (3)

where 8, is the fluid compressibility. Using Egns. (2) and (3) in (1), holding
sand properties constant, and neglecting terms of O[(8p/8z)?), we find a

diffusion-type equation for p,eng. the fluid pressure within the sand layer:

OPusnda . azpcmd + R(t) (4)
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where Cegng = Ksana/ M98y is the hydraulic diffusivity; other symbols are as

defined above.

A simple physical model permits us to express R(t) in terms of more
readily identifiable parameters. First, we note that the total fluid mass that
potentially can be expelled from the lower shale is limited by the ‘initial’ values

of the shale's thickness and average porosity, viz.:
{R(t)dt = d, %0, ()

where d; and & may be considered the 'initial' thickness and average porosity,
respectively, for the lower shale. (The choice of 'initial’ values is arbitrary as
long as we ‘do not choose an ‘initial' time for which the lower shale is
completely dewatered. We have implicitly assumed, of course, that the shale

will become compacted and dewatered due to continued sediment loading.)

It seems physically reasonable that R(t) should be a decreasing function
of time; after all, fluid expulsion must cease as porosity is reduced to zero.
Assuming, for simplicity, that. R(t) x e*/*, where T is a characteristic time
scale--say, the duration of sedimentation--and using Egn. (5), Eqn. (4) can be

rewritten as

OPsond _ 0°Duand 4@, 1\ _tse
ae - oemt gz + (G e ©

The form of the source term on the right-hand side of Eqn. (8) clearly shows
that the effect of the dewatering source on fluid pressure in the sand depends
strongly on the relative thicknesses and porosities of the 'source’ and ‘sink’

strata, as well as on the time scale T over which dewatering occurs.

Recasting Eqn. (8) into dimensionless form leads us to an estimate of a

‘eritical’ permeability for significant overpressures to develop within the sand.
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We adopt the scalings

P=prgdy, B
=Tt
z=LY

where g is the acceleration due to gravity and dimensionless variables are
denoted by tildes. The characteristic pressure chosen is the hydrostatic
pressure at the depth of the sand layer. Using these scalings in Egn. (8), and
recognizing that L%/ ¢ = 1, the characteristic time scale for excess-pressure

diffusion, we find, after some rearrangement:

i 32‘5 L2 d; : -(—H'
( bt ( ) (= )(;J;Tu;') (7

There are clearly two characteristic time scales in the physical system,
viz.,, T and 74. For times T > 74, pore pressure in the sand layer: will be in a
quasi-steady state, changing very slowly only because the source term varies
slowly with time. Because the value of the exponential term cannot exceed
unity, we see that the fluid source will have a major influence on pore pressure

in the sand when

1t (&, é
Goma? T e >

Therefore, when water expelled from a shale unit is concentrated within, and
flows laterally along a relatively permeable sand unit, significant overpressures

are likely to build up within that sand if ka4 satisfies the condition

km<k1—(d')(p—L)gduT L? (8)

For sand permeabilities in the range ca. k; <k,q,g <10k,, some overpressuring
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will occur, but not of large magnitude. Overpressuring will be essentially

negligible for kegnq > 10k;.

Importance of lateral fluid flow during sedimetn compaction

The dimensional arguments presented above indicate that if a sand layer
acts as a 'confined’ aquifer--funneling along itself all water expelled from
underlying compacting shales—-then, under appropriate conditions, significant
overpressures may develop within that sand layer. In making those arguments,
we assumed that all of the water expelled by compaction of the underlying
shale would flow laterally along the sand layer. We now rust address the issue
of the actual quantitative importance of flow through such a layer, relative to
the flow normal to stratification. We proceed by assuming that some fraction f
of the water expelled from the lower shale (see Fig. 4-1) will travel laterally
through the overlying sand layer, then upward along the vertical ‘fault’
boundaries. The remaining fraction (1—f) of the water expelled during
compaction of the lower shale will 'leak’ upward through the upper shale. The
fraction f may be expected to be a complex function of parameters such as
thicknesses and permeabilities of the various rock units. Our goal here is to

determine that function in an approximate fashion.

We will assume, for simplicity, that flow is in a quasi-steady state.. This
should be velid as long as we consider only time scales small compared with T,
so that R(t) is nearly constant. The fluid pressure in the sand will therefore
satisfy the equation (cf. Eqn. (4)):

%P an
TPems _ _p (S (2

oz (9)

1
c ———
¥We bave implicitly assumed here that ! &d,, and { << L, so that variation of

Psand 1D the z-direction is negligible in comparison with the variation along z.
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Because the sand layer and vertical boundaries are hydraulically
connected, we cannot solve for p,,.q independently of pg. the fluid pressure in
the boundary zones (although the solution for pp itself will not be needed
later). Assuming that the vertical boundaries may be treated as zones of finite
width w and permeability kp, pp will satisfy the equation (for the assumed

quasi-steady state):

8%pp _
8z% (10)

The dependence of pp on = may be safely neglected as long as w « d,.

The boundary conditions needed to complete the specification of the

lateral flow problem are

i) OP;:" (z=0)=0

ii) pp (2=0) =0

0 : o
iii) ~keang!l pa':‘d (z=L) = kpw :B

(z=dy)

The first boundary condition expresses the assumed symmetry (equal flow
towards both vertical boundaries); the second is the usual free-surface
condition on pressure; the third expresses flux continuity between sand layer

and boundary zone. We find that the fluid pressure in the sand layer is given by

Prma(2) = |py + 1 (P DEED DG GED |4+ (12)

c

+7 (——)(—-)( S (g2 - a?)

This solution allows us now to compute the lateral and vertical fluid fluxes. The

net lateral fluid flux through the sand per unit 'width’, &, is given by
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_ Ckegndg! OPeand (z=L)

& = “ Bz =
or
27,81
Q = 222 = (12)

In order to examine the magnitude of the 'leakage’ from sand to overlying
shale, we must also consider the fluid pressure in the upper shale. Although a
‘complete’ solution for this pressure, in the form of a Fourier series, could be
found by solving the appropriate boundary-value problem, such a solution
could not easily be used to calculate the quantity of most interest to us,
namely, the vertical fluid flux through the shale. This flux may be determined

approximately, however, by an averaging technique. Let
L

<p,> = (1/2L) f P.(z)dz be the average excess pressure in the shale; <p, >
=L

will be a function of z, but not of z. Using Eqn. (11), we find that the average
excess pressure along the sand-upper shale interface, denoted by Tp, >, is
given by

_ Jdidul
R

2 + L (13)

kgw = 3l kyang

P>

This must equal the drop in excess pressure as fluid goes from z = d, to z = 0.
This pressure drop causes an upward volumetric fluid flux <g,> given by

Darcy's law as

d<p,>

=L

'I'his expression can be integrated to give another expression for <p;>:

4
_ <gs>
Pe> = “’{. Kanate () ¢ (14)
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However, if pressure in the shale is at a steady state, as we have assumed,
then, ignoring the very minor effect of fluid compressibility, <g,> will not vary

with 2. We may therefore write

<
W=u<9.>,{ —_L—k:,.(t) (15)

The net upward fluid flux through the shale per unit ‘width’, Q,, is therefore

given by

Q =2L<g,> = 2L D (18)
“f kum(()

As the final step in deter;nining Q:. we now assume that
kpae(2) = koc-""’ (see the Appendix for a discussion of this assumption).
Using this assumed functional form for kunaie (2) in Egn. (18), along with Eqn

(13), we finally find

BrkdGL® qse| 1 |

TZg kgw = 3lkeens | (17)

&=

This must be equal to the fraction of the total dewatering flux that does not

flow through the sandy layer, viz.:

Q= - (18)

Equating Eqns. (17) and (18), we finally solve for f:

-1
s ={1+<;"T)e"~"° [‘%‘:ﬁ’*‘aﬁ"k:j* ] (19)

As expected, f is a complex function of geometrical parameters, as well as of
the permeabilities of the various units. For f >0.5, lateral flow through the

sandy unit will predominate over vertical flow through the upper shale. This
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condition is met when

£ k L k
(e <——a<é—>+<§a<k ° (20)

send

Consideration of two limiting cases casts light on the meaning of the
criterion expressed by Eqn. (20). First, consider the case of 'very permeable’

boundary zones. By 'very permeable’, we mean (cf. Eqn. (19))

(T < (D (=

or

kp 31, ,d
o > Cu? (2

In this case, we have

k PP
(14 (D (™ (21)
and the condition for horizontal flow to predominate is kguaq > aky where
a=(L/3L)(L/ zo)e-*‘"“. independent of the bdundary-zone width and
permeability. We see that the tendency for lateral flow to predominate will

increase as (L/1) and (L/ zg) decrease.

The other limiting case is that of 'low permeability’ boundary zones, i.e.,

those for which kp is small enough that

kp 31
P (T (=
In this case, we find
-1
I~ 1+(;L:)(%—)(;%°—)e-‘“"° (22)

and the condition for predominance of lateral flow becomes kp < yko, where
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y=(d,7w)(L/2p) e &/ %o independent of sand thickness and permeability.

These two limiting cases are illustrated .by Figs. 4-2a and 4-2b, for the
'very permeable’ and ‘low permeability’ cases, respectively. The values of f
were calculated using L = 10 km, dy, =1 km, ! = 100 m, and w = 10 m, and two
plausible values of k, (see the Appendix). For these parameter values, the
‘very permeable’ and 'low permeability’ conditions become kg/ kggng >> 3 and
kp/ kegng K 3, respectively. Other geometrical parameters would clearly lead to
different numerical results, but the cases illustrated should allow us to reach -

some general conclusions:

i) In the ‘'very permeable’ boundary case, for typical reservoir sand
permeabilities, a very large fraction of the water expelled during clay
compaction should flow laterally through sand layers.

ii) Even for 'low permeability’ boundaries, lateral flow is likely to be
volumetrically significant for boundary-zone permeabilities in excess of
ca. 100 udarcy. Boundary zones must have permeabilities substantially
less than those of typical reservoir sands for lateral flow to be essentially

eliminated.

We also recall (cf. Eqn. (8)) that for certain limited conditions, not only
will lateral flow within the sand predominate over vertical ‘leakage’, but this
lateral aquifer-like flow will be accompanied by significant overpressures. The

conditions for such to occur may be expressed as

ako < kggng < k) (‘'very permeable’ boundary) - (23a)

keana < ki kg < Ykp ('low permeability’ boundary) (23b)

These limiting cases are shown schematically in Figs. 4-3a and 4-3b,

respectively. In general, there should be at least three different flow/pore-
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Figure 4-3: Generalized diagram showing the three flow-pressure regimes likely
to be found in interbedded sands and shales. See text for explanation.
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Figure 4-3a: Very permeable boundary case.
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Figure 4-3b: Low permeability boundary case.
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pressure configurations possible when sandy layers occur within dominantly

shale sections:

Region 1-Fluid flow is predominantly upward, even in sandy layers;
overpressure development within the entire sedimentary section may be
treated approximately by a one-dimensional compaction model that
accounts for the different hydraulic properties of sand and shale.
Region II-Flow within sands tends to be focussed laterally, but little or no
overpressuring occurs within those units; overpressuring in the underlying
shales should be inhibited by the availability of the high-permeability flow
path through sands and permeable conduits.
Region IlI-Flow in sands is focussed laterally; significant overpressuring
occurs within these layers. Overpressuring in the underlying shales is
therefore also probable.
For permeabilities in regions II and IIl, a one-dimensional compaction model of
pore-pressure development in the underlying shale will be a poor
approximation to physical reality unless the boundary conditions at the sand-

shale interfaces are carefully and explicitly considered.

To calculate a value for k;, the maximum sand permeability for there to
be large overpressures within the sand, we assume that the lower shale is
characterized by d; = 1 km and & = 0.25. The characteristic time 7 should be
on the order of the time for most of the shale porosity to be eliminated; we will
use T=10 Ma, perhaps an underestimate. Taking p, = 10%kg/m3
g=98m/s? u=5x10"* Pa s, and L, I, d, as above, we find
k, = 4x10"'"m®? =40 pudarcy. Thus, overpressuring in the sand would be very
large only for k,gg4 <ca. 40 udarcy, and practically negligible for

keang > ca. 400 udarcy, a value less than the permeability of many reservoir
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rocks (e.g., Magara, 1971). We therefore conclude that for the particular
geometry considered in our calculations, lateral flow through sands will often
be volumetrically very important, but rarely accompanied by significant
overpressures. Considering again Figs. 4-3a and 4-3b, this means that region III

should generally be very small in comparison with region II.

Estimates of the bounds on regions 11 and Il could be made for other
combinations of geometrical parameters, but the essential qualitative
conclusions of our approximate analysis of the two-dimensional flow problem

would not be changed. To summarize:

i) As long as 'sandy’ units are in hydraulic communication with relatively
permeable, cross-cutting zones, lateral flow within these units of the fluids
expelled during shale compaction is likely to be of major importance
throughout sedimentary-basin development. Some faults could serve the
role of permeable conduits.

ii) The importance of lateral flow will increase as the distance between
permeable, cross-cutting zones decreases. Furthermore, lateral flow will
be of greatest irhportance for relatively thick, deep sand units.

iii) Development of overpressures within sand layers carrying a large
lateral fluid flux will probably occur only for sands with permeabilities less

than those of most reservoir rocks.

Effect of sand-shale interiayering on fluidflow direction in compacting shale

In the preceding part of our analysis, we have considered the way in which
a sandy layer at depth may ‘'focus’ water expelled by compaction of underlying
shales. It seems intuitively clear that such a sandy layer could affect hydraulic

conditions in the overlying shale as well. If the sand is sufficiently permeable,
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and if cross-cutting permeable conduits are sufficiently nearby--or if the dip of
the strata results in the sand cropping out at the surface~water expelled by
compaction of the overlying shale might migrate downward into the sand, along
the sand layer, and finally upward along the permeable conduits. We can

quantify this tendency in an approximate fashion, as developed next.

Referring to Fig. 4-4, we assume that an excess pressure p,(z.z) exists
within the upper shﬂnle; this excess pressure may be imagined to have
Qeveloped as a result of compaction and, perhaps, other processes, such as
clay dehydration. Imagine now a volumetric flux g, moving vertically upward
through the shale as a result of this excess pressure. For steady flow, the
pressure drop Ap, in going from (z,z) to (z,0) will be (assuming, for simplicity,

that u is constant)
. ,
a¢l
bpy = qui [ =yt pr9t (24)

where the first term on the right-hand side of Egqn. (24) is equivalent to
4

Pe(z.2). We can think of the quantity f ko, (¢)d ¢ as a *hydraulic resistance’;
. . 0

the greater the hydraulic resistance, the smaller the fluid flux that can be

moved through a specified pressure drop.

We now imagine a fluid flux g, taking a different path to the surface (see
Fig. 4-4), namely, downward to the sand, along the sand to the cross-cutting
conduit, and finally upward through that conduit. Proceeding as above, we find

that the pressure drop will be given by

« L “
_ d¢ d¢ 2
SO IE S N Vil wom I e s e = (2

However, the pressure drop must be independent of the path taken by the
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Pigure 4-4: Effect of sandy layers on flow direction in overlying shales. In the
part of the shale between the dashed line and the sand-shale interface, water
expelled during compaction tends to flow downward into the sand layer, then
laterally, and finally up along the permeable boundaries.
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fluid; Le., Ap, = Ap,. We therefore find that

—4df —a¢ - S _da&
W o e ® +,[ P Ty (26)

If the total hydraulic resistance for the flow path involving the sand is less
than the hydraulic resistance for the simple upward flow path, then g, will be
grater than g,: the ’lateral’ migration path will then be favored. In other
words, water expelled by compaction of the upper shale should tend to migrate

‘downward’ and 'laterally’ if

f — ’f ) *f — f e (&7

Some feeling for the meaning of this criterion may be gotten by
appropriate simplifications. We assume that k¢ and kp are constants. We
again assume that kg g, (z) = koe ®/*°. We can therefore rewrite the criterion

Eqn. (27) as

(28)

Zo , s./3, _.\_ %o g®u/ %0 _ %/ (L-=zx) d,
Eo D= g e e O e ' E

where 2. is the ‘critical’ depth within the shale below which expelled water

tends to flow into the underlying sand.

We now assume that kg << kp, i.e., that the vertical 'conduits’ are
relatively permeable, and that kg is less than kygng. If L/ zg is small compared
to k,gne” ko—a likely condition for plausible geometries and permeabilities--
then, after taking logarithms and rearranging, we may approximate Eqn. (28)

= [m(1 + e™/%) —ln2] (29)
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We suggest in the Appendix that 2y is probably no more than a few hundreds of
meters. Thus, if dy =ca. 1 km, then e™/% 5 1, and we can further

approximate Eqn. (29) as
2. =dy —25ln2 (30)

In other words, for the ’slice’ of the upper shale unit lying roughly between
2=d, and 2 = d,; — 2g1n2, water expelled during compaction will tend to
move downward, then laterally through the relatively permeable sand. Within
that slice, the availability of the ‘alternate’ flow path involving the sand will
tend to inhibit overpressuring. (We likewise expect overpressures within the
sand to be small.) This is in qualitative agreement with numerical results of
Smith (1871, Tables 5-7), which indicate downward flow in the lowermost part of
a shale unit underlain by "normally pressured” sand, and agrees with
conceptual models reviewed by Hunt (1979, pp. 221-25). In the part of the
shale unit above the depth 2., and at a distance greater than ca. d,, from the
permeable boundaries, fluid flow and pore pressure may be adequately
described by a one-dimensional compaction model, with the boundary
condition at 2 = 2z, being, to a first approximation, that excess pressure
vanishes. Furthermore, shales in the vicinity of relatively permeable sand
layers will tend to compact more rapidly than shales at the same depth but
not hydraulically connected to sands. This may cause porosity vs. depth
relationships to vary spatially within a single sedimentary basin (Teslenko and

Korotkov, 1967).

The major results of our analysis of fluid flow and pore-pressure
development in laterally extensive, sand-shale seguences are conveniently
illustrated with the aid of Fig. 4-5. Our analysis indicates that when permeable

sand layers exist, and are hydraulically connected to permeable, cross-cutting
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conduits, much of the water expelled during compuction of the sedimentary
section should tend to become funneled along these sand layers and conduits.
Vertically directed flow during compaction might be restricted to the

uppermost shale section.

3. DISCUSSION

Many of our conclusions about directions of fluid flow in sand-shale
sequences will not be surprising to petroleum geologists, who have reached
many of the same qualitative conclusions without mathematical models (see
e.g., the review by Hunt (1979, pp. 221-32)). Our analysis has provided semi-
quantitative guidelines to help estimate the fraction of the water expelied from
compacting shales that becomes concentrated in lateral flow along sand units.
This analysis has shown how the magnitude of this flow depend upon various

geometrical and physical parameters.

Our analysis indicates that for many plausible geometries and
permeabilities, a large fraction (often greater than one-half) of all water
expelled during shale compaction is likely to become funneled laterally along
sand layers. This could result in conditions very favorable for hydrocarbon
concentration within such sand layers. One sornewhat paradoxical point,
however, is that lateral funneling and concentration of expelled fluids will tend
to be unimportant unless these fluids have relatively easy access to the
sediment surface (cf. Figs. 4-2a and 4-2b). In this case, it is diflicult to
understand how hydrocarbons could accumulate within deep sand layers; they
should tend to continue migrating upward to sand outcrops or along ‘fault’
zones. Although this certainly does occur in some places, trapping at depth is
probably more common. There may be explanations that avert the apparent

paradox, however:
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i) The permeability of boundary zones—possibly physically represented by
fault zones—may be large during periods of rapid sedimentation and
compaction, then fall with time due to a variety of 'sealing’ mechanisms
(e.g-. Angevine et al., 1983; chapter 1, this dissertation). Hydrocarbons
expelled into sand layers from neighboring shales could then migrate to
the boundary zones, but become essentially trapped when ‘fault’
permeability falls.
ii) 'Fault-zone' materials may have microstructural characteristics that
tend to prevent hydrocarbon penetration. For example, if the 'fault zones'
are extremely fine-grained, as are many fault gouges, then strong
capillary forces must be overcome to p‘errnit hydrocarbon penetration (cf.
Hunt, 1879, pp. 254-58).

Either of.tbese explanations, if valid, would have important implications for our

understanding of the physical constitution and mechanics of fault zones. ore

genesis,

4. SUNMARY

We have presented simple mathematical models to describe fluid flow and
pore-pressure development in compacting sand-shale sequences. When
permeable sand units have easy hydraulic connection to the sediment surface--
either through relatively permeable fault zones or along other structural
discontinuities, or by direct outcrop—water expelled during shale compaction
should often become funneled along these sands. Such flow will have a major
eflect on hydrocarbon migration and overpressure development within

sedimentary basins.
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APPENDIX: PERMEABILITY VS. DEPTH IN COMPACTING SHALES

The relationship between permeability and porosity--or between
permeability and depth--for compacling shales is not easily defined. Keith
(1982) has reviewed measured values of shale perm;ability and porosity and
shown that considerable scatter exist in the data, with no obvious, unique
correlation between the two properties. Some of the uncertainty may well be
related to different sediment compositions, as well as the measurement

techniques.

Correlations between shale porosity and permeability are usually
. expressed in the form kg, % ¢ha., where n may be as large as 8 (cf. Smith,
1971), or as kgg % eXp(M @, ). With m = B-14 (Keith, 1982; Bryant et al.,
1975). It is also well known that the porosity ¢mgqe of 'normiﬂly compacted'
shale usually shows an exponential decrease with depth (e.g., Athy, 1930;

Dickinson, 1953; Magara, 1976):

 Pehote (z) = pce™* (A-1)

where gp is a datum value and b7! is a length scale characteristic of the
sedimentary basin of interest. The relationship between shale permeability
and depth should then have a functional form such as ke = kcexp(=2/ zg).
where 2= 1/mb. The scale length 2, for permeability decrease should
therefore be substantially less than the scale length b~! for porosity decrease.
Considering that values of 5! for some basins (Athy, 1930; Magara: 1976) are in
the range of ca. 700-2500 m, it seems reasonable to suppose that zg4 will be no

more than a few hundreds of meters.

We also need to estimate the value of k¢, the permeability value at 2z = 0.

Fere we will follow the lead of other investigators inleresled in overpressure
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development (Smith, 1971; Sharp and Domenico, 1876; Keith, 1982, Sharp,
1983), who have suggested permeability-porosity and permeability-depth

relationships that correspond to kg & 0.2-50 udarcy.
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NOTATION

reciprocal of scale length in porosity vs. depth relationship

hydraulic diffusivity of sand layer
thickness of lower shale

thickness of upper shale

fraction of expelled water that flows laterally through sand layer

acceleration due to gravity

permeability of boundary zones

permeability of sand layer

permeability of shale

permeability of shale at sediment surface
‘critical' sand permeability for significant overpressuring
thickness of sand layer

half-spacing of vertical boundary zones

coeflicient in permeability vs. porosity relationship
exponent in permeability vs. porosity relationship
pore pressure

pore pressure in boundary zones

excess pressure in upper shale

pore pressure in sand layer

dimensionless pore pressure in sand layer
pressure drop for 'upward’ flow (cf. Fig. 4)
pressure drop for 'lateral’ flow (cf. Fig. 4)
laterally averaged excess pressure in upper shale
value of <p,> at sand-shale interface

volumetric fluid flux for ‘lateral’ flow path (Fig. 4)
volumetric fluid flux for 'vertical' flow path (Fig. 4)
laterally averaged upward volumetric fluid flux
lateral volumetric flow rate per unit 'width'

vertical volumetric flow rate per unit 'width’

volumetric fluid flux into sand layer due to compaction of underlying

time

dimensionless time
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characteristic time scale

velocity (i.e., volumetric flux) of pore fluid
width of boundary zones

horizontal coordinate

dimensionless horizontal coordinate
vertical coordinate

‘critical’ depth in shale below which expelled water moves downward into

scale length in permeability vs. depth relationship
(L/38)(L/zo)e W/%0
fluid compressibility

(du/w)(L/ 2zp)e
pore-fluid viscosity

du/ZO

pore-fluid density

characteristic time scale for shale dewatering
characteristic time for pore-pressure diffusion
porosity of sand

porosity of shale

porosity of ‘source’ shale underlying sand
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CHAPTER §
PORE PRESSURE IN THE EARTH'S CRUST:
EFFECTS OF UPLIFT AND TECTONIC STRAIN

ABSTRACT

We develop a formalism that describes the way in which pore pressure in
the Earth's crust is coupled to the state of stress, the temperature field, and
the strains applied to a rock mass. This formalism is valid as long as the rock
behaves in an essentially elastic manner. We apply this model to an
examination of pore-pressure history in a rock mass in two geologic situations:
during uplift, and when subjected to lateral compressive strains, such as in
rocks caught between converging plates. During uplift and erosion,
development of abnormal pore pressure in low porosity rocks is possible,
especially if such rocks also have low permeability or are surrounded by rocks
that have this property. Pore pressures either below or above hydrostatic may
develop, depending upon whether or not grain-scale stress inhomogeneities

developed during uplift lead to microcracking.

Rocks in accretionary wedges at convergent plate margins are subjected
to high compressive strain rates. We show that this strain can lead to rapid
buildup of substantial fluid overpressures. Such overpressures could be very

important in facilitating deformation of rocks in accretionary wedges.

1. INTRODUCTION

Pore pressure is an important variable that must be carefully considered
if we are to understand the mechanical behavior of the Earth's crust. The
mechanisms by which rocks deform are strongly influenced by the presence of

water, as well as by the pore pressure, with brittle behavior favored under
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some conditions, ductile behavior under others [e.g., Carter, 1978; Brace and
Kohlstedt, 1980]. A number of studies have examined the possible role of
elevated pore pressure, i.e.,, pore pressure in excess of hydrostatic, in the
origin of some common geological structures. Perhaps the best-known is the
work by Hubbert and Rubey [1959] and Rubey and Hubbert [1959] on the
mechanics of thrust-faulting. These authors proposed that the motion of large
thrust sheets would be greatly facilitated by the presence of excess pore
pressure, approaching overburden pressure, within some stratum at depth.
The potential role of elevated pore pressure in joint formation has also been

examined [e.g., Secor, 1965; Narr and Currie, 1982].

Previous studies of the mechanical role of crustal pore pressure, such as
those mentioned above, have tended to treat pore pressure as a parameter
that is essentially independent of the overall stress- and deformation state of
the rock body of interest. This is not strictly true. Various aspects of the
coupling between the stress state and fluid pressure h'ave been considered by a
number of workers, beginning with Biot [1941] and later by Rice and Cleary
[1978], Ruina [1978], and others. A fundamental result of these studies of
‘poroelastic’ materials is that, in general, stress and pore pressure are
intimately coupled, whether we consider guasi-static phenomena such as fluid
diffusion [Biot, 1941; Rice and Cieary, 1976], dynamic processes such as elastic
wave propagation [Biot, 1956; Plona, 1980], or phenomena on time scales that

overlap these categories, such as fracture propagation [Ruina, 1978].

In this chapter, we examine in detail the way in which crustal pore
pressure is influenced by its coupling to the overall stress state of a rock mass.
A formalism is developed showing that we must generally consider not only the

coupling between stress and pore pressure, but also the coupling of both of
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these to temperature and tectonic strain. In certain cases, we can find
‘approximate analytical solutions to the gow;'erning differential equations. We
apply these solutions to an examination of the history of pore pressure in a
rock mass during uplift, using our results to examine the potential role of pore
pressure in joint formation. We also apply our model to examine the pore-
pressure history of rocks in an accretionary wedge at convergent plate
margins, showing that strain-induced pore pressure could be very important in

facilitating deformation of such rocks.

2. OUTLINE OF THE ANALYSIS

We assumne that deformation due to changes in stress, pore pressure, or
temperature are essentially elastic. Obviously, tfxis approach does not permit
us to examine directly such phenomena as faulting, but does let us evaluate
changes in the physical state of a rock mass that may lead to such irreversible

phenomena. This is a8 common approach in the earth sciences.

Based on well-known models for thermoelastic materials [e.g., Boley and
Weiner, 1960] and poroelastic materials [e.g., Rice and Cleary, 1976], we
propose a simple constitutive law that includes the effects of both pore
pressure and temperature on strain and pore volume. We then examine the
way in which the stress field in a rock mass changes during uplift or as a result
of tectonic strains. This development follows Price [1968], Voight and St.
Pierre [1974], and Haxby and Turcotte [1978]. We also consider the effect of
time-dependent changes in the various elastic moduli during such processes.
This mimics, to some extent, the recent work by Bruner [in press] on crack
growth and stress development during unloading. Finally, after considering Fhe

thermal state of the rock, we arrive at a set of three coupled, partial
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differential equations for pore pressure p, mean stress G, and temperature 7T,

as well as an equation for the ‘horizontal’ principal stress g,.

We show by scaling arguments that for a number of cases of interest, the
temperature field may be essentially decoupled from the pore-pressure and
stress flelds. With suitable approximations, and assuming that the elastic
moduli are either constants or slowly varying functions of time, we can then
find analytic expressions for p and @ during the history of a rock mass. The
factors that principally affect development of pore pressure and stress are the
elastic moduli, as well as their rates of change; the rate of uplift or subsidence;
the geothermal gradient; the rate of applied tectonic strain; and, finally, the

hydrologic characteristics of the rock mass.
S. ANALYSIS

Constitutive law and field equation for pore pressure

¥e begin‘by briefly reviewing constitutive laws for thermoelastic and
poroelastic materials. We assume that the materials are homogeneous and
isotropic. In standard models of linear thermoelasticity [e.g., Boley and
Weiner, 1960], the strains &; are taken as linear functions of the stresses oy

and temperature 7T, viz.:

dﬂij
2% = 35

~ (75 (g5 dom by + adT & (1)

where

G = shear modulus
v = Poisson's ratio

a = coeflicient of linear thermal expansion
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We are using here the summation convention for repeated subscripts; o, is
thus the sum of the principal stresses. The Kronecker delta, §,;, has the usual
definition:

dy=1. i=y

60 =0, i ’j
The stresses o; and temperature 7 are measured relative to some datum, or
reference, state that may be defined as convenient. (The sign convention used
here is that tensile stresses and strains are taken as positive.) The analogous
linearized constitutive law for poroelastic materials is given by the two

equations [cf. Biot, 1841; Rice and Cleary, 1976]:

= 35y LY gp_ :
dey = 5~ (T (zgldom b + 550 (2a)
_ _40u  dp

where we may specify the reference state for p as convenient. The moduli H
and R were introduced by Biot [1941]. We bave used Rice and Cleary’'s [1978]
notation for v, the fluid volume per unit reference volume, where vg is the

velue of v in the reference state.
Proceeding by analogy with the thermoelastic and poroelastic
constitutive laws, we propose a linearized constitutive law that includes the

eflects of both temperature and pore pressure on strain and pore volume:

= 39 v v ly dp_
dtu- 2G —(1+u,(201d0u6‘j+ 34 6ﬁ+ﬂd7‘6i) (38)
d
dv = =, dp . g7 (3b)

3H R

These are similar (in a formal sense) to expressions given by Bruner [1979,
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p. 5562, Eqns. 20a and 20b]. The essential new ingredient here, as compared to
the Biot [1941] formalism, is the inclusion of a term describing the

thermoelastic effect on the fluid volume fraction.

We now follow an argument by Nur and Byerlee [1971] to arrive at a
relationship between the thermoelastic moduli « and 7. Assuming that the pore
space is continuous (that is, that there are no isolated pores), that the fluid is
chemically inert, and that the solid grains have uniform elastic properties, we
now imagine a stress state with p =-g,,/3, i.e., a state in which the pore
pressure is equal to the mean stress. We then find from Egns. (3a) and (3b),

after some rearrangement:

Eu = -%—+ ﬁ—+ 3aT (4a)
v-vg= —%—+ %'P ¥T ‘ (4b)

where K = 2(1+v)G/3(1~2v) is the rock's bulk modulus. Nur and Byerlee
[1971, p.B418] argued, on the basis of the uniqueness theorem for stress
boundary-value problems, that for this specified stress- and pore-pressure
configuration, the unique deformational pattern in the porous solid would be
one in which all linear dimensions were strained by a magnitude of p/ X;,
where K; is the bulk modulus of the mineral grains. This leads to expressions
for H and R in terms of K, K,, and vy [cf. Nur and Byerlee, 1971, p.6418;

Cornet and Fairhurst, 1974, p. 639; Rice and Cleary, 1976, p.228]:

=1 _ 1
al-2ala (5a)
1+'U°

l.1l_
K ya (5b)

If we now assume that these relationships still hold for the case in which
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thermoelastic effects are added to the poroelastic eflects—that is, if we assume
that the thermoelastic and poroelastic phenomena are independent--then we

find that a and  are related as
¥y =3vgax (8)

Recognizing that, for an isotropic solid, 3a is simply the volumetric thermal

expansion coefficient, & we can rewrite Eqn. (8) as
7 =vod ()
In other words, the thermoelastic change in fluid volume fraction would be

simply the thermoelastic volume strain multiplied by the initial fluid volume

fraction.

We now follow Rice and Cleary [1876, pp.228-29] to find a differential
equation describing the coupling between p, oy, and T. Details of the
derivation are given in Appendix A. For the spécia.l case of one-dimensional
(vertical) motion, and assuming that the moduli may be functions of time and
space, we find, to a good approximation, the following equation for small

deformations:
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Z(Bp) - —[(ﬂ B.)p=]+¢o—[(°‘ “J)T]° 8z ;T(az p’g)]

where
B=(B=8)+ ¢o(By = Bs)
B = 1/ K = rock compressibility
B, = 1/ K, = grain compressibility
B, = fluid compressibility
a, = thermal expansivity of fluid
py = fluid density
¢o = vg = initial porosity
k = permeability
M = viscosity
g = accelerration due to gravity

P. = —0p/ 3 = mean compressive stress (‘confining pressure')

and £ is a vertical coordinate, increasing downwards (Fig. 5-1). We have
assumed in the derivation of Eqn. (8) that the solid moves as a rigid body at a
speed u,. (This differs from the situation considered in chapter 3, in which u,
was generally variable in space.) The material time derivative D/ Dt, the time
derivative following motion of the solid, is defined as (e.g., Malvern, 19869,

p. 143) D/ Dt = 8/ 08t + u, 3/ 8z.

Stresses developed as a result of vertical movement and strain

We now seek another expression, in addition to Egn. (11), that describes
the coupling between pore pressure and confining pressure. The way in which
the stress state of a rock mass changes during uplift has been considered by

several previous workers [Price, 1966; Voight and St. Pierre, 1974; Haxby and
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Figure 5-1: Uplift on a sphere of radius R,, after Haxby and Turcotte [1976)].
The original surface (short dashes) is imagined uplifted by a distance §R, to the
surface indicated by the long dashes. After erosion and isostatic compensation,
the surface lies at the position indicated by the solid arc, with a net change in
radius of 6R,. The ‘"downward’ coordinate 2z is measured from the instantaneous

surface.
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Turcotte, 1976; Bruner, in press); these earlier studies have considered the
effects of changes in overburden load and temperature, as well as isostatic
eflects. We present here an essentially parallel development, including in

addition the effects of changes in pore pressure and tectonic strain.

We again assume that the rock mass of interest is homogeneous and
isotropic. ‘We further assume that the rock is initially free of deviatoric
stresses. Considering uplift on a spherical Earth (Fig. 5-1), we can express the

elastic strains parallel to the sphere's surface as

dey = (%dah - L do, + 5%4» adT (9)

where

£p = 'lateral’ (i.e., circumferential) strain
o, = vertical stress
o) = lateral stress

E = 2(1+4+v)G = Young's modulus

We' bave implicitly assumed that stresses and strains are uniform in the
azimuthal sense; hence, we need consider only a single ‘lateral’ stress or

strain.

Egn. (9) can be inverted to yield an expression for dg,, the change in

lateral stress, as a functionof d¢,, do,. dp and d7:
_(_E v —(=E _y(dp_
do, (T—_V—)de“ +(-IT-V—)dO'|, (I-U)(SH + adT) (10)
We can also write an expression for dG =d o,/ 3:
_e, F 1,1+v _2, F dp
do = —3—(T:)d£h+ 3(_1——11-)‘10" '3—(1—:—”% 35 + adT) (11)

Eqn. (11) indicates that lateral strain, e.g., regional compression, will generally
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be coupled to pore pressure, in that both will affect the stress state. In some
cases, as we will show later, this coupling may be substantial, leading to pore

pressures significantly in excess of hydrostatic.

When the moduli are constant, Eqns. (10) and (11) lead to a relatively
straightforward epproximation for the stress state during unlﬁding {or
burial), if sufficiently simple functional forms are assumed for ). 0,,.p, and T
[cf. Price, 1968; Voight and St. Pierre, 1874; Haxby and Turcotte, 1976; Bruner,
in pfess]. In the general case, with the moduli not constant, it is more
ﬁlmtrative to express Eqns. (10) and (11) as differential equations. Recalling
that we have focussed on the change in stress state of a rock mass

Jolowing the motion of that mass, we can write

B B Hbtre K B
a,,1-2v, DT
—'(F')( =
Ds, _ 1- 2v\ DE» _ 1- 2v\ g - ﬁa\
el Sy (—) (=peV + (T Dt+ (13)
+(g ( 2U)DT

where p, = —7 is the ‘confining pressure’ and s, = -o, is the lateral
compression. We have assumed that the radial, or vertical, position of the rock
mass changes at a rate V, taken as positive in the case of uplift, that erosion
keeps pace with uplift, and that [cf. McGarr and Gay, 1978, p. 419] g, is simply

given by the overburden load, viz.:

o,(z) = -pgz  and D;t" =pgv

where 5 is the average density of the overburden. We have also re-expressed

the moduli £ and H in terms of v, 8, and 8,.
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‘Thermal state of fluidfilled porous rock

In order to to complete our description of the physical state of the rock
mass, we need to determine the way that temperature changes during uplift.
The thermal energy equation, derived in Appendix B, may be expressed to a

good approximation as

s 8T _ . O°T .~ 8T  prCiTk 8 8p

where

Pm = ps (1—¢) + p,p = density of fluid-saturated rock
Ps = grain density

f’,,, = specific heat of fluid-saturated rock

E', = specific heat of grains

5} = gpecific heat of fluid

PC =p, (1-9)C, +psoly

k,, = thermal conductivif.y of fluid-saturated rock

The left-hand side of Eqn. (14) describes the net accumulation of thermal
energy. On the right-hand side, the first term describes heat conduction, the
second term gives the heat advected by the saturated rock, and the last term
describes heat advection due to fluid flow relative to the solid framework. Eqn.
(14) implicitly neglects thermoelastic heating, which can be shown to be
negligible [Boley and Weiner, 1960], as well as the energy involved in
irreversible processes such as crack growth [cf. Bruner, 1979, pp. 5580-81].
Crack growth is likely to have a very important eflect on stress history during
unloading [Bruner, in press]; in the present analysis, this eflect is included in

an approximate manner through the variability of the elastic moduli.
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_ By combining Egns. (8), (12), and (14), and choosing simple functional
forms for £,(t) and the time-dependent moduli, we can solve for the stress,
pore pressure, and temperature in a rock mass during uplift or as a result of
tectonic strain. This is greatly simplified by the fact that for reasonable rates
of uplift, the last two terms on the right-hand side of Eqn. (14), related to
advected heat, are negligible, as we show in Appendix B. The thermal energy
equation then becomes effectively decoupled from the equations for p and p,.
Furthermore, as also shown by the scaling arguments in Appendix B, for depths
of <ca. 10 km and typical uplift rates of a few hundreds of meters per million
years, the rock will cool or heat sufliciently rapidly that an essentially steady-

state temperature is maintained; i.e., we will have
)2)
Dt rv (15)

where I' is the magnitude of the geothermal gradient. In other words, the

temperature of the rock mass will change at a constant rate.
4. APPLICATIONS OF THE MODEL
Pore pressure and stress during uplift

Constant moduli case

Various aspects of the stress history of an uplifted rock mass have been
examined by Price [1966]. Voight and St. Pierre [1974], Haxby and Turcotte
[1976], and Bruner [1979, in press]. The fundamental result of all of these
analyses, as emphasized by Bruner [in press], is that as long as the various
elastic moduli are constant during unloading, then the thermoelastic effect will
dominate for nearly all rock types and geophysically reasonable values of I"; a

tensile lateral stress is predicted for rocks uplifted to near the Earth's surface.
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This prediction conflicts markedly with observation [McGarr and Gay, 1978).
There appear to have been no previous models directed at examining pore-
pressure development during uplift; the common assumption [e.g., Bruner, in
press] is that p will stay hydrostatic. The present model is well suited to

examine the validity of this assumption.

Although the constant-moduli approximation is probably not strictly
correct, it leads to a mathematically simple form éaf coupling between stress
and pore pressure; hence, it is a useful starting point for examining pore-

pressure development during uplift.

For constant moduli, the relevant expression for p is [cf. Eqn. (8)]

(16)

—{-P—-p,y)

BE-= (p-p.) - walay —a)TV + L2

where we have used Egn. (15) to replace DT/ Dt. Again, V is the rate of uplift,
assumed constant throughout the rock body of interest. We can now write a
differential equation in terms of p only by substituting Eqn. (12) into Eqn. (186),

using Eqn. (15), and expanding, viz.:

k
e bln LB s an
where
~_ o 2,1-2v, (B=8:)
A=f- 5'(1 v‘ [

S = HIEDE-8)807 + polas ~8) + =Y (A2 (5-p) TV +

1'—2”\ ﬁ-ﬂt\peh
1-v’t g 7' Dt

+ 2(

The first and second terms on the right-hand side of Eqn. (17) describe
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the effect of pore-pressure diffusion; the last relates to the thermoelastic- and

poroelastic coupling effects.

We now make the important assumption—~one which will be relaxed in a
later section-—-that lateral strains due to tectonic causes are absent, and that
g, will be due solely to isostatic adjustments at depth. Following Haxby and
Turcotte [1978, p. 182], we consider uplift of a sector of a spherical shell of
radius R, (Fig. 5-1), confined such that during uplift and erosion, the solid
angle subtended by the sector remains unchanged (i.e., we assume that there
is no lateral ‘'spreading’ of elevated regions). In this case, isostatic
compensation leads to a lateral strain rate in the uplifted sector equal to
PV/ pm Re, where p, is the density of upper mantle material and R is the

Earth's radius. We can then rewrite the term S as

S= ;—(i—:—:’ﬁ(ﬂ-p,)ﬁgt’d- polay —&) + :—(gﬂ(%(ﬁ*ﬁ) v+

1"2”\ ﬂ-ﬂt\ 5V
1-v'" 8 " pmR,

+ 2(

We can examine the relative magnitudes of the various terms by recasting
Egn. (17) into dimensionless form. We adopt the scalings
Pp=Fp
t=Tt’
g=Lz'
. where § may be conveniently chosen as § = p, gL. the hydrostatic pressure at

depth L. Dimensionle.ss variable are denoted by primes. Using these scalings

in Eqn. (17), we find, after some rearrangement:

&p' _ (1,8 _ o , (Tay 02 _ T«
at’ (T‘) az,z prfg-" 9z’ + (‘ru ) 8z’ (;% (18)
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where we have expanded the total time dérivative in terms of partial
derivatives. The various time scales are defined as 7¢ = p‘ﬁLz/ k, 7y =L/V,
and 7, = Eﬁ/ S. The first two terms on the right-hand side of Eqn. (18) are
both related to pore-pressure diffusion. The coeflicient p,8,gL of the second
term is much less than unity for crustal depths; hence, that term can be safely
ignored in comparison with the first term. We now need to estimate the

importance of the last two terms in Eqn. (18).

The time scale for excess-pressure diffusion, 74, may be estimated once
we specify . and the quantity &/ p.E. which is approximately equal to the
‘bydraulic diffusivity’ ¢ [cf. Rice and Cleary, 1976, p.230], defined as k/yﬁ in
our notation. Rice and Cleary [1976, p. 238, Table 1] have estimated that at
"low to moderate effective stresses”, ¢ > ca. 1075m® s ! for granitic rocks and
ca. 1072m® s~? for sandstones. Skempton [1970, p. 382] suggests that ¢ may
be as low as ca. 3x10™8m® s~! for clays. This is probably an extreme value; we
will use a value of 1077~10"® m?s-! for argillaceous rocks. Hence, taking
L=1-10 km, we estimate 74=10°-10"° s for sandstones,
T¢ = 10" =103 s for granitic rocks, and 74 = 3x 10'3 -3 x 10'% s for argillaceous

rocks. These values apply to rocks without macroscopic fractures.
The time scale 1, is the time for rocks at depth L to be uplifted to the
surface at a rate V. Again teking L = 1-10 km, we can estimate

T, M B8x104~8x10'%s for V=50 m/Ma
R 0.8x104~0.6x10'%s for V=500 m / Ma

Finally, 7, is the time scale over which the thermoelastic and poroelastic
effects have a significant influence on pore pressure. Recalling the definition of
S above, we see that 7, x1/ V. In Appendix C. we present estimates of ’ﬁ and S;

to a first approximation, we take 3/ S ® 0.8-1x 107 s/Pa for V = 100 m/Ma, the
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lower bound appropriate for moderate-porosity rocks (y = 0.10), the upper
bound for very low porosities (p 20.01). With L =1-10 km, we have
$ = 107 — 108 Pa; hence,

T, 8(1.2-2)x(10*-10¥%) s for V=50 m/ Ma
% (0.1-0.2) x (104 -10%) 5 for V = 500 m/ Ma

For sandstones and granitic rocks, we see that v4/7, and 14/ 7, will
typically be much less than unity. In this case, the last two terms on the
right-hand side of Eqn. (18) may be safely neglected. Pore pressure will then

be governed essentially by a simple diffusion equation, given in dimensional

form as
8 _ k_08%p , ‘
8t  uf 8t® (19)

For times large in comparison with 74, departures of pore pressure from

hydrostatic should be small.

For very ‘tight’ argillaceous rocks, 74/ 7, and r¢/ 7, may not necessarily
be small in comparison with one. For these rocks, pore pressure may be
significantly influenced by uplift, as well as by thermoelastic and poroelastic
coupling. These effects will tend to offset each other, as is most readily seen
by considering again Egn. (17) for the limiting case of a 'sealed’ rock mass

(mathematically mimicked by letting k <0). We then find
%lmc s - '%’ (20)

If the thermoelastic and poroelastic effects vanished (S -+0), pore pressure in
the sealed zone would remain constant during uplift. Pore pressure would then
exceed hydrostatic by an increasing amount as uplift proceeded. For the

physically reasonable case of finite S, however, pore pressure in a sealed zone
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(following the motion) would be

P(t) | peates = Po - %‘- (21)

where pg is the 'initial’ value of pore pressure. We show in Appendix C that
S/ '5 is probably greater than ca. 2.5 times the rate of change of pore pressure
following a hydrostatic gradient. Hence, pore pressure in a sealed zone might
fall below hydrostatic during uplift. In the general case with finite
permeability, the pore pressure of a rock mass during uplift will be bounded

above by hydrostatic and below by the value in Eqn. (21), viz.:

Po - ‘—%—t-s P(t)|  eatea S Po ~prgVt (=22)
constant modult ,

Development of underpressuring in a rock mass should be most favored
when the surrounding rocks have very low permeability, thus inhibiting
diffusive relaxation of the underpressure. It is interesting to note that
measured pore pressures in lenticular sands in some U.S. basins—basins that
have most recently been subjected to periods of uplift and erosion--are

frequently below hydrostatic [Russell, 1972].
The lateral stress s, during uplift will be given by Egn. (13), which

becomes, using Eqn. (15):

Dsp_
Dt

Dsh
Dt

1-21/\ ﬂ-ﬁl\ @ -
i-v’' g ‘Dt

= _n¢l=2v,,1
= 3(1-;’)(?

a,,1-2v
-(F)(m—)l"t’

- (=

——=IpgV + (

Because Dp/ Dt would be negative, the effect of poroelastic coupling would be
to cause the compressive lateral stress s, to decrease even more rapidly
during uplift than in the absence of poroelastic coupling. This would tend to

enhance the tensile stress expected upon uplift to near-surface depths--in
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contradiction to observation, as has been pointed out earlier. This reinforces
the contention [McGarr and Gay, 1978] that some inelastic process—perhaps
crack growth, as argued by Bruner [in press]-must prevent compressive

stresses from falling too greatly.

Time-dependent moduli

We now turn to the issue of pore-pressure development during uplift when
inelastic processes affect the various elastic moduli of the rock. A likely cause
of such time-dependence of the elastic moduli is microcrack growth that may
occur during unioading as a result of grain-scale stress inhomogeneities [e.g.,
Nur and Simmons, 1870; Bruner, in press]. Thermodynamic. considerations
[Bruner, 1979, pp. 5581-84] suggest that crack growth should generally lead to
increases in 8, v, and (in many cases) &. The fluid properties a, and 8, should

also change during uplift [cf. data in Schmidt, 1969].

Detailed evaluation of the history of pore pressure and stress during
uplift, when crack growth alters the elastic moduli, would require an analysis--
perhaps of the type presented by Bruner [in press]—-that explicitly considers
the thermodynamic- and fracture-mechanical aspects of the crack-growth
process and its interaction with the macroscopic stress field. Nonetheless, we
can reach some important conclusions about the development of pore pressure
and stress by a simpler, heuristic approach—-that is, by simply letting the
various moduli be slowly varying functions of time. The results of this analysis
are in qualitative agreement with Bruner’s [in press] conclusions about crack-
growth eflects on the stress fleld; more importantly, this approach also
permits us to reach some qualitative conclusions about pore-pressure history.

We will see that variations in elasstic moduli may strongly affect pore-pressure
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history during uplift.

The relevant equations for pore pressure and mean stress are [cf. Egns

(8) and (12)]:
3%"’? %%.: (ﬁ"ﬂc)%: + Pe D%‘(ﬁ‘ﬁl)"‘ (23)

b2 o)

& D - 8
- polay —8)TV + ¢°T3t_(af -&)+ 7S

Dp. _ __,1-2v,,1,Den 1 14v,_ 2 ,1-2v, B=Bs\ Dp _
oGO P s R H T, (29
2,8,,1-2v
-3—(-‘-9—)( T )TV

In general, these equations cannot be decoupled. If we assume, however,
that the moduli are all slowly varying functions of time, we can write, to a first
approximation, Df/ Dt = constant, and analogous expressions for the other
moduli. Using such expressions in Eqns. (23) and (24), and considering the
limiting case of a sealed zone (k-0), we then take the Laplace t;ransforms of
these equations to find 2 ordinary differential equations for P(s) and P, (s), the
Laplace transforms of p and p,, respectively. After much algebraic
manipulation, we can solve for P and invert the transform. Details of the
analysis are given in Appendix D, where we show that the first-order expression
for Dp/ Dt, the rate of change of pore pressure following motion of the rock

mass, is

1 D Da DB D
&z &'I sealed + ?‘ﬂ'l .Df + 72 Dt! + 1ig Dtl + 1T, D:, (25)
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where

m = co-po[I -2(8 -ﬁ.)(%’:%—f’-)(%;%

me = 9o To
7is = PoPo
-8 )

i, =2pp %}

The subscript '0’ denotes initial values, i.e., values at the beginning of uplift.
Also, for our 'short time’ approximation, all moduli may be assigned their
initial values for the purposes of evaluating the expressions above. Estimates
of the four bracketed terms (Appendix D) indicate that the terms involving
DB/ Dt and Day/ Dt should be dominant. These terms have opposite sign—-the
first positive, the second negative—with the first term of larger magnitude. As
a result, Dp/ Dt may become positive by a small amount. We estimate in

Appendix D that for very low porosities (¢ ™ 0.01):

Dp/Dt | seaws N 15%10°%Pa/s for V=50 m/MNa
dudi

constant ™o

® 150%10"%Pa/s forV =500 m/ Ma

whereas for moderate porosities (g = 0.1),

Dp/Dt |  sestes R (-B-1)x107°Pa/s forV=50m/Ma
constant modull

» (—80-10)x 10°Pa/s for V= 500 m/ Ma

In comparison, the rate of change of pore pressure along a hydrostatic
gradient (Appendix C) veries from ca. —1.6x 10®Pa/s to —16x10"®Pa/s for
the same range of uplift rates.

The simple model presented here indicates that when the moduli are

time-dependent, pore pressure in a very low-porosity 'sealed’ zone would tend

to tncrease during uplift. Physically, this would result from the increased
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compliance of the rock mass as cracks are introduced; this added compliance
would cause the pore fluid to be 'squeezed’. (The energy needed to increase
pore pressure would presumnably come from release of elastic strain energy,
just as does the energy required for crack growth [e.g.. Lawn and Wilshaw,
1975]). If porosity were high enough, this eflect would be counteracted by the

thermal contraction of the pore fluid as it cools.

Two phenomena should tend to oppose the development of overpressures
during uplift in very low porosity rocks. The first, which also applied in the
constant-moduli case, is the finite permeability of any real rock mass; any
local deviation of pore pressure from hydrostatic will tend to be damped
difusively. Secondly, we intuitively expect that inelastic changes in pore
volume will accompany microcracking [cf. Bruner, 1979, p. 5581, Eqn. (11)].
Slight increases in pore volume associated with microcracking would—if the
new cracks were in hydraulic communication with the 'old’ pore space--tend to
decrease p. Such microcracking would probably also lead to increased

permeability, thereby enhancing the diffusive dissipation of overpressures.

If overpressures actually develop during uplift, there would be important
implications for the mechanical behavior of the overpressured rocks, because
elevated pore pressure enhances the likelihood of brittle fracture [e.g., Jaeger
and Cook, 1976]. Overpressure development within a laterally extensive rock
mass, such as a thick shale unit with interlayered sands, could facilitate the
formation of pervasive fracture systems, such as joints. Some detailed studies
of the timing of ‘fracture-porosity’ development in petroleum reservoir rocks
[e.g.. Currie and Nwachukwu, 1974; Narr and Currie, 1982] indicate that
fracturing probably occurred during uplift. Throughgoing fractures would

quite possibly form by coalescence of early formed microcracks, which would



180

tend to be steeply dipping [Bruner, in press].

The rate of change of s), the lateral compressive stress, may be readily

found by substituting Eqn. (25) into Eqn. (13). We find

k,, - k“ 1-2v ﬁ-Bl
Dt = Dt 'emmw‘i’[(m',(-;;—-)]o”(t) (28)
where
MH(t)= "JDDtp +1r,DDatf +1r,D1%' +1r.%tv}

The effect of M(¢) is generally to increase s, the lateral compression, because
of the dominance of the term involving DS/ Dt, which is positive. Not
surprisingly, this result is in qualitative agreement with the results of Bruner
[in press] and lends support to the notion that the observed state of stress in
rocks near the Earth’'s surface would be strongly affected by inelastic
processes during uplift.

To summarize, our analysis of the coupling between pore pressure and

stress during uplift (in the absence of tectonic strains) indicates that:

i) As long as there are no inelastic processes at work—specifically, as long
as there is neither microcracking nor crack healing—pore pressure in
most rocks will stay essentially hydrostatic during uplift. For very low
permeability rocks, such as some argillaceous rocks, pore pressure may
fall more rapidly than if the fluid stayed in a hydrostatic state; the
magnituce of this deviation will depend upon details of the thermoelastic-
and poroelastic coupling.

ii) When microcracking alters the elastic properties of a rock mass during
uplift, pore pressure may deviate significantly from hydrostatic. This

effect should be greatest for very low porosity rocks, for which significant
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overpressures could develop if the permeability were low enough. Such
overpressuring could be important in the development of pervasive
fractures.

ili) The tensile lateral stress that would be expected in a rock mass
uplifted to tﬁe surface from depth would be enhanced by poroelastic
coupling eflects. In contrast, the moduli reductions associated with
microcracking during uplift would tend to prevent the development of
tensile lateral stresses in a rock mass. Because lateral stresses in rocks
near the surface are almost invariably compressive, these results
reinforce the notion that crack growth or other inelastic processes must

occur during uplift and significantly affect the stress field.

Effects of tectonic strain on pore pressure in accretionary-wedge sediments

Up to this point, we have assumed that any overall lateral strain in a rock
mass is due solely to isostatic adjustment [Haxby and Turcotte, 1876]. If, in
fact, there are tectonic strains applied to a rock layer at depth, the pore
pressure within that layer may be substantially affected. This can be shown by
considering the simple case of lateral compression (Fig. 5-2). We imagine that
some crustal section is being shortened at a strain rate &, = ~E,, taken as a
constant,and that no buckling 4occurs. It can be shown that for strain rates
greater than ca. 107! s~'-not an exceptionally large value for tectonically
active regions—the strain-rate term in Eqn. (17) for pore pressure should

dominate. We then find, to a good approximation:

~Dp _,B=Bs,, 1-2v,. 8 k 6p,
B o= 2( ; >(1-u’E"'*5?(p 52 (27)

where p, = p ~p, gz is the excess pore pressure, i.e., the pore pressure above

hydrostatic. Egn. (27) indicates that regional compression will tend to enhance
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Figure 5-2: Uniform lateral compression of a crustal section at a strain rate L",..
Initial section will shorten and thicken slightly (dashed lines) as a result of

compression.



183

pore pressure in a layer at depth. If permeability is high enough, this excess
pore pressure should dissipate quickly. However, if k is sufficiently low, pore
pressure may build up (Dp/ Dt >0), probably leading to some sort of brittle
failure.

We can get some estimate of the minimum permeability k; for which
excess pore pressure cannof build up to large values by considering the

special case in which Dp/ Dt vanishes. We then find:

kc azpl - ﬂ—ﬁl\ 1—21/\ J
';-('3;?-)--2( ; T & (28)

where we have taken u and k as constants. Dimensional arguments indicate
that 8%,/ 822 should be' roughly of magnitude Apg/D, where Ap is the
difference between solid and fluid densities, and D is the depth to the rock

layer of interest. The critical permeability will then be roughly

kow2(2fy (1225 (L2 @

Taking Ao = 1.7%x10%kg/m3, g=98m/s% u=5x10"* Pa s, and moduli

values as suggested in Appendix C, we find
k. #1.9x1072 £, D [m?]
where E, and D are in MKS units.

Fig. 5-3 shows k., as a function of £, for three values (1, 5, 10 km) of D.
(Again, we emphasize that for k <ca. ‘Ic,,,. Dp/ Dt will be positive at the depth D
of interest.) To better understand the significance of our estimate ofmk,,
consider the interesting case of convergent plate margins. Davis et al. [1983),
von Huene and Lee [1983], and others have reviewed evidence for the common
occurrence of excess pore pressure within sedimentary rocks of 'accretionary

wedges'. The strain rates within such rocks should be on the order of a few
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Figure 5-3:. ‘Critical’ permeability for large overpressuring due to compressive
strains, as a function of strain rate, for three values of stratum depth D in km.
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times 10~ g1 (obt.ai;xed by distributing strain due to a typical convergence
velocity of 0.1 m/a over a width of ca. 100 km). From Fig. 5-3, we see that for
E, =10""4g-! k n10"*m? =1 gdarcy. Although this is rather low if the
section is predominantly sandstone, it is quite plausible if there are
interlayered shales, ('I;he net resistance to upward flow of overpressured
fluid will be proportional to f k~! dz; hence, a few thin, low permeability units
could contribute more °‘flow resistance’ than a thick section of relatively
permeable rock.) Therefore, our simple model indicates that tectonic strain
clearly has the potential to cause overpressuring in sedimentary strata
between converging plates, Such overpressuring could be very important in
facilitating deformation within the sedimentary rocks caught between

convergent plates [Davis et al., 1983; von Huene and Lee, 1883].

The time scale for significant strain-induced overpressures to develop
could be surprisingly short at moderately high strain rates. We can estimate
the time for pore pressure to reach lithostatic for the special case of a 'sealed’

zone, for which (cf. Eqn. (27))

ﬁ%ludcd = 2(5_3‘

B

1-2v, .
(TP b (30)

or, using parameter values suggested in Appendix C, for porosities of 0.10:
%t&lumd N (1.8x10' Pa) £,

Assuming initially hydrostatic conditions, the time {; for pore pressure in a

sealed zone at depth D to reach lithostatic will be

¢, ~ —bogD
DP/Dt luahd

or using Ap ® 1.5x10°kg/m3, g =98.8m/s%
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t. 3.3x10° D/ E, [a]

for D in km and £, in s~ This relationship is plotted in Fig. 5-4 for several
values of D and E",.. For the strain rate that we have suggested may be typical
of convergent plate margins, (10~ s-1), we see from Fig. 5-4 that pore
pressure in a sealed zone could reach lithostatic on a time scale of only several
thousands or tens of thousands of years. On such short time scales, the
rheological behavior of low porosity sediments should be reasonably close to
elastic (cf. chapter 2 of this dissertation). There will be essentially no diflusive
relaxation of overpressures on such a time scale if there are significant

amounts of low permeability shales in the overlying section.

The calculations above suggest that large overpressures could be
common within sedimentary strata of accretionary wedges, in accord with
observations (e.g., as reviewed in Davis et al. [1983] and von Huene and Lee
[1983]). Large overpressures would very clearly be important in facilitating
deformation of the rocks caught between convergent plates. Our calculations
lend support to the mechanical model for deformation within accretionary

wedges recently advanced by Davis et al. [1983].

We emphasize that other mechanisms of overpressuring may exist, such
as rapid sedimentation [e.g., Smith, 1971] and clay dehydration [e.g, Powers,
1967; Burst, 1989; chapter 3, this dissertation]; the first of these has been
previously discussed as a possible cause of overpressuring in accretionary-
wedge sediments [e.g., Karig et al., 1980]. However, these would be of minor
importance compared to strain-induced overpressuring if strain rates are as

high as would seem likely at convergent plate margins.
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Figure 5-4: Time for initially hydrostatic pore pressure in a 'sealed’ rock mass
to reach lithostatic as a result of lateral strain-induced overpressuring, as @
function of depth to the rock mass, for three values of strain rate. For strain
rates typical of convergent plate margins, pore pressure may reach lithostatic

within only a few thousand or tens of thousands of years.
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5. DISCUSSION: FURTHER APPLICATIONS OF 'l'HE ANALYSIS

The formalism that we have developed here should be generally
applicable for examining the pore-pressure history of a rock mass in a variety
of geologic situations besides the ones we have examined. For example,
certain.aspects of p;are-pressure and stress development in a subsiding rock
mass could be examined simply by 'inverting' the analysis we have applied to
the case of uplift. In the constant-moduli approximation, an analysis parallel
to that in section 4 would indicate that pore pressure in low permeability
rocks would tend to increaage above hydrostatic during subsidence. The rate
of pore-pressure increase could be quite substantial, perhaps as high as the
rate of increase of overburden pressure. This would appear to be a very
attractive u;echanism for joint development. There are complications,
however, that make it necessary to proceed with caution. For one, would the
lateral boundary condition used in the analysis of uplift apply to subsidence?
That boundary condition was essentially ;1 statement that strain would be due
solely to isostatic compensation on a sphere. However, recent considerations
of the physical processes involved in subsidence [e.g.. McKenzie, 1978] suggest
that crustal extension may be very important. This would translate into a
'boundary condition’ on applied strain in our formulation. We can also question
whether subsidence will be accompanied by flexure of strata [e.g., Price, 1966].
Finally, and importantly, we need to consider under what circumstances our
rheological model may break down. During subsidence, the inelastic,
permanent strains associated with porosity reduction [cf. chapter 3 of this
dissertation] may overwhelm any elastic strains. Clearly, one must carefully
consider the characteristic time scale of processes of interest, and determine

whether the rock mass will behave elastically on that time scale, before
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applying our formalism to an examination of pore-pressure history.

8. SUMMARY

We have developed a formalism to shows the way that pore pressure in the
Earth's crust is coupled to the state of stress and the temperature field. We
have applied this formalism to examining pore-pressure history in two common
geological situations: in rocks undergoing uplift and erosion, and at
convergent plate boundaries. In the case of uplift and erosion, the
development of abnormal pore pressure in low porosity rocks is quite likely,
especially if such rocks either have very low permeability or are surrounded by
rocks that do. Subhydrostatic pore pressure may develop if uplift occurs
without the development of microcracks. In the event that grain-scale stress
heterogeneities do lead to microcracléing. the compliance of the rock mass
may become substantially increased, tending to 'squeeze’ the pore fluid and
increase pore pressure above hydrostatic in low porosity rocks. Such
microcracks, as well as possibie overpressuring, could be related to the

development of pervasive macroscopic fractures.

Compressive strains applied to sedimentary rocks caught between
converging plates may cause large overpressures if there are suflicient
amounts of low permeability rock in the sedimentary column. Such
overpressures may develop very rapidly, on a geological time scale, at strain
rates typical of converging plate margins, and could be very important in

facilitating the deformation of rocks within accretionary wedges.
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APPENDIX A: DERIVATION OF PORE-PRESSURE EQUATION

Following Rice and Cleary [1976, pp. 228-20], we arrive at a partial
differential equation for pore pressure by combining a constitutive relation for
the fluid mass content of the ‘poro-thermoelastic’ material with mass ‘
conservation considerations and Darcy’'s law. We write the fluid mass per unit

reference volume, m, as

where p; is the fluid density. For small changes in m, we can write [cf. Rice

and Cleary, 1978, p. 228, Eqn. 3]
dm =m —mg = (py —po)vg + (v —vg)po (A-2)

where mg and pg are the reference values of m and p,. respectively. Using a

linearized expansion for p, as a function of p and T, this expression becomes

do
dm =m —mg = pofy vodp = poay vodT + pof H"‘ + %*- 3avgdT) (A-3)

where ay and S, are the fluid's thermal expansivity and compressibility,
respectively.

As long as deformation is small, the fluid mass fraction m is very nearly
equal to the porosity ¢. Restricting ourselves to the small-deformation case,

we can rewrite Egn. (A-3) as

do
Pr® = Po¥o = PoBy Vodp — poy vodT + pof Hu + %‘*’ 3avedT) (A-4)

Conservation of mass of the fluid is expressed by the equation
2or9) = = 2o usp) (A-5)
ot V71 oz V1Y

where u; is the volumetric flow rate. We have assumed flow in only the vertical
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direction. Because we are generally interested in moving media, we add to
both sides of Eqn. (A-5) the quantity wu, 8 (o, ¢)/ 82, where u, is the speed at

which the solid moves; u, is assumed to be constant. We can therefore write
D -_ 2
e Pr®) = = g |pr#luy ~u)  (A-B)
Finally, we need Darcy's law for flow in a porous medium:
-u)=- %8 _ -
pluy —1,) = #(az Pr9) (A-7)

Substituting Eqn. (A-7) into Eqn. (A-8), we find

Doy B
Dt f")’az

k
I -gz:--pm] (4-8)

Substituting Eqn. (A-4) into Egn. (A-8), we finally arrive at the expression given

as Eqn. (B) of the main text.
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APPENDIX B: THERMAL ENERGY EQUATION

We begin by assuming that motion of the fluid and solid is in the vertical

direction only. We can then write the various terms in the energy equation as

8T

conducted heat = k&
™ 98z2

ca d -
heat advected by fluid = - E—(vp,u, CT)
heat advected by solid = - %[(1 - #)0s Uy G, T]

rate of change of heat content = :t mCnT)

where all symbols are as defined previously. We are essuming here that
thermoelastic heating and the energy involved in irreversible processes, such
as crack growth, are negligible in the overall energy balance. Also, the thermal
conductivity k, implicitly includes the effect of dispersion (cf. Sharp, 1978;
Sharp and Domenico, 1976). Energy conservation may therefore be expressed

8 - 8T <] =~ 8 =
2ol =km TE - Lepyu, & 1) - 21 - edoumar] (B1)

Using Darcy's law (Egn. A-5), we can rewrite this expression as
mCnT) = knm [(pC)U.T]+ ——[p;C:T(L—?;—)} (B-2)

We now assume that pm, Crm. y-Jo8 Py f‘,, k, and u are constant. We have also

taken u, as constant in the general model. Hence. we can rewrite Eqn. (B-2) as

2T 8T s CrTE B (e _ .
z,_+pC 8z = 4 0z ‘8z ~Ps9) (B-3)

~ 8T _,
Pm Cm 51 = km
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This is the energy equation given as Eqn. (22) of the main text.

Recasting Eqn. {B-3) into dimensionless form leads us to estimates of the
relative importances of the various terms in that equation. For this purpose, it
is convenient to first rewrite the last term in Eqn. (B-3) in terms of fluid flow

velocity rather than pore pressure. The modified form of Eqn. (B-3) is

A 82
PR S Lo A (B-4)

We now adopt the following scalings:

T=TeT

g=Lz’

t=tt'
where T, may be taken as the initial temperature, L is a characteristic length
scale, e.g., initial depth, and ¢; is the characteristic time scale for conduction,
viz., t, = L%, Cn,/ky. We also scale the fluid velocity by pu, = Uu,'
Dimensionless varibles are denoted by primes. The dimensionless thermal

energy equation may then be written, after some rearrangement, as

8T _ 8T (ﬁc‘u s L,

C, UL
atr - az,z (pj L IT' (B-s)

) az k,, az

We can estimate the magnitude of the dimensionless terms pCu, L/ k,
and p, E} UL/k,y by substituting approximate wvalues for the various
parameters. In MKS units, p, & 10% E’, ~ 5% 10% 3C ~ 2x10°% for p = 0.1, and

k,, = 2 [Clark, 1966; Sissom and Pitts, 1972].

We will focus our attention on rocks fairly close to the surface, such that
they are within the zone of brittle, not ductile, behavior. We therefore take

L <ca. 10 km = 10* m [cf. Brace and Kohlstedt, 1880]. Hence, we find:

Blu, L
m

<ca. 10'%y, (B-6a)
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C, U.
Bﬁ#LlL<ca.asx1m°U (B-8b)
™

The advection terms are therefore negligible for u, and U less than
ca. 107! m/s (300 m/Ma); this is, in fact, a lower bound, even greater
velocities being required for there to be a significant influence at depths less
than 10 km. Hence, in general, we are safe in neglecting the advection terms
in the energy equation. This equation may therefore be expressed to a close

approximation as

8T _ . BT _ .
at S Rm Bzz (B 7)

where K, = kp/ P E',,. is the thermal diffusivity of the fluid-saturated rock.

When dealing with beat flow during uplift or subsidence, there are two
characteristic time scales that arise naturally. The first, {; = L%/ k., is 2
measure of the tune for thermal disturbances at a depth L to be damped out
by heat conduction. The second, £, = L/ V, is a measure of the time for
materials to move a vertical distance L at a rate V. If {. «¢t,, then the
temperature fleld will be essentially unperturbed by uplift or subsidence. This
condition is equivalent to V««x,/L. For water-saturated rocks,
&m ® 10°8m?/s [cof. Clark, 1968; Sissom and Pitts, 1972); taking L = 10 km, we
see that the temperature fleld will be essentially the same as for steady-state

conditions as long as
V&«10"®m/s =3x10°m/ Ma
while for L = 1 km, this condition becomes
V<«<10¥"m/s = 3x 10*m / Ma

These conditions will be satisfied for all but the most extreme rates of uplift.
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Hence, we can treat the problem as essentially one of a steady state:

9%: 0 (B-8)
or
bT _ )
o= ~TV (B-9)

where T is the magnitude of the geothermal gradient and V is defined so as to

be positive for uplift. This is the result used in the main text.
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Appendix C: ESTIMATE OF PARAMETER VALUES

We showed in section 4 of the main text that the rate of change during
uplift of pore pressure and stress are related to the ratio of tha parameters S

and 3. which are defined as

S = (D E-0p9 + [polay - + HBCE TR p-p)r+ 1)
I-ZV\ p-ﬁl\ P -\

MR T I ) o
- 2
E = 3 - .:_( 11—_2;1), (8 pﬁ.) (C-2)

where we have assumed in Eqn. (C-1) that isostatic compensation is maintained
at all times and that tectonic strains vanish. All symbols are defined in the

main text.

We now compute plausible values for the various terms that comprise
Eqns. (C-1) and (C-2). We begin by considering the various compressibilities
that enter into those equations. The average grain compressibility, g,. should
be ca. 2x10°"'Pa-! for a variety of rocks [Birch, 18868]. Whole-rock
compressibility, 8, should be larger than §, as long as the rock has any pore
space. Measurements by Brace [1965, p. 395] indicate that 8 for cracked rocks
is commonly several times larger than the predicted crack-free value. For the
purposes of our calculations, we will take B=4x10""Pa~!. Fluid
compressibility, 8,. should be ca. 3x107'°Pa~! at pressures and temperatures

of interest [cf. Schmidt, 1969].

The other moduli that we need to estimate are v, & and a,. Poisson's
ratio, v, is typically about 0.25 for crustal rocks if not too highly fractured

-~

[Birch, 1966]. Measured volumetric expansion coefficients, & show wide
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variability [Richter and Simmons, 1974], presumably due to complex crack
geometries and crack histories [Bruner, 1879, p. 5884], but are typically on the
order of 10™° C~. Finally, a,, the thermal expansivity of the pore fluid--which
we assume, for simplicity, to be pure water-is ca. 0.5-1x 10"3C ™} at pressures
and temperatures of relevance, as computed from tabulated specific volume

data in Schmidt [1989].

The magnitude of the geothermal gradient, I', varies significantly from
place to place. A typical value for stable continental crust is 15°C/km
[Blackwell, 1971]); higher values may be appropriate for tectonically active
regions. A reasonable range of values to use in our calculations is
I'= 15-30°C/km. Other parameters entering into Eqn. (C-1) may be estimated
as g =9.8m/st, p=27%x10"3kg/m?3, Pm =3.4x105 kg /m?3,

R =8.4x10% km, and g, = 0.01-0.1.

We can now compute the various terms within braces in the expression for

S above:

I (8-8,)Pg % 3x1077 m
2.,1-2v,,B-8,
32l

)P~ 0.3-0.7x10"7 m !

1-v /'Y B
polay =&)T® 0.7-3x10""m™? for gg = 0.01
polay —8)T & 7-30x 10" " m ™! for ¢o = 0.10
1-2v, ﬂ"ﬂs\ D\ I
(T ; ,(Pmﬁ.,zo.sxm m

Summing up, we find

S 8 4.8-68.5x1077V [s7!] for po = 0.01
R 11-34x10"7V [s7!] for g, = 0.1

where V is in MKS units. The compressibility term 'E may be estimated as well:
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B =1.8x10"1 Pa-? for g, = 0.01
~ 4.3x 1071 Pa~! for g, = 0.10

The ratio S/ 3 is therefore given approximately by

S/fn27-3.6x10*V [Pa/s] for g, = 0.01

n2.8-8x10*V [Pa/s] for gg = 0.10
with V again in MKS units. Uplift or subsidence rates are typically no more
than a few hundreds of meters per million years; therefore, we can estimate
that for very low porosity rocks (y = ca. 0.01):

S/f~4-6x10"%Pa/s for V= 50m/ Ma
® 40-80x10"%Pa/s for V=500 m/Ma

and for moderate porosity rocks (p = 0.10):

S/§~4-13x 10%Pa/s for V = 50 m/Ma
® 40-130x 102 Pa/s for V= 500 m/Ma

It should be recalled (Eqn. 25) that S/ § is the rate of change of pore
pressure for a 'sealed’ 20ne, i.e., one for which the permeability of the
surrounding rock is negligibly small. By way of comparison, if the pore
pressure stays hydrostatic during wuplift or subsidence, we have
tDp/Dt IW"""““‘ =pygV. where p, 8 10%g m™ is the fluid density. Thus,
IDp/Dt l"v"’"“"“ increases from ca. 1.86x107%Pa/s for ¥ =50 m/Ma to
186x 10~®Pa/s for V = 500 m/Ma. This indicates that, if moduli stay constant,
pore pressure initially at hydrostatic within a *sealed’ zone would fall below
hydrostatic during uplift and erosion. Interestingly, the magnitude of S '/E is
not only larger than le/ Dt l""""““" but also, in many cases, larger than the
rate of change of overburden stress, which is roughly 2.5x le/Dt LW"’“““"'

Thus, underpressuring could be quite substantial.
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APPENDIX D: PORE PRESSURE-STRESS COUPLING WITH VARIABLE MODULI

We begin here with the two differential equations describing the history of

pore pressure and confining pressure during uplift, given in the main text as

By p B8 = (p-p,) Fes p. Lis-p,) - poloy, - )TV + (0-1)
t T btg-(a; - &)+ %—[ﬁ—(-gf—-p;y)]

Dth

Dp, 1-2v,,1 1,o14v, - 2,1-2v, B=Bs\Dp _ p.
T ISP R SR T o 09

2, & 2v

3—(2-)( TOTV
where all symbols are as defined previously. Generally, these equations cannot
be decoupled and solved analytically. However, in the limit of a ‘sealed’ rock
meass (mimicked by letting k-=0), we can find an approximate analytical
solution for p(t) if the various moduli are slowly vérying functions of time. We
now assume that the moduli may be expressed by a first-order Taylor series
expansion, viz.:
ﬁ =b; + byt
B —Bs = B, + Bt
oy — a=a; +ayt
1+v
1-v
l_ ) 2V\ B pl Y e
3( T ) ( 3 ) = ¢, +cpt
ead ;1 ~-2v, _
3Ty Tt dat

%‘('1'1'%381+32t

=n; +nzt

where b,, B,, etc,, are the ‘initial’ values of the moduli and bp, B, etc., are the
material time derivatives of the moduli, these derivatives being taken as

constants in our approximation. Substituting these expressions into Eqn. (D-1)
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and taking the Laplace transform, we find, after some rearrangement:
dP -
—bz%"‘ b,p'i-Bg-is-c--BlP, +fl(s)=° (D-S)

where B and B, are the Laplace transforms of p(t) and p(t). respectively, and

J1(s) is defined as

..b;po: B;oq + ¢0PV(%+ a2, _ Qo(T. +Tl)a;

ss / sg (D'4)

fx(‘) =

where T, is the surface temperature and ! is the depth to the rock mass of
interest. Similarly, using the expressions for the time-varying moduli in Eqgn.

(D-2), and taking the Laplace transform, we find:
dP Ce, dE g2,
B, v2c, 2L m2(e,- TP —g = 0T E # ) =0 (0-5)

where I is the Laplace transform of ep(t) and fo(s) is defined as

ng

__% 1 n, 2c,po dy dp )
re(s)=-7-+ a‘ng(sz + sa)+ < "’PV(,z + -s—ﬁ (D-6)

Using Eqn. (D-5), we can eliminate P, and dP,/ds from Egn. (D-3).

arriving at a differential equation in terms of P and E:

d®P dP a2k dE _
ay ds® +ﬂzds +aap+a4‘zs—z-'+asz'+ a‘E‘+f3(s)-0 (D'7)

where
oy = ~2B32C2

[+
ag = -bg + 233(3. - -3-2-) + 2bgcy

2B;c c
ag=bd, + -——%—2—— 2B,(c, - —s-z-)
oy = Bag2

g
as = =Bz2(9) — ‘;29 + B\g2
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and the coefficients in the expression for f 4(s) are
¢ = (28,c, - b,)po
€2 = —Ba0op + 2c | Bapp + B;pg¥Vn,/3 + B,l'vd, + ‘OQI'VEI - o (T‘ + I‘l)az
¢a=2pgV Bon,/3 +2'Vd, By + B,pgVmny/3 + B,TVdy; + po'Va,

64 = 332‘"-2 + 3ngVBz

When ¢,, hence E, is prescriﬁed. we can solve for P. We will consider here
only the case of constant strain rate, viz., ¢4 = &5 ¢, where the strain in the
reference state is taken as zero. E and its derivatives with respect to s are
then easily found. For the case in which this strain is due solely to isostatic
adjustment [Haxby and Turcotte, 1876], ép = pV/ pm K. where V is the uplift

rate.

We can find an approximate solution for pore pressure for ‘short times’
fairly readily by keeping only the highest order terms in the coeflicients a; ~ ag
and the two highest order terms in fg4(s). (Keeping only the highest order
term in fg would lead to a solution of the form p = constant.) We then assume
that P may be expressed as a power series in 1/s:

=3 2o (D-10)

az1 S”

where the A\, are coeflicients to be determined. Using this expression in Egn.
(D-7). equating coeflicients of powers of 1/s term by term, inverting the
transform, and replacing b, By, etc., by the appropriate material derivatives,

we find that the lowest-order approximation of Dp/ Dt is:



202

D D
00 5B ~Bs) + 9o(T, + T1l) =a, -&)
&"’ Q’iumtw: "Dt ¢°‘A— D id + (D'll)
Dt Dt Teomui Bo

+§°i{ DB+ 2(8-s.) m{(‘ 2v) (P ]]

The right-hand side of Eqn. (D-11) can be rearranged and simplified

somewhat by using the following approximations:
Bo-rre 2

D - Da

prier D= H-

Dg DB Dg,
Dt - Dt TP

D |1-2v, 8- ﬁ. (1 2u\( y DB (ﬁ-ﬁ.\( 1 _2Dv
DtlP1-v’'' B g’ Dt g ‘‘i-v’ Dt

These approximations allow us to rewrite Eqn. (D-11) as

Dp _Dp =5 i
Dt Dt | oot = B (D-12)

where

§.—.{ao—poll-2(#-#.)(11:2:) ;; ” + ¢o (T, +I‘l)—-L-

ﬁﬁ-

"¢oPo‘Dp—tL“' 2po(B-8,)( 1(1 —v' Dt

We now need to estimate the actual magnitudes of the terms comprising
S to see how significant are the effects of time-dependent moduli on pore
pressure. Using the estimated values of the various moduli given in Appendix

C, the first term in the expression for S may be estimated as
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1- z(a-p.)(ll'_";"x;;)]} 20w (00 - £po) 28

o-s

The compressibility 8 might change by a factor of about two during uplift [cf.
Brace, 1965; discussion in Bruner, 1979, p.5584]. The actual change in g, if due
to microcracking, will probably occur over a relatively limited range of depths,
perhaps ca. 1 km, beginning at a depth of less than ca. 3 km [Bruner, in

press]. We therefore estimate

%;LH 8x10"20 pa-i1g-1 for V=50m/Ma

R Bx10"25Pa-1g-1 for V=500 m/Ma

If we assume initially hydrostatic pressure, we may estimate

(00—2po/ 3) < ca. 8x10” Pa for L <ca. 3 km. Hence, we can finally estimate
(o — %po) £Dt£< ca. 3.6x 1018 g1 for V=50m/Ma.

<ca 3.6x10717 g1 for V = 500 m/ Ma

The second term on the right-hand side of Eqn. (D-12) describes the eflect

of changes in ay on pore pressure. This term can be rewritten as
Doy LI

For T, = 20°C, I' = 15-30°C/km, I <ca. 3 km, and estimating da,/ 9T from

data in Schmidt [1969], we find for very low porosities (p = 0.01):

2]
o (T, +I‘l)—a-a74-I‘V==(1—2)x10“’s" for V=50m/Ma

R (1-2)x10"18 5! for V=500m/ Ma
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and for moderate porosities (¢ ™ 0.10):

o7, + I) %.’—PVH(I-Z)XIO‘“s“ for V=50m/ Ma

R(1-2)x10"7 5! for V=500m/Ma

The third term, involving the rate of change of fluid compressibility, g,,
will depend in a complex way upon both p and 7 [cf. Schmidt, 1969]. We
estimate for pg corresponding to a depth of 3 km, for low porosity rocks
(¢ = 0.01):
pgpogg{—&l 2x10"% g-! for V=50 m/Ma

R 2x10719g1 for V =500 m/Ma
and for moderate porosities (¢ ® 0.10):

®oPo -’%’{—N 2x 1079 g-? for V=50 m/Ma
R 2x 10718 g"! for V = 500 m/ Ma
Finally, the last term can be estimmated, using the parameter values in
Appendix C, as

- 2
2po(8-8) (FF1) (7153 Do (26107 Pa~) po 22

Again taking po corresponding to a depth of 3 km, and estimating that v will

not change by more than about 0.1 [cf. Birch, 1966; Walsh, 1965], we find

Dt
N 1.8x10"18g-1 for V¥ =500m/ Ma

- 2
2Po(ﬂ‘ﬁ.)(ﬁ :‘ )(liv) DY o18x10719 5" for ¥V =50 m/Ma

The rather lengthy numerical exercise above demonstrates that the

major influence of ‘crack growth’ on pore pressure during uplift would come
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about as a result of changes in # and a;; the other terms are of minor impor-
tance in comparison. The term involving DB/ Dt should dominate for likely

porosities and uplift rates.

Summing up the estimates above of the various terms comprising S, and

using the estimates for 50 in Appendix C, we find for very low porosities

(¢ ~ 0.01):
S/B,~20x10Pa/s for V=50 m/ Ma
N 200x 1078 Pa/s for V = 50-500 m / Ma

and for moderate porosities (¢ ™ 0.10):

-

S/B,~5%10%Pass for V = 50 m/ Ma

N 50x10%Pa/s for V=500 m/ Ma
Hence, the net effect of time-varying moduli should usually be to increase p
during uplift. Physically, this is due to the increased compliance of the rock as

a result of microcracking.

For the ‘sealed’ zone that we have been considering in our analysis, the
total rate of change of pore pressure, following the motion, would be given by
(ct. Eqns. (20) and (D-12)):

o 5-5 (D-13)
Dt Bo
Combining the estimates above for Ss '50 with the estimates for S/ Eo (Appen-
dix C), we find for p ™ 0.01:

(§ -S)/B~15%x10%Pa/s for ¥ = 50 m/ Ma
N 150x 108 Pa/s for V=500 m/Ma
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and for ¢ ® 0.10:

(§ ~8)/ By (-8+1)x10° Pa/s for V= 50 m/Ma
% (-80-10)x 10~® Pa/s for V = 500 m/ Ma

These compare with the rate of change of pore pressure along a hydrostatic

gradient (cf. Appendix C):

%‘lww & -1.8x10%Pa/s for V=50m/Ma

& -18x10%Pa/s for V = 500 m/ Ma
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NOTATION

specific heat of pore fluid

specific heat of sediment

specific heat of grains

Young's modulus

compressive lateral strain rate

acceleration due to gravity

shear modulus

poroelastic modulus

permeability

critical permeability for overpressure buildup
thermal conductivity of sediment

bulk modulus

bulk modulus of grains

characteristic length scale

fluid mass fraction relative to reference state
function related to eflect of time-varying moduli on lateral stress
pore pressure

confining pressure

dimensionless pore pressure

poroelastic modulus

radius of the Earth

lateral stress, positive when tensile
parameter related to pore-pressure history during uplift
time

critical time for pore pressure to reach lithostatic
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' 3 dimensionless time

T temperature

u, volumetric flux of pore fluid

Uy average grain velocity

v fluid volume fraction relative to reference state
Vg initial value of v

| 4 uplift rate

z vertical coordinate, increasing downwards
e’ dimensionless vertical coordinate
a coefficient of linear thermal expansion of rock

ap thermal expansivity of pore fluid
a coeflicient of volumetric thermal expansion of rock
B=1/K compressibility
Bs fluid compressibility
B grain compressibility
E, 3 compressibility terms
coeflicient relating fluid volume fraction to temperature changes
r magnitude of geothermal gradient
6y Kronecker delta
7Y lateral strain rate, posotive for tension |
&y strain
Kom thermal diffusivity of sediment
7] viscosity of pore fluid
v Poisson's ratio
7, 7o, My, 7, coeflicients in expression for M(t)

Py pore-fluid density
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sediment density

grain density

average density of overburden

parameter related to specific heats

lateral and vertical stresses, respectively

stresses, positive when tensile

mean stress

characteristic time scale

time scale for diffusive relaxation of overpressures

time scale for poroelastic effect on pore pressure to become significant
time scale for uplift |

initial porosity
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CHAPTER 8 ‘
PERMEABILITY MEASUREMENT BY THE PULSE-DECAY METHOD:
EFFECTS OF POROELASTIC PHENOMENA AND NONLINEAR
PORE-PRESSURE DIFFUSION

ABSTRACT
Permeability values inferred from data obtained by the pulse-decay, or

transient pulse method, may be affected by two phenomena not previously
considered as important: ;ioroélastic coupling between sample cores and pore
fluid, and nonlinear pore-pressure diffusion associated with large pore-pressure
gradients. We discuss the theoretical reasons for these complications, as well
as the results of two simple experiments designed to test the theory. -
Poroelastic effects introduce an inherent sample-size dependence into the
transient-pulse method; experiments show such a dependence, but possibly
masked by slight material inhomogeneity. Nonlinear pore-pressure diffusion
limits the size of the pore-pressure pulse that may be used in the pulse-decay
scheme; this is well-demonstrated by experimental results. Furthermore,
direct measurements of poroelastic strains associated with pulse propagation

show very good agreement with predictions of linear poroelasticity theory.

1. INTRODUCTION

The pulse-decay, or transient pulse method of permeability measurement
has been frequently used to investigate the fluid-transport properties of low
permeability rocks. Originated by Brace et al. [1968], the pulse-decay method
since has been used by many investigators, including Zoback and Byerlee
[1975]), Trimmer et al. [1980], and Walls {1982]. In this chapter, we discuss

results of two simple experiments that examine factors that could potentially
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complicate the interpretation of pulse-decay measurements. In section 2, we
discuss transient pulse measurements in the context of poroelasticity [Biot,
1941; Rice and Cleary, 1976}, considering the way that mechanical coupling
between solid and pore fluid may influence inferred permeability values. In
perticular, theory suggests that there should be an inherent sample-size
dependence in the interpretation of pulse-decay data. Results of a simple

experiment designed to examine this prediction are then described.

We then turn in section 3 to considerations of nonlinear pore-pressure
diffusion. Theoretical considerations show that the pulse-decey method might
become invalid if pulses of a ‘large' magnitude are utilized. Experimental
results supporting this prediction are then described, along with direct
measurements of the poroelastic strain accompanying pressure-pulse

propagation. The latter are in very good agreement with predictions of the
linearized Biot poroelastic formulation. Finally, in section 4, we apply our
results to suggest experimental guidelines that should help avert

complications due to poroelastic- and nonlinear pressure-diffusion phenomena.
2. POROELASTIC PHENOMENA IN PULSE-DECAY PERMEABILITY MEASUREMENTS

Theoretical Framework

We briefly review here the poroelastic formalism developed by Biot [1941]
and extended by Rice and Cleary [1976). The fundamental assumption in this
formalism is that strains g;; in the solid frame, as well as changes in the fluid
mass fraction m, are linear functions of changes in the stresses oy and pore

pressure p, viz.:

3(v, ~-v)
— - o= v : hJ _d -
2Gdey = doy (i-:_—v')dou, 6y + B+ 1+ p 6y (1a)
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W _ 3prvu=-v) 3
dm = 2GB(1+v)(1+v,) oy + E-dp) (1b)

where G (shear modulus) and v (Poisson’s ratio) are the usual elastic moduli;
B, sometimes known as 'Skempton’s coeflicient' [cf. Skempton, 1954}, and v,
the ‘undrained Poisson’s ratio’, are the poroelastic moduli as given by Rice and
Cleary [1978] in their reformulation of Biot's [1941] original work. We have
used here the summation convention for repeated subscripts. The Kronecker
delta, §y, has the usual definition:
6g=1 i=j
6g=0, 1i¥j
Rice and Cleary [1978, p.228-29] have shgwn that, in general, pore
pressure cannot be decoupled from the stress state, greatly complicating the
mathematical analysis of boundary-value Problems involving poroelastic
materials. .ln contrast, in the usual development of the governing diffusion-
type equation for pore pressure in porous rocks [e.g., Brace et al., 1968, pp.
2234-35]-that is, in the sort of analysis applied to laboratory permeability
measurements—poroelastic coupling is not considered at all. As we show next,
poroelastic coupling will generally introduce an inherent sample-size

dependence into permeability testing by the pulse-decay method.

In the pulse-decay technique (Fig. 6-1), a small differential pore pressure,
4p, is abruptly applied across the length of a cylindrical core of rock at
confining pressure p. and pore pressure p. (In other words, the pore pressure
at one end surface of the core is suddenly changes to p +Ap.) The resultant
pore-pressure differential as a function of time, Ap(t), is then analyzed to
determine permeability [e.g., Brace et al., 1968; Zoback and Byerlee, 19757

Walls, 1982]. Within the framework of poroelastic theory, we expect that the
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Figure 6-1: Schematic diagram of experimental system for pulse-decay
measurements (from Walls [1982], by permission of the author). Initially, both
valves are open. After closing valve 1, pore pressure is changed slightly in the
(large) reservoir 1. After waiting for thermal equilibrium, valve 2 is closed and
valve 1 is opened, applying a small differential pore pressure Ap along the

sample. This differential pressure is recorded as a function of time.
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pressure-pulse decay will be accompanied by time-dependent elastic strain of

the core.

Following a suggestion by J. Rice [written communication, 1881], we
consider pore-pressure pulses applied to two samples of different lengths,
cored from the same homogeneous block of rock, and held at the same
ambient conditions (Fig. 8-2). In the short core (length small in comparison
with radius), the approximations of classical consolidation theory apply [Biot,
1841, pp. 160-84]; i.e., the core will be in a state of uniaxial strain (de,, ¥0,
' depy =dege=0, where r, 6, and 2 are the usual radial, circumferential, and
axial coordinates for a cylindrical coordinate system, respectively). In
contrast, for the long sample (length large in comparison with radius), a state
approximating uniaxial stress will be set up (all doy except possibly do,, must
vanish). Proceeding as in Rice and Cleary [1978, pp. 228-29]._it can be shown
that pore pressure is governed by a diffusion-type equatioﬁ for both the

uniaxial strain and uniaxial stress cases, viz.:

p _ 1 B 00
3?5‘- HE+ T (2)

where ¢ is the hydraulic diffusivity. For the two cases considered here, we

have
_ k|2GB%(1-v) (1 +v,)®
Cohort = 7"- 9(1-v,) (v ~v) ] (3e)
2GB%*(1 1+v,
Ciomg = ﬁ' ;(:,y.).(u)w : (3b)

where k is permeability and u is viscosity. (The expression for cygy is
equivalent to the hydraulic diffusivity as usually defined [e.g., Brace et al,

1968; Trimmer et al., 1980).)
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, Figure 6-2: Pulse-decay tests on two samples, one short compared to its radius,

the other long, will be affected by poroelastic coupling.
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The stress o,, in Eqn. (2) may be interpreted as the total axial force per
unit area applied to the core. In a pulse-decay experiment, application of the
pore-pressure differential does not change o,,. which is constrained by
considerations of mechanical equilibrium to be equal to p, (although the
detailed stress distribution near the sample holders may be altered):; hence,
the term in Eqn. (2) involving 80,,/ 8t will vanish, leaving a simple diffusion
equation for p.

In the general case of arbitrary sample length, stress components other
than o,, mmay enter the analysis, precluding the decoupling of p from the
stress fleld. For the ‘short’ and ‘long’ samples, however, p may be effectively
decoupled from the stress fleld. We see, however, that the effective hydraulic
diffusivities are different for these two extreme cases. From Eqgns. (3a) and

(3b), we find

cM - 1+Vu\ 1—!/ LY
Clang = 1+v /' M1=y,’ (4)

Noting that v, =v [Rice and Cleary, 1976, p.229], it is clear that Caum =Cppy-
Using parameter values estimated by Rice and Cleary [1976, p. 240). it appears

that Canert / Ciong may be as much as ca. 1.5 for some rocks.

Another way of interpreting the sample-size dependence of ¢ comes from

defining an overall comnpressibility ? by the relationship

(5)

k
€ = ==
Py
The permeability k& and viscosity u are intrinsic material properties,
independent of sample size (for a homogeneous rock), whereas the

compressibility ? depends upon both intrinsic material properties (G, v, B,

and v,) and, in some complicated fashion, upon sample dimensions, with
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Emm <§umg-

Sample-size dependence of the hydraulic diffusivity could be important in
interpreting pulse-decay test results to give permeability values. For example,
in the method developed by Walls [1982), a value of ¢ is determined that gives
the best fit of an analytical expression for Ap(t) to the actual Ap vs. t data;
the corresponding value of k is then calculated by using an expression such as
Eqn. (5). If one assumes § = constant, independent of sample size (as in Walls
[1882]), then the inferred values of k {(equal to ufc) for various-sized samples

of a homogeneous rock would vary.

Experimental test of sample-size dependence

We conducted pulse-decay tests using the apparatus build by Walls [1982].
Several 5.1 cm diameter cores, of various lengths, were taken from a 30 cm
long piece of drill core supplied by Canadian Hunter Exploration Ltd. All cores
had their end faces ground flat and parallel to within 0.05 mm. The rock is a
low-permeability, gas-bearing sandstone from the Spirit River member of the
Fahler formation of Alberta, Canada. The samples used in our tests had a
porosity of 0.07. Pertinent mineralogical information for similar Spirit River

core samples is given by Walls [1982].

Pulse-decay tests were all conducted with an ambient pore pressure
(applied by N, gas) of 140 bars, epproximately equal to the in sifu pore
pressure at the depth from which the core was recovered [Walls, 1982}, and at
confining pressures of 240 bars or greater. The confining pressure was
increased in steps of 50 bars, after first cycling the core to a confining
pressure of approximately 700 bars. A minimum of three runs were performed
at each confining pressure value, allowing sufficient time between runs (and

after changes in p,) for thermal equilibrium to be attained. The pulse
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magnitude used was consistently 1 bar, for which flow should be quite well
described by Darcy’s law [cf. Walls, 1982]. Permeability values were calculated
from the pressure decay data using a slightly modified form (Appendix A) of
the analysis presented by Walls [1982], taking £ as a constant. (Specifically, we
assumed B=gpB,, where ¢ is porosity and g, is fluid compressibility. This
approximation is commonly used in the oil industry [ref] and elsewhere [e.g.,
Brace, 1980].) In other words, we effectively calculate k& by using the

relationship

k = pupfyc (8)

If the cores were identical in their physical properties, then the apparent k
values determined by this method should vary from core to core, for a given p,
value, with the apparent k& values greater for "short’ cores than for 'long’ ones,

due to the dependence of ¢ on sample size (cf. Eqns. (3a) and (3b)).

Results of these measurements are shown in Fig. 6-3, in which we have
plotted k vs. effective pressure p, (=p. ~p). Permeabilities are accurate to
about 5%. We see that the apparent permeabilities for a given effective
pressure vary from core to core, with the ratio between the greatest values
(for the 47.6 mm long core) and the least values (for the 21.7 mm long core)
being roughly 1.5. There is not any simple relationship between core length
and permeability, however; in fact, the smallest apparent k& values were found
with the shortest core, a result opposite to the prediction from poroelasticity
considerations. This could very likely be due to slight variability in the
physical properties (e.g., porosity, pore geometry, grain geometry) between
cores. Interestingly, however, the & vs. P, trends are very similar from core

to core.
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Figure 6-3: Measured permeability values as a function of eflective pressure for

Spirit River sandstone cores of various lengths.
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These measurements clearly suggest that sample size may have an
influence on the apparent permeability of a rock core. We cannot state
definitely, boﬁever. that this sample-size dependence is due to poroelastic
effects rather than simply to slight variability in material properties from core
to core. The magnitude of the scatter in apparent permeability at a given p;
value, although large on a relative basis (about 50%), is small on an absolute
basis (a few udarcy). and not of major importance in evaluating in situ

properties of this hydrocarbon-reservoir rock.

The close similarity of £ vs. p, trends for the various length cores is quite
striking. One possible interpretation of this phenomenon is that the
mechanical properties of the sandstone cores—that is, the ’'stiffness’ of the
cores, as reflected in the way that pores close under increasing confining

pressure-—-were very uniform from core to core.
3. NONLINEAR PHENOMENA IN PORE-PRESSURE DIFFUSION

Theoretical Background

In the theoretical development leading to the partial differential equation
for pore pressure (Eqn. 2), we assumed that Darcy’'s law holds, i.e., that the

flow rate is everywhere proportional to the local pore-pressure gradient:

-

k
g =“‘“_‘VP (7)

where ¢ is the volumetric flow rate. We have also neglected the dependence of
k upon the local pore pressure. When these approximations hold, the results
of a pulse-decay test are independent of the magnitude of Ap. This is easily

seen by recasting Eqn. (2) into dimensionless form, using the scalings

p=04pp
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g =Lz

t=Trt
where L is the sample length and dimensionless variables are denoted by
tildes. Choosing the characteristic time 7= L?/c, we therefore can write

(neglecting, once again, the term involving 80,,/ 8t):

The characteristic time 7 = L%/ ¢, a measure of the time for the pressure pulse
to decay by some specific fraction (say, to 1/e of the original value) is guite
independent of Ap. The pulse-decay test is therefore 'self-similar’. Walls
[1982] has verified this experimentally with the Spirit River sandstone, showing

that inferred k£ values are independent of Ap in the range ca. 0.25-4 bars.

!f Ap were large enough that either Darcy’s law became invalid, or that
the variability of k with p became important, the linea.krity and self-similarity
properties of Egns. (2) and (8) would break down. This is most readily
illustrated by considering the case in which Darcy’s law remains valid, but the
variability of k with p becomes important. The governipg equation for p then

becomes [Nur and Yilmaz, 1978]

g‘:z;‘* ﬂb(gf‘a= %% (9)

where B, = (1/k)0k/ 8p is a coeflicient describing the dependence of k upon
p. Measurements by Walls [1982] suggest that for the Spirit River sandstone,
Bx is of the same order as f, = (1/k) 8k/ 8p., which in our measurements (Fig.

6-3) is nearly constant as p, varies.

Recasting Eqn. (9) into dimensionless form, we find

Te s (op) (B = (22 (10)
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The presence of the nonlinear term in Eqn. (10) destroys the self-similarity
property of the pulse-decay experiments. Let us make the reasonable
assumption that v = L%/ cf (Ap). where f(Ap) is some dimensionless function
of Ap, constrained by the condition that f{Ap)=1 as Ap <0. We can then

rewrite Eqn. (10) as

Zr v (g op) (B = 1 (0p) 22+ (11)

Pore pressure diffusion in the pulse-decay test is now clearly seen to be an

explicit function of Ap.

Experimental test

In order to examine pulse-test conditions that might give rise to the
nonlinearity discussed above, and also to directly measure poroelastic strains
during a pulse decay, we conducted a series of pulse-decay tests on a second
set of Spirit River sandstone samples, using an apparatus similar to that used
in the previous experiment, but with 1.9 em diameter cores, which were
jacketed with 0.25 mm thick copper tubes on which foil strain gages (6.3 mm
gage length) were bonded. Confining pressure and pore pressure (the latter
applied by N, gas) were independently controlled. In this series of tests, we
were primarily concerned with measuring Ap(¢) and the associated poroelastic
strains as a function of time at several positions along the core. No

permeability calculations were made.

The differential pore pressure transducer and the strain gages were
interfaced to a Hewlett-Packard 85 minicomputer via a Hewlett-Packard 3497A
data acquis.ition and control unit. Pressure pulses were applied by manually
opening a valve; data collection was then done automatically. Computer

programs were written to convert measured voltages to diflerential pore
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pressure and strain; results were then stored on tape, and could later be

plotted using the minicornputer’s internal printer.

A consistent problem encountered in this experiment was ‘noise’ in the
strain measurements. This appears to have been due to at least two causes in
addition to random noise: imperfect bonding of gages to the copper jackets,
and electronic switching between gage channels. The magnitude of the noise
was sometimes a significant fraction of the poroelastic strain signal,

particularly for relatively small values of Ap.

Because p during a pulse test varies along the length of a core, we
expected that strain as a function of time would vary along the core. Although
we tried mounting gages at several positions along the test cores, the noise
level was generally such that we were unable to resolve any systematic

difference in the strain signals at different positions.

Typical results of a pulse test are illustrated by Figs. 6-4a, 6-4b, and 6-4¢,
for a Ap value of 15 bars. The core for this particular test was 14.2 em long.
The indicated strain readings were gotten by averaging the signals from two

gages mounted 180° apart, at the same axial position along the core (Fig. 6-5).

The importance of nonlinear phenomena in pressure-pulse propagation
was tested by recording Ap(t) for a variety of pulse magnitudes, digitizing the
plotted records, and finally normalizing the results (i.e., dividing all Ap values
by the pulse magnitude). In the absence of nonlinearities, the normalized plots
of Ap vs. ¢ should superpose. In Fig. 6-8, we show results obtained using the
14.2 em long core, with p, = 150 bars. Pore pressure was varied between 50
bars and 50 bars - Ap (e.g., for Ap = 5 bars, we ran tests with p =50 bars and a
‘negative’ pulse, and also tests with p =45 bars and a ’'positive’ pulse). Four

runs were performed for each Ap to assure repeatability.
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Figure 8-4: Typical results of a pulse test.
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Figure 6-4b: Strain in axial gages.
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Figure 8-4c: Strain in circumferential gages.
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Figure 8-5: Strain-gage configuration during pulse tests.
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We see from Fig. 6-6 that the normalized records for Ap = 1.5 bars and
S bars match quite well. Normalized results for Ap =3 bars, not plotted in
Fig. 8-8 to avoid unnecessary clutter, also match these two records. In
contrast, the normalized pressure decays for Ap = 15 bars and 25 bars diverge

strongly from the lower-pressure results.

In Fig. 8-7, we bave plotted the ‘decay time’ for these tests as a function
of Ap, where the decay time is defined here as the time et which Ap(t) has
fallen to 40% of its original value. This figure emphasizes that the nonlinearity
bas a negligible effect for Ap less than about 5§ bars (10% of the °total’ pore

pressure), but becomes increasingly important at larger Ap values.

Fig. 68-8 shows strains measured on circumferential gages (the least noisy
gages) on the same 14.2 cm long core, as a function of pulse magnitude, with
each point the average of four runs. The accuracy of these strain data is about
1-1.5% 10“.A The strains plotted hére correspond to values at times for which
the diflerential pore pressure had essentially vanished. For the 15 bar and 25
bar pulses, the decays were terminated somewhat before the differential
pressure had completely dissipated (strains indicated in Fig. 6-8 by circles).
We extrapolated these results by assuming that the strain due to the remaining
few bars of differential pressure, Ap,, would simply be the same as for a pulse

of magnitude Ap,.

The data show a quite linear relationship between strain and pulse
magnitude. This is in accord with predictions of poroelasticity theory, and
indicates that assuming a linear dependence of strain on pore pressure is quite
adequate, even for relatively large (50%) fractional changes in pore préssure.

at least at the conditions of our experiment.
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4. DISCUSSION

The theory and experimental results presented above have some
practical importance for investigators who intend to use the pulse-decay
method to study low-permeability rocks. First, poroelastic theory makes it
clear that sample size may have an eflect on the apparent permeability
inferred from pressure vs. time records. Whether or not this will be important
in practice--particularly in light of the possibly more important eflect of
material inhomogeneity--cannot yet be confidently stated. It would seem
reasonable, however, to suggest that in any experimental program of
permeability measurements, possible complications in comparing data could

be avoided by standardizing sample sizes. '

Our study of nonlinear phenomena in pore-pressure diffusion suggests
some guidelines for the maximum allowable magnitude of pressure pulse. Our
results showed significant deviation from lineax;ity for Ap/p in excess of
ca. 0.1. Walls [1982] previously showed consistently linear behavior with a
similar rock for Ap/p <ca. 0.03. It would seem reasonable to propose that
experimenters use Ap/p well below 0.1; Ap/p <0.05 may be a reasonable
guideline. Some experiments described by previous investigators [e.g., Brace
et al, 1968; Trimmer et al., 1980] have utilized Ap/p as high as 0.2-0.4, raising
the possibility that nonlinear pore-pressure diffusion phenomena could have
lead to misinterpretation of some results. In any case, it would seem prudent
in any program of pulse-decay measurements to follow Walls’ [1982] lead and

explicitly test for possible dependence of results on pulse magnitude.

5. SUMMARY

Poroelasticity and nonlinear pore-pressure diffusion phenomena may

affect the interpretation of permeability measurements by the pulse-decay
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method. We have discussed the theoretical bases for expecting such
complications, and reported results of two simple experiments designed to test
the theory. The theoretical developments and experimental test results
suggest guidelines to be used in pulse-decay testing in order to eliminate
po;sible complications of sample-size effects (due to poroelastic coupling
between rock and pore fluid) and of nonlinear pore-pressure diffusion (due to

excessively large pulse magnitudes).
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APPENDIX: MATHEMATICAL ANALYSIS OF PULSE-DECAY TEST

A variety of mathematical approaches for interpretation of pulse-decay
measurements have been presented by other investigators. Two basic
approaches have been used: regression-type fit of a particular mathematical
equation to pressure vs. time data [Brace et al.,, 1968; Zoback and Byerlee,
1975; Walls et al.,, 1980] and 'matching’ of experimental data to numerically
generated 'type curves’' [Trimmer et al., 1880; Hsieh et al., 1981]. As we began
our series of pulse-decay tests with samples of various lengths, we used the
particular regression method (and computer code) developed by Walls et al.
[1980]. Later in our experimental program, we noticed that with very short
cores, this method appeared to produce small systematic errors in curve-
fitting. A better fit of the theoretical curve to the data was gotten by slightly
modifying the analytical solution of Walls et al. [1980]. Details of our derivation

are given next.

Walls et al. [1960] solved the pore-pressure diffusion eguation:

o%p _ 128
by =

with the initial and boundary conditions
(i) p(z.t =0) = p,
(i) p(z=0.t) = p,

(iii) %%(z =L.t) = kg -gfz’—(z =L.t)

where kz=kA/ uB; Ve, with A the cross-sectional area of the core and V; the
volume of reservoir 2 (cf. Fig. 6-1). The boundary condition (ii) corresponds to
the assumption that V,, the volume of reservoir 1, is infinite. We modified this

boundary condition to be analogous to (iii), viz.:
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(ii’) TR =0,t) = —x, %(z =0,t)

where x,=kA/uB,V,, with V; the volume of reservoir 1. The boundary
conditions are now equivalent to those in the analysis by Hsieh et al. [1981] if

we assume that both of the reservoirs are perfectly rigid.

With the modified boundary conditions, we proceeded as in Walls et al.
[1980] to solve Eqn. (A-1) by Laplace transform methods. The transform can be
expressed as & complicated infinite series. Inverting term by term, and
keeping terms to second order (as opposed to Walls et al. [1980], who kept only
first-order terms), we find a very complicated expression for Ap(t), the

differential pressure as a function of time:
;—“2;—= 1+ 2(%"'[—1 +2e 64 4 2o~ ~ 3oV, 4or*'] + (A-2)
1T P2

+ 50(%)*/% B(%—)"’] -2(1+8,+y)erte (-g-) ~4(B,+y)erfc (¢) +

+2(1+98, +9y)erfc (?éfe - 32(8, +y)erfc (2¢) +
+ 4yexp(2B2+af)erfc(¢+az) + 2(1+y)exp(Bz;+af)erfc (g-+ az) -
-2(149y-68;~4a3- 12,0, - 188,) exp(3 B + af) erfc (-355-+ az) —
-32(2a;xg~y+48,)exp(48:+af)erfc (2¢ + a3) ~

—4(10a,00~57 +258, +582+2al) exp (5 Bz + af) erfc (%f—mz)

where a,=x,Vi/c, az=«;Vi/c, fy=x,L/c, Bz=xpgL/c, y=K,/x, and
¢=L/Vet.

3

In Figs. 6A-1, 6A-2, and BA-3, we show the curve-fits (and the inferred
permeability values) for a pulse decay with 21.7 mm long, 51 mm diameter

core (at p. = 490 bars) for three different analytical approximations: the
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Figure 6A-1: Best fit of analytic expression of Brace et al. [1968] to pressure-
transient data for a 21.7 mm length Spirit River sandstone core.
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Brace et al. [1988] solution, the '1st order error function’ solution of Walls et
al. [1980], and the '2nd order error function' solution of the present chapter,
respectively. All three solutions show a slight systematic mismatch between
data and analytical solution; this mismatch is the least for the 2nd order error
function solution. The ‘goodness of fit' may be mathematically expressed by

the sum of the squares of the residuals, Y R;, defined as

LR =Y (o ~H) (A-3)

where the p, are the measured differential pressures at times {; and the §; are
the corresponding values of the analytical approximation. For the example
presented here, Y R; = 1.92x 1073, 1.17x 1073, and3.84x 10™* for the curve-fits
in Figs. 8A-1, 8A-2, and 8A-3, respectively. Our ’'second order error function’ fit
therefore gives a substantially smaller residual than either of the other two
approximations. This comparison points out yet anotber complication in
permeability determinations, namely, the way in pressure vs. time data are
manipulated to infer permeability. (It should be noted that for longer cores,
the problem with systematic mismatch between analytical solution and data
does not appear. This results suggests that either the mathematical analysis
should be carried to higher order—a very tedious process—or that

experimenters should avoid using very short core s.)
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NOTATION
A cross-sectional area of core
B poroelastic modulus (*Skempton’s parameter’)
c hydraulic diffusivity

dimensionless function related to characteristic diffusion time

shear modulus

sample length

f

G

k permeability
L

m fluid mass fraction
p

pore pressure

Pe confining pressure

Pe effective pressure

p' dimensionless pore pressure
q volumetric flow rate
T radial coordinate

t time

t' dimensionless time

V..Vz reservoir volumes
z axial coordinate

dimensionless axial coordinate

By fluid compressibility

B coeflicient describing eflect of pore pressure on permeability

ﬁk coeflicient describing eflect of confining pressure on permeability
3 compressibility term

Syj Kronecker delta

Ap magnitude of differenlial pore pressure
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K. Kp

Ps

oy
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‘residual’ value of Ap
strains

circumferential coordinate
parameters related to fluid storage in reservoirs
viscosi;y
Poisson’s ratio
undrained Poisson's ratio
L/ Vet
fluid density
stresses
characterristic time scale

porosity
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SUMMARY

The studies described in this dissertation have addressed phenomena on
a wide variety of scales, from laboratory to global. It has been shown that for
several common geological processes, including sedimentary basin
development, plate convergence, and uplift, the coupling between fluid and
solid plays a critical role in determining the magnitude of pore pressure and,
hence, the susceptibility of the host rock to brittle fracture. Furthermore,
even in regions of the Earth's crust nof usually thought of as tectonically
active, fluid-solid coupling will be very important if localized, essentially
chemical processes introduce a time-dependence into crustal hydrologic
parameters (porosity and permeability). Again, fluid flow, pore pressure, and

rock deformation become inextricably linked phenomena.

By further integrating and expanding the various studies presented here,
additional understanding of the role of pore fluids in tectonic processes would
certainly result. For example, the work on poroelasticity could be combined
with that on overpressuring in sedimentary basins to better understand pore-
pressure development during subduction of oceanic erust. This, in turn, could
help elucidate the state of stress and the style of deformation in subducted
crust. The poroelastic formalism may also be quite useful in better defining
the mechanical interaction between igneous intrusions and host rock. Another
intriguing problem--one that was touched upon briefly in chapter 3—is that of
the origin of Mississippi Valley-type Pb-Zn deposits. By combining concepts

presented in that chapter with work done by other investigators, we may not
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only be able to model the ore-genesis process, but also learn a great deal about
sedimentary basin development.

If there is to be a ceptral 'lesson’ to be learned from the work presented
here, it is that crustal hydrologic processes must be considered as
fundamentally dynamic. Generalizations about the ’‘ambient’ or ‘'average’
hydrologic properties of the Earth’s crust may be useful in some contexts, but
for the geologist or geophysicist seeking fundamental explanations for tectonic

phenomena, such generalizations are almost certainly misleading.
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